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Abstract

Once thought to be a waste product of oxygen limited (anaerobic) metabolism, lactate is now known to form continuously under fully oxy-

genated (aerobic) conditions. Lactate shuttling between producer (driver) and consumer cells fulfills at least 3 purposes; lactate is: (1) a major

energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. The Lactate Shuttle theory is applicable to diverse fields

such as sports nutrition and hydration, resuscitation from acidosis and Dengue, treatment of traumatic brain injury, maintenance of glycemia,

reduction of inflammation, cardiac support in heart failure and following a myocardial infarction, and to improve cognition. Yet, dysregulated

lactate shuttling disrupts metabolic flexibility, and worse, supports oncogenesis. Lactate production in cancer (the Warburg effect) is involved in

all main sequela for carcinogenesis: angiogenesis, immune escape, cell migration, metastasis, and self-sufficient metabolism. The history of the

tortuous path of discovery in lactate metabolism and shuttling was discussed in the 2019 American College of Sports Medicine Joseph B. Wolffe

Lecture in Orlando, FL.
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1. Introduction

1.1. Author’s perspective

Fifty-five years ago, the author’s understanding of the bio-

chemistry and physiology was simple: the accumulation of lac-

tic acid indicated O2 debt. Lactate was a dead-end metabolite,

a metabolic waste that caused muscle fatigue, rigor, cramps,

and soreness. Certainty of that understanding was assured

because those ideas came from the founders of modern bio-

chemistry (O. Meyerhof)1 and muscle physiology (A.V. Hill).2

However, from a teleological view, those ideas made no sense

to the author, a 20-year-old at the time. Furthermore, the ideas

seemed dated and inconsistent with emerging ideas in mito-

chondrial energetics,3,4 muscle metabolism and contraction.5

In contrfrom lactate shuttle theory (Fig. 1),6�8 today we know
This paper represents a text version of the Joseph B. Wolffe Lecture to the

American College of Sports Medicine, May 28, 2019, in Orlando, FL. ICU

stands for intensive care unit. Accompanying video adapted with permission

of the American College of Sports Medicine � American College of Sports

Medicine 2019. ICU stands for Intensive Care Unit.
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that lactate is continuously produced under fully aerobic con-

ditions (Fig. 2) and is a major fuel for muscle,9 heart,10 and

brain;11 the major gluconeogenic precursor;12,13 and a signal-

ing molecule.14 Furthermore, lactate may serve to alleviate

muscle fatigue due to extracellular K+ accumulation15 and,

because it is the terminal step in glycolysis, catabolized by lac-

tate dehydrogenase (LDH), produces lactate anion, not lactic

acid.16�18

Given the early history, how paradoxical it is that we19 and

others20,21 are evaluating the efficacy of using lactate-con-

taining solutions to provide support in the setting of critical

care medicine. Specifically, for treatment of traumatic brain

injury (TBI), lactate formulations directly support neuronal

metabolism when glucose uptake is limited following injury,

achieve exquisite glycemic control by supplying the major

gluconeogenic precursor for liver and kidneys, and limit post-

injury cerebral swelling.19 In the last century, a very insight-

ful man said, “der Alte w€urfelt nicht!” (“the old one (i.e.,

creator) does not play dice with the universe”).22 So it is that

lactate production and use is now to be viewed as a basic bio-

logical response that is accelerated to mitigate a variety of

metabolic stresses.
ders and boards to the lab and ICU. J Sport Health Sci 2020;9:446�60.
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Fig. 1. The lactate shuttle concept, depicting lactate as the vehicle linking gly-

colytic and oxidative metabolism. Linkages between lactate “producer” and

“consumer” exist within and among cells, tissues, and organs. As the product

of one metabolic pathway (glycolysis) and the substrate for a downstream

pathway of disposal (mitochondrial respiration), lactate is the link between the

glycolytic and aerobic pathways. Importantly, according to the lactate shuttle

hypothesis, this linkage occurs continuously under fully aerobic conditions,

can transcend compartment barriers and occur within and among cells, tissues

and organs. Modified from Refs 6, 23, 194 with permission.

Fig. 2. Lactate production occurs continuously under fully aerobic conditions in

intact animals, mammalian tissue preparations, intact animals, and humans in vivo.

In muscles and arterial blood of resting healthy humans, lactate concentration

approximates 1.0 mmol/L, while pyruvate concentration approximates 0.1 mmol/L.

The lactate/pyruvate (L/P) approximates 10, with net lactate production and release

from resting muscle of healthy individuals occurring when arterial partial pressure of

oxygen (PO2) approximates 100 Torr and intramuscular PO2 approximates 40 Torr,

well above the critical mitochondrial PO2 for maximal mitochondrial respiration

(1�2 Torr).195�197 During exercise at about 65% of maximal oxygen consumption

(VO2max), lactate production and net lactate release from working muscle beds rise

and the L/P rises more than an order of magnitude (to approximately 500).57 How-

ever, the intramuscular PO2 remains at 3�4 Torr, well above the critical mitochon-

drial O2 level. Hence, it is appropriate to conclude that in healthy humans, glycolysis

proceeds to lactate under fully aerobic conditions. Importantly, most (75%�80%)

lactate is disposed of immediately within the tissue or subsequent to release and reup-

take by working muscle, with significant uptake and oxidation by heart or oxidation

by liver for gluconeogenesis. From diverse sources9,45,57,144,197,198 with permission.

Fig. 3. The Meyerhof calorimeter. m1 is the device for indirect electrical stimula-

tion of frog hemicorpus thighs; the horizontal line (m2) is Ringers solution level.

