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ABSTRACT Bacteria degrade nicotine mainly using pyridine and pyrrolidine path-
ways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways
(the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme,
6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamina-
tion of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine,
which is the crucial step connecting upstream and downstream portions of the VPP
pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a
monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On
the basis of sequence alignment and structure comparison, a difference has been
found among HisD, closely related trimethylamine dehydrogenase (TMADH), and his-
tamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not co-
valently bound to any residue, and the FMN isoalloxazine ring is planar in HisD com-
pared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide
cofactor and has an FMN isoalloxazine ring in a “butterfly bend” conformation.
Based on the structure, docking study, and site-directed mutagenesis, the residues
Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The ex-
panded understanding of the substrate binding mode from this study may guide ra-
tional engineering of such enzymes for biodegradation of potential pollutants or for
bioconversion to generate desired products.

IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and
pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseu-
domonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and
pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxi-
dase (HisD), links the upstream and downstream portions of the VPP pathway; how-
ever, there is little structural information about this important enzyme. In this study,
we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its ba-
sic insights about the structure may help us to guide the engineering of such en-
zymes for bioremediation and bioconversion applications.
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Nicotine is a major tobacco alkaloid and the primary toxin in tobacco waste. It can
easily spread in the environment because it is water soluble and is emerging as a

public health threat (1–4). As a result, nicotine was classified as a “toxic release
inventory” chemical by the U.S. Environmental Protection Agency in 1994 (5). Microbial
treatment is an important tool for removing nicotine from tobacco industry waste.
Many microorganisms that use various nicotine degradation pathways have been
isolated from the environment, and nicotine degradation pathways have been widely
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investigated by researchers. Nicotine catabolism pathways can be divided into three
different types on the basis of identified intermediates: the pyridine pathway of the
Gram-positive bacterium Arthrobacter sp. (6), the pyrrolidine pathway of the Gram-
negative bacterium Pseudomonas putida S16 (7), and a hybrid of pyridine and pyrrol-
idine pathways (the VPP pathway) present in Ochrobactrum sp. strain SJY1 (8), Pseu-
domonas geniculata N1 (9), and Agrobacterium tumefaciens S33 (10).

The VPP pathway is congruent with the upstream part of the pyridine pathway
and the downstream portion of the pyrrolidine pathway. Although the VPP pathway
has been genetically characterized and most of the catalytic enzymes in this path-
way have been functionally analyzed (6–11), many challenges remain in understanding
the biochemistry and structural mechanism of key enzymes in the pathway.
6-Hydroxypseudooxynicotine (6-HPON) amine oxidase catalyzes the transformation of
6-HPON to 6-hydroxy-3-succinoylsemialdehyde-pyridine (HSSAP) (Fig. 1A), which links
the upstream and downstream portions of the VPP pathway. Recently, 6-HPON amine
oxidases have been found in Agrobacterium tumefaciens S33 (10) and Pseudomonas
geniculata N1 (9); however, there is little structural information about this important
enzyme.

In this study, we determined the crystal structure of HisD from Pseudomonas
geniculata N1 to a resolution of 2.6 Å. 6-HPON amine oxidase (HisD) is a homolog of
trimethylamine dehydrogenase (TMADH), which catalyzes the oxidative N-demethylation
of trimethylamine to form dimethylamine and formaldehyde, from Methylotrophus
methylophilus and histamine dehydrogenase (HADH), which catalyzes the oxidative
deamination of histamine to imidazole acetaldehyde, from Nocardioides simplex (12,
13), sharing �40% and �50% sequence identity with those proteins, respectively.
However, we found significant differences that indicate HisD is a functionally distinct
enzyme. We use docking study and mutation experiments to identify the key residues
that might be involved in substrate binding. The structure of HisD suggests that HisD
is unique compared to HADH and TMADH, and they do not share a mechanism.

FIG 1 HisD structure. (A) Reaction scheme showing the HisD-catalyzed conversion of 6-hydroxypseudooxynicotine (6-HPON) to 6-hydroxy-3-
succinoylsemialdehyde-pyridine (HSSAP). (B) Schematic representation of the HisD structure. The structure is colored in rainbow colors. (C) Structural
comparison of HisD (green) with HADH (PDB 3K30; blue) and TMADH (PDB 1DJQ; magenta).
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Structure and docking studies on HisD are needed to unveil the mechanism used by
HisD to recognize its substrate and provide a basis for further understanding the
molecular mechanisms of nicotine biodegradation.