This device was used to demonstrate quantitative conversion of glycogen to lactate

under nonperfused and nonoxygenated conditions. From Ref. 1 with permission.
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1.2. Physiological stress and lactate strain

In physiology, it is typical that lactate accumulates when

there is a physiologic stress. The classical interpretation was

that lactate accumulation was a stress (a fatigue agent, a
dead-end metabolite, the result of O2 insufficiency, etc.);1 ret-

rospectively, that was a biased and incorrect view. To the

contrary, increased glycolysis in response to stress could

have, and should have, been regarded as a compensatory

strain response.23

That luminaries in biology and medicine were involved in

O2Debt theory has historically been a problem for the field. For

instance, in the unperfused and unoxygenated frog hemicorpus

preparation of Meyerhof,1 electrical stimulation led to glycogen

depletion, lactate accumulation and fatigue. This was an ideal

setup to quantitatively relate glycogen depletion to lactate accu-

mulation, but the experimental setup (Fig. 3) was nonphysiologi-

cal and incapable of representing what happens in vivo. With the

benefit of a century of research we now appreciate that in a

closed, oxygen-limited environment, glycolysis was a major

means to support adenosine triphosphate (ATP) flux. In concert,

A.V. Hill, one of the founders of muscle and exercise physiology,

measured postexercise O2 consumption, but not lactate kinetics
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in humans recovering from exercise,24 but he never measured

either O2 consumption or lactate production in the isolated frog

muscle preparations he studied.2 The evidence linking lactate pro-

duction to muscle oxygen insufficiency was circumstantial, and,

unfortunately, ill-considered. Regrettably, the Pavlovian and

knee-jerk responses to lactate accumulation and attributing it to

O2 insufficiency have persisted.
25
1.3. Controversies within the Nobel tradition

Despite widespread interpretation of data by Nobel Prize win-

ners1,2 that lactate production was the result of O2-limited metab-

olism, observations that lactate could be produced under fully

aerobic conditions were made by other Nobelists.26,27 Glucose

consumption leading to lactate production under fully aerobic

conditions was revealed to be a hallmark of cancer.27 While origi-

nally ascribed to the presence of mitochondrial defects in cancer

cells, subsequently the ability of mitochondria in cancer cells to

respire with substrates, including lactate, was demonstrated.28

Importantly, the efficacious use of lactate produced in fully oxy-

genated muscles to support gluconeogenesis and maintain eugly-

cemia was demonstrated by the Coris.26 However, while there

was good reason to think that lactate could be efficacious in

vivo,26 the general belief of lactate as a metabolic waste and stress

metabolite persisted through much of the 20th century.24,29
1.4. Origin of the Lactate Shuttle theory

The inspiration leading to articulation of the Lactate Shuttle

hypothesis came from several lines of evidence using lab rats

as models of mammalian metabolism;6 evidence came from

radiotracer studies of glucose and lactate kinetics and measure-

ments of blood and muscle lactate concentrations in resting

and exercising animals. At its essence, the hypothesis is that

lactate shuttles among producer (driver) and consumer (recipi-

ent) tissues, cells, and cellular compartments.
Fig. 4. Devices use to support the presence of lactate shuttling in resting and exerci

determine oxygen consumption (VO2), rate of elimination of carbon dioxide (VC

activities of glucose, lactate glucose (Gluc), fructose di-phosphate (FDP), and other

ography and enzymatic analyses.33 See original papers32,33 for details on how lactat

mined in a mammalian model organism during physical exercise. From Ref. 23 with
1.5. Key results from isotope tracer studies

In contrast to the one-fifth/four-fifths oxidation/glyconeogen-

esis theory of lactate disposal during exercise recovery 14C-lac-

tate injected into lab rats resulted in label exhalation as 14CO2,

with little incorporation into muscle glycogen.30,31 Second,

technologies were developed to make metabolic measurements

on resting, exercising, and recovering lab animals32 and then

determine concentrations and specific activities of CO2, glucose,

lactate, and related metabolites33 (Fig. 4A and 4B), respectively.

Indeed, it is likely that none of these advances would have been

possible without isotope tracer technologies enabling measure-

ments of metabolite production and disposal rates. With those

methods available, it became possible to simultaneously com-

pare glucose34 and lactate35 flux (turnover, production, and dis-

posal) rates as well as rates of lactate disposal via oxidation and

gluconeogenesis in trained and untrained rats both at rest and

when exercising. Hence, the presence of lactate shuttling in a

mammalian (rat) system was revealed (Fig. 5). In resting rats,

lactate turnover and oxidation rates were surprisingly high, but

were typically less than corresponding glucose flux rates. How-

ever, during exercise, lactate flux and oxidation easily exceeded

corresponding glucose flux rates. This was because of the con-

tribution of glycogen to glycolytic flux during exercise. More-

over, during exercise, most glucose production came from

lactate via gluconeogenesis.34 Training not only increased the

capacity of gluconeogenesis, but also had dramatic effects on

lactate the metabolic clearance rate (disposal rate/concentra-

tion). The classic effect of exercise training on lowering blood

lactate concentration was observed in running rats. However,

tracer data showed that while lactate production was high in

running rats, lactate production was balanced by disposal.

Hence, the lower circulating blood lactate concentration in

trained rats during exercise was explained by greater clearance

rates due to increased oxidation and gluconeogenesis.34,35 Sub-

sequently, with the advent of stable, nonradioactive isotope
sing mammals in vivo. These include (A) a motorized treadmill with sensors to

O2), electrocardiogram (ECG), RER (= VCO2/VO2)
32 and (B) blood-specific

metabolic intermediates using 2-dimensional paper chromatography, autoradi-

e flux (production and disposal, oxidation and gluconeogenic) rates were deter-

permission.



Fig. 5. Depiction of the lactate shuttle as it fulfills 3 physiologic functions: (1)

lactate as a major energy source, (2) lactate as the major gluconeogenic pre-

cursor, and (3) lactate as a signaling molecule with autocrine-, paracrine-, and

endocrine-like effects (called a “lactormone”). “Cell�Cell” and “Intracellular

Lactate Shuttle” concepts describe the roles of lactate in the delivery of oxida-

tive and gluconeogenic substrates as well as in cell signaling. Examples of the

Cell�Cell Lactate Shuttles include lactate exchanges between white glycolytic

and red oxidative fibers within a working muscle bed and between working

skeletal muscle and heart, brain, liver, and kidneys. Examples of Intracellular

Lactate Shuttles include cytosol�mitochondrial and cytosol�peroxisome

exchanges. Indeed, most, if not all, lactate shuttles are driven by a concentra-

tion or pH gradient or by redox state. FG = fast glycolytic; SO = slow oxida-

tive. The figure is annotated because the original model did not anticipate

cerebral lactate oxidation and hepatic and renal gluconeogenesis. Compiled

from diverse sources6�8 and194 with permission.
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tracers, metabolite flux studies could be conducted on human

subjects. In short, the same effects of exercise and exercise

training on glucose and lactate production and disposal rates as

observed in rats were replicated in cross-sectional36�39 and lon-

gitudinal training studies on humans.9,13,40

1.6. Key results from tissue lactate concentration studies

The results of isotope tracer studies34,35 showing high rates

of lactate disposal via tissue exchange and oxidation were

complemented by results of carefully done rat muscle studies

by Paul Mol�e, Kenneth Baldwin, and their associates.41,42 The

Lactate Shuttle hypothesis was necessary to explain why in

working red skeletal muscles, lactate concentrations were not

only lower than those in white sections of the same muscle

but also were lower than those in the blood perfusing them.

Thus, the concept of a lactate shuttle6 was supported by inde-

pendent lines of confirmatory data,6 which were subsequently

described more fully (Figs. 1, 2, and 5).43,44

1.7. Key results from tissue net and isotope tracer balance

studies

Results of whole body tracer and tissue lactate concentration

studies were informative but provided minimal information on
the tissue sites of lactate production and disposal in vivo. How-

ever, in the early 1980s, studies on tissue specificity of lactate

metabolism were under way,9,45,46 and those efforts served as

templates for further research.9,10,40 For example, in 1988, fueling

of the heart during exercise with lactate released from working

muscle beds was observed and was key to envisioning lactate

shuttling in humans.10 In terms of Cell�Cell, or Tissue�Tissue

lactate shuttling, it was subsequently recognized that lactate shut-

tled and carbon recycled between and among tissue beds, such as

between skeletal muscle, heart and liver (Fig. 5). In terms of

driver cells, fast white skeletal cells and tissues42,47�49 and the

integument50 were identified. In terms of recipient cells and tis-

sues, the beating heart takes up and oxidizes lactate,10,46,51 as do

working skeletal muscle beds.9,45 However, what is the path

between lactate uptake and the formation and release of CO2

within an organ, tissue or cell? Was there something else, perhaps

an Intracellular Lactate Shuttle, to be discovered and elucidated?

1.8. The intracellular, cytosol-to-mitochondrial lactate shuttle

Observations of lactate exchange between cells, tissue, and

organs in humans and other mammals52,53 provided impetus

for discovery of intracellular lactate shuttling. Studies on

humans38,39 and other mammals35,54,55 revealed that most lac-

tate was disposed of via intramuscular oxidation, a result

inverse of the one-fifth/four-fifths theory of O2Debt (vide

supra). Lactate disposal via oxidation was particularly promi-

nent when muscles and heart were engaged and blood flow,

oxygen consumption, and metabolite flux rates were

high.9,10,45,46 With that realization, issues arose about where

within a working muscle fiber or beating heart cell lactate was

oxidized. At the time, much thinking about this issue was that

the first step in lactate oxidation to pyruvate occurred in the

cytosol, but for several reasons that idea made no sense. Beat-

ing heart46 and working red muscle45,56 simultaneously con-

sume glucose and take up and oxidize glucose and lactate.

Additionally, measurements of the lactate (L) to pyruvate (P)

ratio (L/P) were inconsistent with the one-fifth/four-fifths the-

ory of lactate disposal. In a resting person, the L/P in leg mus-

cle venous blood ranged from 10 to 20;29,57 however, when

muscles contracted to achieve a moderate exercise power out-

put, the L/P in venous effluent of working muscle rose more

than an order of magnitude (i.e., L/P >500).57 Because of the

presence LDH in erythrocytes and lung parenchyma,58,59 rela-

tive rise of the L/P in arterial blood of exercising individuals is

significant but blunted.9,29,57 Given these data, the notion that

lactate oxidation occurs in the cytosol was implausible. If not

in the cytosol, where, then, does lactate oxidation commence?

Where else, but in the mitochondrial reticulum!

2. The mitochondrial lactate oxidation complex (mLOC)

Controversy surrounds the idea of mitochondrial lactate oxida-

tion; some investigators have produced mitochondrial prepara-

tions that oxidize lactate,60�65 whereas some others66�68 have

failed in the attempt. Conceptually the issue is resolved if one

realizes that the cellular respiratory apparatus is not located in dis-

crete, capsular-shaped organelles (i.e., mitochondria), but rather
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in an extensive network, the mitochondrial reticulum.69,70 Hence,

attempts to isolate mitochondria for ex vivo respiratory studies

inevitably results in disruption of the mitochondrial reticulum69,71

and lability and fragility of mitochondrial constituents such as

cytochrome c and LDH. Still, it is possible to show lactate oxida-

tion in mitochondrial preparations from mammalian muscle,

including human skeletal muscle.72 Additionally, the presence of

muscle mitochondrial lactate oxidation can be demonstrated by

magnetic resonance spectroscopy.73,74 Moreover, studies of mus-

cle cells and tissues using confocal laser scanning microscopy,

immunoprecipitation and immunohistochemistry show the pres-

ence of LDH in the mLOC.75,76 Seemingly, then, the issue of

mitochondrial lactate oxidation has been resolved. In retrospect,

the inability of some investigators to produce mitochondrial prep-

arations that do respire lactate is not unique. A similar problem

with the ability of muscle mitochondrial preparations to oxidize

long chain fatty acids has been ascribed to use of the proteolytic

enzyme nagarse, which increases muscle mitochondrial protein

yield, but the resulting preparations lose the ability to oxidize

fatty acids or their carnitine derivatives.77 In this instance, the

inability of mitochondria preparations to recapitulate what is

known to happen in vivo can be ascribed to isolation artifact. It is

the same with mitochondrial preparations which lose LDH during

isolation and are unable to oxidize lactate. Losing or knocking out

mLDH, an essential part of the mLOC, only proves that mLDH is

essential for mitochondrial lactate oxidation.

In vivo tissue lactate production, uptake, and oxidation

occur because glycolysis and mitochondrial respiration occur

simultaneously. For the mitochondrial reticulum to oxidize
Fig. 6. A schematic showing the putative mitochondrial lactate oxidation complex

chondrial inner membrane, strongly interacting with its chaperone protein CD147, a

lactate dehydrogenase (mLDH), which could be located at the outer side of the inn

other tissues because of the abundance, activity, and characteristics of cytosolic LD

the same cell. This endergonic lactate oxidation reaction is coupled to the exergonic

transport chain; GP = glycerol phosphate; Mal-Asp = malate-aspartate; MCT =m

TCA = tricarboxylic acid. Redrawn from Ref. 75 with permission.
lactate, the reticulum contain a transporter or transporters64,78 and

LDH,62,75 both of which were found as soon as probed for using

immunohistochemistry and immunocoprecipitation.75,76,79 LDH

is now listed in mitochondrial constituent databases such as the

MitoCarta80,81 (https://www.broadinstitute.org/scientific-commu

nity/science/programs/metabolic-disease-program/publications/

mitocarta/mitocarta-in-0) and MitoMiner (http://mitominer.mrc-

mbu.cam.ac.uk/release-4.0/begin.do).