RESULTS
Overall structure of HisD. Recombinant HisD was crystallized in the space group

C222 with one molecule per asymmetric unit (Fig. 1B). Analytical native PAGE and size
exclusion chromatography on Superdex 200 confirmed that HisD functions as a mono-
mer in solution (Fig. 2). Full-length HisD contains 672 residues. Residues 1 to 669 could
be modeled discretely, but the last three residues were disordered. A DALI server search
(14) revealed that functionally characterized proteins are histamine dehydrogenase
from Nocardioides simplex (Protein Data Bank [PDB] 3K30, Z score � 57.6, root mean
square deviation [RMSD] of 1.5 Å for 664 C� atoms, and sequence identity of 50%) and
trimethylamine dehydrogenase from Methylophilus methylotrophus W3A1 (PDB 1DJQ, Z
score � 57.4, RMSD of 1.6 Å for 664 C� atoms, and sequence identity of 40%). The
overall structure of HisD is similar to other oxidoreductases, including 2-naphthoyl-CoA
reductase (NCR; PDB 6QKG, Z score � 47.1, RMSD of 2.7 Å for 636 C� atoms, and
sequence identity of 26%) and DCR (PDB 1PS9, Z score � 45.9, RMSD of 2.5 Å for 623
C� atoms, and sequence identity of 24%). All of the structural homologs mentioned
above exhibit N-terminal domain binding to flavin mononucleotide (FMN). Both the
primary sequence and the tertiary structure of HisD are similar to those of homologous
amine oxidases HADH and TMADH (Fig. 1C).

The overall fold of the HisD is comprised of three domains, a large domain (residues
1 to 378), a medium domain (residues 379 to 487 and residues 617 to 669), and a small
domain (residues 489 to 616). The large domain contains an N-terminal TIM barrel (15),
consisting of eight parallel �-strands on the inside covered by eight �-helices on the
outside that bind to FMN. The [4Fe-4S] cluster is coordinated to four cysteine residues
(Cys344, Cys347, Cys350, and Cys362) and is positioned outside the barrel and close to the
medium and small domains. A molecular ADP, located in the medium domain and
exposed to solvent, was observed. These domains will be referred to as the N-terminal,
middle, and C-terminal domains, respectively.

FIG 2 Analysis of the polymerization state of the HisD monomer in solution. (A) Native PAGE of purified HisD. Lane “M” represents the protein marker. Lanes
1 and 2 represent purified HisD. (B) Analysis of size exclusion chromatography on Superdex 200; the elution volume of HisD is 83.38 ml. (Inset) Log plot of the
molecular masses of the standard proteins used versus their elution volume values.
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FMN binding site of HisD. The FMN cofactor adopts an extended conformation and
is deeply inserted into the N-terminal domain (Fig. 3A). The electron density for the
FMN is very clear (Fig. 3B), suggesting that the isoalloxazine ring of FMN in HisD is
planar rather than in the “butterfly bend” conformation that exists in TMADH and HADH
(Fig. 3C). The HisD FMN-binding site is shown in Fig. 3D. The ribityl chain forms
hydrogen bonds with the Arg224 guanidinium group, Asp266 carboxyl group, and Ser267

hydroxyl group. The N-1, N-3, and N-5 atoms of the isoalloxazine ring form a hydrogen
bond with the Arg224 guanidinium group, Glu103 carboxyl group, and backbone
nitrogen atom of Ala30, respectively. The Glu103 carboxyl group also forms hydrogen
bonds with the O-2 atom of the isoalloxazine ring. The amide side chain of Tyr170 and
His173 and the Glu60 backbone nitrogen atom form hydrogen bonds with the O-4 atom
of the isoalloxazine ring. The FMN phosphate group is surrounded by Arg298, Ala320,
and Arg321 backbone nitrogen atoms. The Arg321 guanidinium group also forms
hydrogen bonds with the phosphate. The stereoviews of the FMN-binding site from
HisD, HADH, and TMADH were demonstrated (Fig. 4A). Among these structures, a
Tyr-His-Asp triad was located on the isoalloxazine ring of FMN. Tyr169 has been shown
to stabilize the semiquinone of FMN and [4Fe-4S]� (16). The Y170A mutant of HisD
showed the loss of enzyme activity, suggesting that the corresponding residue also
functions directly in HisD. The factors contributing to the butterfly bend in HADH and
TMADH have not been defined. Cys35 forms a covalent bond with FMN in HADH (Fig.
4A), which is not found between corresponding residues and FMN in HisD or TMADH.
The cysteinyl cross-link formation is not enough to account for the bend of FMN. We
have not been able to find particular interactions that contribute to the extent of the
butterfly bend in structural observations.