The first clues to the structure of mLOC (Fig. 6) and mito-

chondrial ability to oxidize lactate as well as pyruvate was

deduced based on the functionality of mitochondrial prepara-

tions and a single report in the literature on how to mitigate the

effects of LDH-contaminated mitochondrial preparations.82

To oxidize lactate mitochondrial preparations requires all the

usually understood components (pyruvate dehydrogenase,

Krebs cycle enzymes, components of the electron transport

chain), a lactate transporter, and LDH. Upon investigation,

mitochondrial preparations from rat and human muscle were

found to contain monocarboxylate transporter isoform 1

(MCT1), its membrane chaperone basigin (BSG or CD147),

LDH and cytochrome oxidase.75 Subsequently, essential ele-

ments of the mLOC were found in mitochondrial preparations

from liver,63,65 brain,76 and various model systems, such as

brain slices,83 primary neuronal cultures,76,84 normal breast,

and transformed breast cancer cells28 and tumors.85 Immuno-

histologic evidence of the presence of mLOC is presented in

Fig. 7. At the time of discovery, it was known that, while lac-

tate was preferred over pyruvate as an oxidizable substrate,

monocarboxylate transporters (MCTs) could also transport
(mLOC). The lactate-pyruvate transporter (MCT1) is inserted into the mito-

nd is also associated with cytochrome oxidase (COx) as well as mitochondrial

er membrane. Lactate, which is always produced in the cytosol of muscle and

H, is oxidized to pyruvate via the lactate oxidation complex in mitochondria of

redox change in COx during mitochondrial electron transport. ETC = electron

onocarboxylate (lactate) transporter; mPC =mitochondrial pyruvate carrier;

https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/publications/mitocarta/mitocarta-in-0
https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/publications/mitocarta/mitocarta-in-0
https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/publications/mitocarta/mitocarta-in-0
http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do
http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do


Fig. 7. Immunohistochemical images demonstrating some components of the

mitochondrial lactate oxidation complex (mLOC) in L6 cells. The mLOC con-

tains the inner mitochondrial membrane cytochrome oxidase (COX), the lac-

tate-pyruvate transporter (MCT1), lactate dehydrogenase (LDH) and the MCT

anchoring protein, CD147 (Basigin). MCT1 was detected at both sarcolemmal

and intracellular domains (A-1). Mitochondrial reticulum (MR), identified by

MitoTracker, was extensively elaborated in L6 cells (A-2). The merged

images of MCT1 (green, A-1) and MR (red, A-2) showed intense yellow, indi-

cating co-localization of MCT1 and components of the MR, particularly at

perinuclear cell domains (A-3). (B) LDH (B-1) and COX (B-2) are imaged.

Superposition of signals for LDH (red, B-1) and COX (green, B-2) shows co-

localization of LDH in the MR (yellow) of muscle cells (B-3). Depth of field

approximately 1 mm, scale bar = 10 mm. Similar data have been obtained on

rat plantaris leg muscles in vivo. From Ref. 75 with permission.

Fig. 8. First images assessing co-localization of the monocarboxylate (lactate,

pyruvate, b-hydroxybutyrate) transporter (MCT1) and mitochondrial the pyru-

vate carrier (mPC) in L6 cells, which shows the localization of DAPI-positive

nuclei (A), MCT1 (B), mPC1 (C), and Mito Tracker-positive MR (D) in L6

cells. The merged images are shown in E. Co-localization analysis of mPC1

(C) and mitochondria (D) showed a Pearson correlation coefficient (r2) value

of 0.8. Co-localization analysis of MCT1 (B) and mPC1 (C) showed an r2 of

0.3, largely because MCT1 occupies sarcolemmal, mitochondrial, and peroxi-

somal compartments. A channel to represent the co-localization of MCT1 and

mitochondria was created to image mMCT1; subsequent co-localization of

mMCT1 with mPC1 resulted in an r2 of 0.8 (F). White dots indicate the co-

localization of mMCT1 and mPC1 as observed in Image J software. Whole

images were contrast enhanced in A, B, C, D, and E. Similar results were

observed for mPC2. Scale bar = 20 mm. It appears that both MCT1 and the

putative mPC are co-localized to the mitochondria (r2 = 0.8). However, at the

light microscopic level, it is impossible to know if the 2 proteins interact phys-

ically and functionally. Also, with benefit of the Orbitrap liquid chromatogra-

phy/mass spectrometry device, we would be able to determine fractional

synthesis rates of mitochondrial lactate oxidation complex and mPC proteins.
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pyruvate and b-hydroxybutyrate,86,87 but a unique mitochon-

drial pyruvate transporter had not been identified.

2.1. Mitochondrial lactate and pyruvate carriers

Following reports of discovery of the mitochondrial pyru-

vate carrier (mPC),88,89 and with access to our own custom

antibodies to MCT1 as well as commercially available anti-

bodies to the putative mPC, we obtained images assessing

co-localization of MCT1 and mPC in L6 cells. In those prelim-

inary studies, co-localization analysis of mMCT1 and mPC1 in

Imaris software showed an r2 of 0.8. It appears that both

MCT1 and mPC are co-localized to the mitochondria (r2 = 0.8)

(Fig. 8). However, at the light microscopic level it is impossi-

ble to know if mMCT and mPC interact physically and func-

tionally. Immunocoprecipitation, x-ray crystallography, mass

spectrometry, and protein deletion (knockout) studies are

needed to definitively answer questions about mMCT and

mPC co-localization and functionality and the role of the mPC

in mitochondrial lactate oxidation.

Finally, with regard to the site of intramuscular lactate oxi-

dation, Gladden and associates,18 in an attempt to integrate

ideas about the intracellular lactate oxidation, modified Fig. 6

to include the hypothesis that mitochondrial lactate oxidation

to pyruvate occurred in the cytosol or mitochondrial intermem-

brane space. However, that conclusion is inconsistent with

what we28,76 and others63,65,84 have found concerning the loca-

tion of mitochondrial LDH.

Future research efforts to better define mitochondrial lactate

and pyruvate oxidation complexes, perhaps using Betzig-type
super-resolution microscopy, electron microscopy, or hyperpo-

larized C studies,13 are eagerly anticipated. Moreover, all

extant models may prove to be too simplistic. For instance,

others have proposed90 that intracellular lactate shuttling is

associated with the well-known malate�aspartate shuttle.

Because redundancy in regulation is a physiologic principle,

we shall not be surprised if intracellular lactate shuttling will

eventually be shown to be accomplished by multiple mecha-

nisms in vivo.
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2.2. Other Lactate Shuttle and other roles of lactate

Because of the recognition of the presence of lactate shuttling

within and among various cells, tissues and organs such as muscle,

heart, and liver,6,7,43,44 we and others have extended the concept to

include other cells, tissues, and organs such as the brain,90,91

lungs,58,59 sperm,92,93 adipose,94�96 and peroxisomes.97 Descrip-

tions of these lactate shuttles are described elsewhere.23
3. Lactate signaling, lipolysis, fatty acid oxidation, glucose

tolerance, and inflammation

An inverse relationship between blood and plasma free fatty

acid (FFA) concentration and oxidation has long been recog-

nized,98 but the associations are under-appreciated (Fig. 9). In

the 1960s, Issekutz and colleagues99,100 noted the effect of
Fig. 9. Illustration of how lactatemia affects blood (glucose) and peripheral glu-

cose uptake as well as the production, uptake and oxidation of FFA, giving rise

to metabolic inflexibility in muscle. Lactate is the inevitable consequence of gly-

colysis,18 the minimal muscle lactate (L) to pyruvate (P) ratio (L/P) being 10

and rising to an L/P of >100 when glycolytic flux is high.57 Lactate is the

favored oxidizable substrate and provides product inhibition of glucose and

FFA oxidation. As the products of glycolysis, lactate and pyruvate provide nega-

tive feedback inhibition of glucose disposal (blue dashed lines). Also, as the pre-

dominant mitochondrial substrate, lactate gives rise to acetyl-coenzyme A

(CoA), and in turn malonyl-CoA. Acetyl-CoA inhibits b-ketothiolase and,

hence, b-oxidation, while malonyl-CoA inhibits mitochondrial FFA-derivative

uptake via CPT1 (T).199 Moreover, lactate is the main gluconeogenic precursor

raising glucose production and blood (glucose) (red lines). Via GPR81 binding,

lactate inhibits lipolysis in WAT (T), depressing circulating FFA.96,104 This

model explains the paradoxical presence of lactatemia in high-intensity exercise

and insulin-resistant states with limited ability to oxidize fat (green lines).

Modified from.76 CPT1 = carnitine palmitoyl transporter-1; FAT = fatty

acid translocator comprised of CD36 and FABPc; FFA = free fatty acid;

GLUT = glucose transporter; m =mitochondrial; Malonyl = CoA formed from

exported TCA citrate controlled by the interactions of malonyl-CoA decarboxyl-

ase (MCD) and acetyl-CoA carboxylase (ACC); MCT =monocarboxylate

transporter; mPC =mitochondrial pyruvate transporter; PDH = pyruvate dehy-

drogenase; s = sarcolemmal; T = inhibition; WAT = white adipose tissue. Not

shown is fatty acyl-Co (FA-CoA) that will accumulate if FFAs are taken up by

myocytes, but blocked from mitochondrial entry by the effect of malonyl-CoA

on CPT1. Accumulated intracellular FA-CoA will give rise to intramyocellular

triglyceride (IMTG) and the formulation of LC-FA, DAG, and ceramides

via inhibition of PI3 Kinase (PI3-K) and reducing GLUT4 translocation; from

Ref. 23 with permission.
lactacidemia on diminishing circulating FFA in dogs and

humans during hard exercise, and lactate infusion into running

dogs caused circulating FFA to decline.99,101,102 In their work,

these investigators could clearly observe an effect of the lac-

tate on circulating FFA, but whether the mechanism was an

inhibition of lipolysis or a stimulation or re-esterification was

not addressed.

The mechanism by which lactatemia suppresses circulating

FFA is now known to be due to suppression of adipose lipoly-

sis. Recently, several groups of investigators94�96,103 have

shown that, independent of pH or sodium ions, lactate inhibits

lipolysis in fat cells through activation of a previously identi-

fied orphan G-protein coupled receptor, now termed hydroxy-

carboxylic acid receptor 1 (HCAR-1). In mouse, rat, and

human adipocytes, HCAR-1 appears to act as a lactate sensor

with the inhibitory effect on lipolysis operating through cyclic

adenosine monophosphate and cyclic adenosine monophos-

phate response element binding.104�106

Most recently, a large international group of investigators

has expanded knowledge of the role of lactate signaling via

transforming growth factor b (TGF-b2) secreted from adi-

pose.107 TGF-b is a multifunctional cytokine belonging to

the TGF superfamily that includes 3 different mammalian iso-

forms (TGF-b1 to TGF-b3). Because of its role in immune

and stem cell regulation and differentiation, TGF-b2 is a

highly researched cytokine in the fields of cancer, auto-

immune and infectious diseases, disruption of the blood�brain

barrier in epilepsy, aging, and TBI.108 While all TGF-b iso-

forms are known to be secreted by white blood cells, Takaha-

shi et al.107 showed that after endurance training, adipose of

mice secreted TGF-b2 in response to lactate signaling. In turn,

TGF-b2 improved glucose tolerance in mice, leading the

authors to conclude that exercise training improves systemic

metabolism through an inter-organ (adipose to liver) commu-

nication via a “lactate�TGF-b2 signaling cycle”.
On first impression, one might think that the effects of lactate

on HCAR-1 inhibiting lipolysis and mitochondrial lactate oxida-

tion (Fig. 6)96 are contradictory with increasing glucose tolerance

via TGF-b2.107 However, a reasonable alternative explanation is

that the effects of lactate on HCAR-1 in adipose are acute (as

occurs during hard exercise) and that the effects of TGF-b2 are

long term (as occurs during recovery from exercise) when glu-

cose tolerance and lipid oxidation are improved in men and

women.109 While the purported effects of lactate signaling

HCAR-1 and TGF-b2 observed in rodent models await valida-

tion in humans, for the present it is certain that lactate both inhib-

its lipolysis and mitochondrial FFA oxidation and stimulates

mitochondrial biogenesis and glucose tolerance and lipid oxida-

tion in humans in vivo.