[4Fe-4S] cluster and ADP binding site of HisD. The HisD [4Fe-4S] cluster appeared
in the crystal structure as a cysteine-coordinated [4Fe– 4S] cluster, and the stereoview
of the [4Fe– 4S] binding site from HisD, HADH, and TMADH showed that the residues

FIG 3 FMN binding sites. (A) Surface presentation of the FMN binding cavity. (B) FMN in HisD: electron density map
around FMN; the 2FO-FC electron density map is contoured at 1�. (C) Stereoview of FMN from HisD (carbon shown
in green) and the orientation of the isoalloxazine ring system compared to that in HADH (carbon shown in
magenta) and TMADH (carbon shown in yellow). (D) Stereoview of the FMN binding sites.
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involved in binding the [4Fe-4S] cluster are conserved (Fig. 4B). The [4Fe-4S] cluster is
coordinated to four Cys residues (Cys344, Cys347, Cys350, and Cys362) in HisD. The
distance between the [4Fe-4S] iron and the FMN 8�-methyl carbon is 5.6 Å, and the
distance to the closest oxygen atom of ADP phosphate group is 15 Å. It has been
proposed that electrons from the substrate-reduced flavin pass from the 8�-methyl to
the closest Cys ligand upon deoxidation in TMADH (17). HisD may use an electron
transfer mechanism.

The ADP is exposed to solvent, the adenosine ring N-1 and N-6 atoms form a
hydrogen bond with nitrogen and carbonyl oxygen atoms in the Leu464 backbone (Fig.
5A). ADP’s ribose forms a hydrogen bond with the Asp418 carboxyl group. Ala399,
Arg426, and Asp646 backbone nitrogen atoms form hydrogen bonds with the ADP
phosphate groups. The apparent 6-HPON Km and kcat values for HisD were
168.4 � 7.2 �M and 0.23 � 0.11 s�1, respectively.

Substrate binding by HisD. To understand the molecular basis for the recognition
of substrate 6-HPON, we performed molecular docking calculations of 6-HPON binding
to HisD. 6-HPON is positioned over the FMN isoalloxazine ring (Fig. 5B). The positively
charged 6HPON amino group forms salt bridges or hydrogen bonding interactions with
Glu60 carboxylate groups (2.8 Å). The Asn262 carboxylate group hydrogen bonds with
the hydroxyl of 6HPON (2.7 Å), as does the Tyr130 amide side chain and N atom on the
peptide bond forms of Asn262 and Trp263 (3.0 and 3.1 Å). In addition to the hydrogen

FIG 4 Stereoviews of the active site of HisD (green), HADH (cyan), and TMADH (magenta). The superimposition was
done on the whole molecule. (A) Stereoview of the FMN of HisD, HADH, and TMADH. (B) Stereoview of the [4Fe-4S]
of HisD, HADH, and TMADH.

FIG 5 Stereoviews of the ADP and 6-hydroxypseudooxynictine binding sites in HisD. (A) Closeup view of the ADP-binding
site on HisD. (B) Stereoview of 6-hydroxypseudooxynicotine modeled into the HisD active site.
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bonding residues, hydrophobic side chains of Leu175 and Trp263 line the binding pocket
and have van der Waals contact with 6-HPON. Leu175 interacts with 6-HPON through
the side chain pyridine ring via a CH-� interaction, and the Trp263 aromatic ring is
involved in a �-stacking interaction with the 6-HPON pyridine ring. This positioning
places the protonated 6-HPON amino group close to the isoalloxazine ring, as required
for catalysis. To corroborate our docking study, we created point mutants of critical
residues on the active site of HisD and measured the kinetic constants of mutants of
HisD. In comparison with values for HisD, the catalytic activity of the Y130A mutant was
reduced by half and the Km value was increased by 1.6-fold. In addition, point
mutations of E60A, D262A, and W263A of HisD resulted in the complete loss of
enzymatic activity (Table 1).