Beyond a role in inhibiting lipolysis, lactate also plays an

important role in limiting inflammation following injury. Conse-

quently, lactate-containing solutions are being evaluated as anti-

inflammatory resuscitation fluids for use in a variety of other

therapies, including acute pancreatitis,104,110 hepatitis,104 and

dengue fever.21 Compared to normal saline, lactate-containing

resuscitation solutions offer the advantage of providing calories

in addition to fluid and electrolytes. However, it was not until
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Hoque and colleagues104 found that lactate binding to HCAR-1

negatively regulates toll-like receptor induction of the pyrin-

domain-containing protein 3 inflammasome and production of

Interleukin (IL)-1b, via Arrestin b 2. It was then appreciated

that lactate and HCAR-1 were involved in suppression of

inflammation in patients with acute organ injury. For the treat-

ment of brain swelling and elevated intracranial pressure fol-

lowing TBI, hypertonic sodium-L-lactate, a hypertonic solution,

can help manage intracranial pressure by its osmotic

effects.111�113
4. The dark side of lactate metabolism—When lactate

production and accumulation may or may not be

efficacious

Some table salt improves the taste of many foods, but too

much salt can ruin a soup or entr�ee. Similarly, insulin and insu-

lin action are keys to metabolic flexibility and health. How-

ever, too much exogenous insulin can be lethal. So it is with

lactate accumulation, metabolism, and supplementation.

4.1. Glucose�lactate interactions and cancer metabolism

Warburg and Minami114 first described the metabolic phe-

notype characteristic of cancer cells. They noted high glucose

uptake and excessive lactate formation in cancer cells even

under fully oxygenated conditions. This discovery was subse-

quently named the Warburg Effect.115 While the high glucose

uptake/lactate release phenotype remains a hallmark of

cancer,116,117 today there is no consensus on the meaning of

the Warburg Effect. The excessive lactate formation of cancer

cells and tumors led Warburg to propose that cancer was an

injury to the cellular respiratory apparatus. More recently,

however, we28 and others118 observed that cancer cell mito-

chondria are capable of respiring with lactate. In a recent

review, San-Mill�an and Brooks119 described many similarities

between cancer and healthy exercise phenotypes. Conse-

quently, we proposed that augmented lactate production (lacta-

genesis) initiated by gene mutations is the reason and purpose

of the Warburg Effect and that dysregulated lactate metabo-

lism and signaling are key elements in carcinogenesis.119

Specifically, we identified the following steps by which lacta-

genesis may support carcinogenesis: angiogenesis, immune

escape, cell migration, metastasis, and self-sufficient metabo-

lism. Justification for our hypothesis that dysregulated lactate

metabolism and signaling are key elements in carcinogenesis

are presented separately.23,119 In this regard, it is to be noted

that we are not the only exercise physiologists and biochemists

to have commented on the meaning of exaggerated lactate

shuttling in cancer.120
4.2. Blocking lactate shuttles in cancer

Since Sonveaux et al.85 in the Feron lab identified lactate shut-

tling in tumors, and as commented on by Semenza,121 there have

been serious attempts to repress tumorigenesis by blocking the

release of lactate from glucose-consuming and highly glycolytic

cells and cells respiring lactate. That cancer cells respire with
lactate drawn from the tumor microenvironment is an important

realization in itself.28,118 However, oxidative lactate disposal within

tumors also sets up the concentration gradient necessary for lactate

shuttling. Following the lead of Sonveaux et al.,85 the search is on

to develop MCT1 and MCT4 inhibitors.85,122�125 However, the

lack of MCT specificity has been a problem, even for investigators

in big pharma.126 Because a quest to find cancer-specific MCT

blockers has as yet been unsuccessful, others are looking for alter-

native approaches to blocking lactate shuttling in tumors and can-

cer, such as by limiting the expression of CD147, the scaffold for

MCT insertion into cell membranes (vide supra).127�130

4.3. Exercise, lactatemia, and carcinogenesis

Endurance training and cancer phenotypes have a lot in

common, including the presence of high glycolytic rates and

lactate production and accumulation.119 Accordingly, it is of

concern that elevated circulating lactate levels resulting

from high-intensity interval exercise training can provoke

cancer-prone cells to transform. Fortunately, epidemiologic

studies support the idea that regular physical activity

reduces the risk of many common cancers, including cancer

of the breast, colon, bladder, uterus, esophagus, kidney,

lung, and stomach.131 It is noteworthy that the organs of

cancer have apparently little to do with regard to exercise

itself, suggesting the systemic circulation of a protective

cytokine, myokine, adipokine, or metabolite during exercise.

Given this observation, a suggestion is that intermittent lac-

tate release and circulation of lactate during physical activ-

ity improves lactate clearance and preconditions cells,

tissues, and organs for reducing the chance that lactagenesis

promotes carcinogenesis.119

4.4. Lactate insulin and hypoglycemia

Lactate�glucose interactions can be complex, and interfer-

ence with lactate shuttling by glucose-insulin signaling can be

disruptive. As recognized in the Lactate Shuttle6,43 and Cori

Cycle,26 glucose and glycogen are the precursors to lactate

formation,7,132 and lactate is the major gluconeogenic

precursor.13,26,36,133,134 However, whereas the blood glucose

level provides important feedback in the regulation of insu-

lin and counter-regulatory hormones, lactate normally plays

only a small role in the regulation of insulin secretion,

and is, by nature’s design, excluded from the regulatory

processes.

MCTs are bidirectional symporters facilitating movement

of protons and lactate anions down concentration gradients.