Voltammetric evaluation of the redox potentials of HisD. We tried to obtain an
electrochemical signal for HisD using cyclic voltammetry. According to “curve o” (red)
in Fig. 6A, the NPG electrode has a pair of redox peaks (oxidation peak potential, �0.9V;
reduction peak potential, �0.4V). The redox peak of NPG in “curve a” (black) was lower
than that before enzyme modification, which proved that the enzyme binding ob-
scured some active sites of NPG, leading to the reduction of its redox peak. In order to
detect the redox potential of HisD, 50 and 100 �M 6-HPON were added, and the results
showed that the substrates caused emergence of a new redox peak with an oxidation
peak potential of �0.2 V and a reduction peak potential of 0.0V (Fig. 6B and C). In order
to further confirm that the appearance of this peak was caused by HisD, we repeated
the above-described experiment with the NPG/GCE electrode, and the results showed
that no new peak appeared (Fig. 6D). Based on these results, the redox potential of HisD
was evaluated to be �0.2 V at pH 7.4.

DISCUSSION

Several crystal structures for enzymes involved in the pyridine and pyrrolidine
nicotine degradation pathways have been reported (18–22). However, as of now, there
are no available crystal structures for enzymes participating in the VPP pathway. In this
study, we determined the structure of full-length HisD, which is involved in removing
methylamine from 6-hydroxypseudooxynicotine in the VPP pathway. Sequence align-
ment and structural comparisons with homologous enzymes revealed that the spatial
arrangements of cofactors are similar in these enzymes and that the residues involved
in binding cofactors are conserved (Fig. 4 and 7).

In HisD, the FMN isoalloxazine ring is planar, rather than in the “butterfly bend”
conformation that is seen in TMADH and HADH (Fig. 3C). The FMN isoalloxazine ring is
tethered to the polypeptide through a covalent bond between Cys35 and the FMN C-6
atom, whereas the FMN is not covalently attached in either TMADH or HisD. Further,
Ala30 replaces the thiol residue of HADH (Fig. 4A). Binding sites for ADP were confirmed
in HisD as Ala399, Asp418, Ala419, Arg426, Leu464, and Asp646 (Fig. 5A).

In TMADH, the Tyr-His-Asp triad, comprising Tyr169, His172, and Asp267, has been
proposed to stabilize the semiquinone of FMN and [4Fe-4S]� (16). Charge repulsion
from the negative charge on the Tyr hydroxyl group pushes the unpaired electron
density on the FMN toward [4Fe-4S] and mediates a spin-spin interaction. The His

TABLE 1 Kinetic analysis of HisD wild-type and mutantsa

Enzyme

Mean � SEM

kcat (s�1) Km (�M)

Wild type 0.23 � 0.11 168.4 � 7.2
E60A ND ND
Y130A 0.12 � 0.02 273.6 � 19.1
Y170A ND ND
D262A ND ND
W263A ND ND
aND, not detected (the kinetic constants were beneath the measurable limits of detection and thus were not
detectable).
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residue remains neutral to achieve the maximum rate of 6-S-Cys-FMN reduction (23).
Corresponding to Tyr176-His179-Asp270 residues in HADH, Tyr170-His173-Asp266 observed
in HisD are located close to the pyrimidine moiety of the FMN isoalloxazine ring.
Residues involved in binding the [4Fe-4S] cluster are highly conserved in HisD, HADH,
TMADH, NCR, and DCR (Fig. 7). The spatial arrangement of the [4Fe-4S] cluster in HisD
is very similar to that in TMADH and HADH (Fig. 1C).

Crystal structures of the TMADH-ETF complex revealed that the proposed recogni-
tion peptide sequence of ETF (24) interacts with a shallow surface groove on TMADH,
comprised of nine amino acids (Ser391, Leu393, Thr414, His416, Gln462, Ala464, Tyr478,
Gly479, and Ala480) (Fig. 8A). Leu194 in the ETF subunit is proposed to act as an anchor
that positions ETF in the TMADH groove via van der Waals interactions with Leu393 and
Tyr478 (25). Although the presence of an ETF-like protein has not yet been determined
in Pseudomonas geniculata N1, inspection of the HisD crystal structure suggests there
is a similar shallow groove on the surface (Fig. 8B). From the sequence alignment, the
corresponding residues in HisD are Ser390, Leu392, Gln413, Ser415, Ser457, Tyr459, Phe472,
Glu473, and Ala474. The residues Ser390, Leu392, and Ala480 are conserved, and Phe472 is
homologous to Tyr478 in HisD. The hydrophobic patch in the groove, comprising Ser391,
Leu393, Ala464, Tyr478, and Ala480, that interacts with Leu194 in the ETF recognition loop
also exists in HisD (Ser390, Leu392, Tyr459, Phe472, and Ala474). However, four other
residues in HisD are charged (Gln413, Ser415, Ser457, and Glu473), in contrast with the

FIG 6 Cyclic voltammogram (CV) of HisD. (A) CV of the NPG/GCE electrode (curve o) and HisD/NPG/GCE electrode (curve a) in PBS (50 mM [pH 7.4]). (B) CV of
the HisD/NPG/GCE electrode in PBS (50 mM [pH 7.4]) with 0 �M 6-HPON (curve a), 50 �M 6-HPON (curve b), and 100 �M 6-HPON (curve c) in a wide range of
assays. (C) CV of the HisD/NPG/GCE electrode in PBS (50 mM [pH 7.4]) with 0 �M 6-HPON (curve a), 50 �M 6-HPON (curve b) and 100 �M 6-HPON (curve c) in
a small range of assays. (D) CV of the NPG/GCE electrode in PBS (50 mM [pH 7.4]) with 0 �M 6-HPON (curve a) and 100 �M 6-HPON (curve b).
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FIG 7 Sequence alignment of HisD, Pno (NCBI accession no. WP_024899819.1), HADH (PDB 3K30), TMADH (PDB 1DJQ), NCR (PDB 6QKG), and DCR
(PDB 1PS9). The alignment was determined using Clustal W, and the result was generated with ESPript. The FMN binding sites are outlined in
red, [4Fe-4S] cluster binding sites are outlined in black, and the mutation sites in HisD are marked with a pentagon.
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corresponding residues in TMADH (Thr414, His416, Gln462, and Gly479). HADH also seems
to have a similar shallow groove on the surface, with the corresponding residues being
Arg393, Leu395, Asp416, Val418, Tyr462, Arg463, Phe475, Gly476, and Phe477 (13).

In TMADH, Val344 is located at the bottom of the surface groove where Tyr442 resides
and engages in van der Waals interactions with Cys345 and Tyr442. Val344 has been
shown to participate in electron transfer to ferricenium (25). In HisD, the residue
corresponding to the Val344 in TMADH is Glu343, and a Glu is also present in HADH.
Comparing these three structures, we found that the surface grooves shown in TMADH
involved in ETF binding and electron transfer are not strictly conserved in these three
enzymes, since there are similarities and differences in groove residues in the three
enzymes. For TMADH, there are two proposed pathways for electron transfer from the
[4Fe-4S] to the surface Tyr442-Cys345-Glu439-Tyr442 that transfers electrons to ETF or
Cys345-Val344 that transfer electrons to ferricenium (17). HADH could also use two
analogous electron-transfer pathways. Interestingly, the analogous pair of choices
found in HisD are Cys344-Ala438-Arg441 and Cys344-Glu343. Although we have not
identified an ETF-like protein in Pseudomonas geniculata N1, it is possible that HisD
utilizes the Cys344-Ala438-Arg441 pathway with an electron acceptor protein partner.

The redox potential of HisD has been determined to be �0.2 V, whereas the
reported values of HADH and TMADH are �34 and �44 mV, respectively (26, 27).
Theoretical studies on lumiflavin and C-6-methylsulfanyllumiflavin suggested that the
butterfly bend raises the two electron reduction potentials, making the flavin more
reactive to substrate oxidation (28). Compared to those of HADH and TMAHD, the redox

FIG 8 (A) Surface grooves of TMADH involved in recognition loop of the subunit of ETF through van der Waals
interaction electron transfer to ETF (orange) and the electron-transfer reaction (yellow). (B) Corresponding HisD
surface grooves are shown in magenta and white, respectively.
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potential of HisD is much more positive, which might account for FMN being planar in
HisD more than in a “butterfly bend” conformation.