While MCTs are ubiquitous and scaffolded in plasma mem-

branes of most cells, including erythrocytes cells in the heart,

muscle, and brain,8,135,136 via small interfering RNAs MCTs

are excluded from insertion into pancreatic b-cell plasma

membranes.137,138 In pancreatic b-cells, MCT expression is

silenced to keep extracellular lactate from affecting intracellu-

lar redox and thereby interfering with glucose sensing and

insulin secretion.139 The silencing of MCT1 in pancreatic

b-cells is evolutionary proof of how lactate overrides glucose

in regulating energy substrate partitioning in general and
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insulin secretion in particular when the dominant role of lac-

tate must be suppressed. In this regard, it is noteworthy that, in

persons with failed suppression of pancreatic b-cells, MCT

expression becomes hypoglycemic during hard exercise. If

MCT1 is not silenced, lactate will gain entry into pancreatic

b-cells and affect cell redox, just as if blood glucose were ele-

vated. Consequently, individuals in whom pancreatic b-cell
MCT expression is not silenced during exercise experience

lactatemia and become hypoglycemic due to hyperinsulinemia

and increased glucose disposal through metabolism.140

4.5. The “Anaerobic Threshold”

The exercise intensity at which a rise in arterial blood lactate

concentration commences is the “Anaerobic Threshold” (AT). At

one time, the AT was reasonably associated with a limitation in

working muscle oxygen delivery, which resulted in a Pasteur

effect involving augmented glycolysis due to oxygen limita-

tion.25,141 The idea was straightforward and at the time was based

on the widely accepted O2Debt theory.
24 However, because the

AT concept assumed that lactatemia during exercise was due to

increased lactate production rather than an imbalance between lac-

tate production (appearance in the blood, Ra) and lactate disposal

(disappearance from the blood, Rd),9,142 the AT concept has been

severely challenged.43,143 Importantly, and regrettably, the AT

concept failed because of the recognition that muscle produced

and released lactate9,38,45,142 under fully aerobic conditions.144

Still, in the hands of knowledgeable and skilled clinicians, AT

testing can be part of an armamentarium in dissecting changes in

blood lactate Ra due to chronic obstructive pulmonary disease,

pulmonary hypertension, cardiovascular disease, mitochondrial

defects, catecholamine or other endocrine effects,145 pharmaco-

logic toxicity,146 altered carbohydrate nutrition,147 environmental

effects,148 or other effects.

4.6. Lactate�brain fuel after TBI

In comatose TBI patients, the role of lactate in brain fueling

was found to be impressive because most (70%�80%) of cir-

culating blood glucose was produced via gluconeogenesis

from lactate.11,12 Also, net lactate uptake provided 12% of

brain fuel. Hence, most (57%) brain fuel was from lactate,

either directly (12%) or indirectly via gluconeogenesis (45%).

In healthy humans, plasma lactate levels during exercise can

increase by an order of magnitude or more. For example, with a

10-fold rise in concentration, net lactate uptake provides 25% of

total brain energy needed.149,150 Disregarding for a moment that

cerebral disposal of glucose is accomplished by conversion to lac-

tate, preference of cerebral lactate over glucose has been found in

studies on rats151 and humans,150,152 and the provision of lactate

to a healthy brain decreases glucose net uptake. This observation

indicates an important cerebral lactate shuttling phenomenon.

Alternatively, some might consider that lactate can serve as an

alternative brain fuel. However, as emphasized by Schurr, lactate

is the brain fuel because, regardless of whether extracellular glu-

cose or lactate is taken up by brain, the path of glucose disposal is

through conversion to lactate and a Cell-Cell Lactate

Shuttle.153,154
4.7. Lactate and brain-derived neurotrophic factor

In addition to serving as a cerebral energy substrate, circu-

lating lactate can signal secretion of cerebral brain-derived

neurotrophic factor (BDNF). As discussed in part elsewhere in

this work, circulating blood lactate can be raised during exer-

cise by production in muscle, the integument and other epi-

nephrine sensitive tissues. Also, circulating lactate level can

be raised during rest or exercise by vascular L-lactate infusion

into the systemic circulation. Indeed, infused sodium lactate

raises circulating BDNF levels.155 BDNF is a member of the

neurotrophic family of proteins and facilitates neurogenesis,

neuroprotection, neuroregeneration and synaptic plasticity, as

well as formation, retention, and memory recall.156 BDNF is

produced both in the central nervous system and in other tis-

sues, including the vascular endothelium. High levels of

BDNF messenger RNA are found in the hippocampus and in

the cerebral cortex, and in rodent models physical exercise is

the strongest known stimulus to BDNF expression in the hip-

pocampus.157 In contrast, attenuated expression of BDNF mes-

senger RNA in the hippocampus may constitute a pathogenic

factor common to Alzheimer’s disease and major depres-

sion.158 Circulating BDNF is typically elevated in exercise,

but levels are reduced in patients with depression and type 2

diabetes.159 Even though acute exercise increases BDNF pro-

duction in the hippocampus and cerebral cortex, studying the

effects of exercise on BDNF expression in the human brain is

difficult. In what may become noted as a classic study in neu-

rochemistry, Seifert et al.156 compared BDNF levels in arterial

and internal jugular vein blood and demonstrated the effects of

exercise and exercise training on cerebral BDNF net release.

While many posit a positive role for BDNF in terms of cogni-

tion, it is important to know also that lactate therapy has been

shown to raise BDNF levels and improve cognitive function in

rodent models following brain injury.160�162 Most recently, in an

extraordinary set of experiments on healthy men who volunteered

to exercise at high intensities with arterial and jugular bulb cathe-

ters in place, Hashimoto et al.163 showed that executive function

was directly correlated to blood (lactate) and cerebral lactate

uptake. Wang et al.164 also recently provided data showing that

optogenetic activation of astrocytes in the anterior cingulate cor-

tex triggers lactate release and improves decision making in rats

with chronic visceral pain. As predicted in papers resulting from

studies on rodents164,165 and healthy and injured humans,11

Hashimoto et al.163 found that brain fueling with lactate

improved cerebral functioning. Additionally, with respect to cog-

nition, it has been shown that long-term memory consolidation in

rat hippocampus relies on lactate and the Astrocyte-Neuron Lac-

tate Shuttle (ANLS).166,167

5. A role for lactate supplementation in sepsis

Although we have discussed numerous instances in which it

may be clinically beneficial to achieve elevated blood lactate

concentrations, it is noteworthy to mention that a blood lactate

value of 4 mmol/L is a biomarker of severe sepsis.168,169 Inter-

estingly, the lactate threshold in exercise frequently corre-

sponds with 4 mmol/L blood lactate.170 What then is the
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significance of a slightly elevated blood lactate concentration

(e.g., >2.0 mmol/L) in a febrile patient?171 Concern over the

prospect of a blooming bacterial, viral, or fungal attack leading

to sepsis needs to be appreciated from the context of the huge

lactate clearance capacity in a healthy person.172 Also, lactate-

mia is unlikely to be due to oxygen insufficiency (hypoxia) in

either exercise23,143 or sepsis.20,173,174 Alternatively, is the

body readying for some challenge by raising the level of a key

myocardial51 and whole body energy substrate,7 a gluconeo-

genic precursor13,36,44 or an anti-inflammatory moiety?104,110

In realizing the importance of lactate in supporting metabo-

lism, some have proposed that lactated Ringers solution be

used as a resuscitation fluid in sepsis,174 and, by extension of

the same thinking, that the use of isotonic or hypertonic

sodium-L-lactate and SanguisalTM (a physiologically balanced

mixture of Na+-, K+-, Mg2+-, and Ca2+-lactate plus phosphate

buffer) also needs to be evaluated for resuscitation in sepsis.
6. Conclusion

Studies on humans and mammals such as rats and dogs during

rest and exercise led to discovery of the Lactate Shuttle, a mecha-

nism by which lactate production in rapidly glycolyzing driver

cells provides energy substrate for recipient cells where lactate is a

fuel energy source, gluconeogenic precursor, and signaling mole-

cule. In heart and red skeletal muscle, lactate disposal is by mito-

chondrial respiration. In the liver and kidneys, mitochondria play

roles in oxidizing lactate to pyruvate and then in the conversion to

oxaloacetate and phosphoenolpyruvate via pyruvate carboxylase

and phosphoenolpyruvate carboxykinase. In the liver and kidneys,

the oxidation of lactate and other fuel sources also provides energy

for completion of gluconeogenesis and glycogen synthesis. By

changes in cell redox owing to the production and oxidation of lac-

tate, as well as allosteric binding to HCAR-1 and TGF-b signaling,

lactate affects numerous processes. Discoveries of intracellular,

cell�cell, and organ�organ lactate exchanges has led to articula-

tion of numerous lactate shuttles, including peroxisomal and astro-

cyte�neuron lactate shuttles, the basis of which are interactive

effects between driver producer and recipient consumer cells.

In terms of the organization of energy substrate partitioning in

humans and other mammals, lactate is at the fulcrum of intermedi-

ary metabolism. Lactate is the inevitable product of glycolysis.

With rapid glycolysis, as occurs in hard muscle exercise, lactate

limits lipid metabolism in 2 ways. First, lactate released into the

blood reaches white adipose tissue, and by binding to HCAR-1,

lactate acts to inhibit lipolysis via a cyclic adenosine monophos-

phate-dependent pathway (CREB), which limits subsequent release

of fatty acids into blood. Second, lactate produces an abundance of

mitochondrial acetyl-CoA that gives rise to malonyl-CoA, which

in turn inhibits carnitine palmitoyl transporter-1 (CPT-1) and

blocks mitochondrial FFA uptake.

Recognizing that lactate is produced under full aerobic condi-

tions, as well as understanding the roles of lactate shuttling in

biology, is providing new opportunities to treat the ill and injured.

For example, exogenous L-lactate vascular infusion is being eval-

uated in the treatment of heart failure,175�177 TBI,19,113,178,179

pancreatitis,104,110 hepatitis,104 dengue fever,21 and sepsis.174
Recognizing that lactate, particularly rising blood lactate concen-

tration, is a biomarker for an imbalance between lactate production

and removal provides practitioners in diverse fields with important

information on physiologic status of athletes and the ill and injured.

The applications for this information include providing fluid, energy

and electrolyte support to athletes and others,180 and apply to fields

as diverse as pulmonary medicine,141 sports medicine,181,182 critical

care medicine,173 and oncology.85 Indeed, the recognition that lac-

tate shuttles among driver producer and recipient consumer cells in

tumors offers the exciting possibility of reducing carcinogenesis

and tumor size by blocking either or both producer and recipient

arms of lactate shuttles within and among tumor cells. With grow-

ing appreciation of the importance and extent of lactate shuttling

in vivo, it is to be anticipated that by controlling blood (lactate) via

a closed loop, a continuous monitoring system can improve care of

the ill, injured, and malnourished.183�185

In closing, profound thanks are offered to those students, post-

doctoral fellows, visiting scientists and University of California at

Berkeley colleagues who participated in the discovery of lactate

shuttling; those contributors are identified in the references, typi-

cally as first authors. Also, it is important to fully recognize the

many contributions of the American College of Sports Medicine

(ACSM) and to recognize that our contributions, as described in

this paper, occurred within the context of a greater whole. It is risky

to limit the examples of how ACSM colleagues have advanced sci-

ence and medicine, since other important contributions are easily

and unintentionally omitted. Nevertheless, contributions of the fol-

lowing individuals to physiology, and sports medicine should not

be overlooked: Jere Mitchell, in cardiovascular physiology and

medicine;186 John Holloszy, in mitochondrial biogenesis;187 L.

Bruce Gladden, in the regulation of intermediary metabolism;18,188

Jim Barnard, V. Reggie Edgerton, and Ken Baldwin, in muscle

fiber heterogeneity;47,48 Scott Powers, in redox signaling and pre-

conditioning of the heart to cardiovascular insults;189 Karl Wasser-

man and Jerry Dempsey, in pulmonary physiology and

medicine;25,190 Tom Fahey, in translating the lessons of physiology

and sports medicine to the literature for health care professionals

and the lay public;191�193 and Tim White, in the administration of

higher education (https://www2.calstate.edu/csu-system/chancel

lor/Pages/meet-the-chancellor.aspx). In the aggregate, our scien-

tists, clinicians, and staff at the ACSM know well how the body

works under stress, in illness, and after injury. Thus, collectively

we can think of and accomplish things that few others could imag-

ine. One such example is an idea from exercise physiology that

has wide applicability to science and medicine—the Lactate

Shuttle—in which the product of one process, glycolysis, is the

substrate for another process, oxidative metabolism. The linkage

between the two is lactate, the metabolite that can transcend cellu-

lar, tissue and organ compartment barriers to be a preferred fuel

energy source, the major gluconeogenic precursor and a powerful

signaling molecule.
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