Despite numerous attempts of cocrystallization with 6-HPON, none of the analyzed
crystals showed any electron density for bound substrate. Therefore, we modeled the
substrate in the HisD active site using the AutoDock method. According to the docking
study and mutation experiment, residues Glu60, Tyr170, Asp262, and Try263 are key amino
acids. Amino acid sequence alignment showed that residues Glu60, Tyr170, Asp262, and
Try263 are conserved in HADH, TMADH, and Pno; these residues may stabilize the
substrate (Fig. 7). Further analysis revealed that only Pno and HisD are completely
conserved, as they are isoenzymes. However, HADH and TMADH still have some slight
differences due to the difference in their substrates.

In summary, we determined the structure of HisD, an enzyme in the VPP nicotine
degradation pathway. The overall structure, domain organization, and the spatial
arrangement of FMN and [4Fe-4S] are very similar to those of TMADH and HADH. From
the docking study, we predict that 6-HPON preferentially binds to the active site in the
following manner. The anionic residue Glu60 stabilizes the protonated amino group of
6-HPON by forming a salt bridge, whereas His173, Leu175, and Tyr263 stabilize the
pyridine ring via van der Waals and hydrogen bond interactions. In addition to
predicting the 6-HPON binding model, this structure will be of further aid in protein
engineering of HisD for potential bioremediation and industrial applications.

MATERIALS AND METHODS
Chemical reagents. L-Nicotine (purity �99%) was bought from Fluka Chemie GmbH (Switzerland).

6-HPON was prepared as previously described (10). Crystallization screens were obtained from Hampton
Research. Source 15Q and Superdex 10/300 GL were obtained from GE Healthcare. All other reagents and
solvents used in this study were of analytical grade and are commercially available.

Expression and purification of HisD. The mutants of HisD used in this study were constructed by
site-directed PCR mutagenesis, and the constructs were verified via gene sequencing. These plasmids
were transformed into P. putida KT2440 by electroporation using the following conditions: 1 to 2 �g
plasmid DNA was added to 100 �l of electrocompetent cells of strain KT2440, and the mixture was
electroporated at 12 kV/cm, 200 �, and 25 �F using a Bio-Rad Gene-Pulser X-cell (Bio-Rad Laboratories,
Hercules, CA). The primers are listed in Table 2. HisD and its mutants were expressed in P. putida KT2440
using a pVLT33 vector and purified as described previously (9). Cells were grown to exponential phase
at 30°C, induced by the addition of 1 mM IPTG (isopropyl-�-D-thiogalactopyranoside), and then grown at
25°C for 20 h. HisD was purified using Ni2�-NTA affinity chromatography (Qiagen) followed by separation
of the eluted fractions by ion-exchange chromatography with a Source 15Q 4.6/100 PE (GE Healthcare)
column and Superdex 200 gel filtration chromatography (GE Healthcare). The gel filtration buffer
contained 20 mM Tris-HCl (pH 8.0), 200 mM NaCl, and 2 mM dithiothreitol. Subsequently, fractions with
putative recombinant HisD proteins (�74 kDa, assessed via SDS-PAGE) were combined, concentrated to

TABLE 2 Strains, plasmids, and primers used in this study

Strain, plasmid, or primer Description or primer sequencea

Source or
reference

Strain
P. putida KT2440 Metabolically versatile saprophytic soil bacterium 9

Plasmids
pVLT33 Kanr, expression vector in Pseudomonas 9
pVLT33-hisD Kanr, pVLT33 containing hisD This study

Primers
HisD-E60A-f GTGCCTCGAGGCAACGATGATACACGAGACGTCG This study
HisD-E60A-r GTGTATCATCGTTGCCTCGAGGCACACGACC This study
HisD-Y130A-f AGTATCCCCACGCATTTATCAACCCGATCGCCG This study
HisD-Y130A-r GGTTGATAAATGCGTGGGGATACTTCGTCGTCG This study
HisD-Y170A-f CGTGTACGTCGCATGCGCGCACAACCTGTCGCTGC This study
HisD-Y170A-r TTGTGCGCGCATGCGACGTACACGATGTCAAACC This study
HisD-D262A-f GAACGTCAGCGCATGGGCTTGGGACAGTGGCAGCAGC This study
HisD-D262A-r TCCCAAGCCCATGCGCTGACGTTCACGTCCCAAAGG This study
HisD-W263A-f CGTCAGCGACGCAGCTTGGGACAGTGGCAGCAGCC This study
HisD-W263A-r CTGTCCCAAGCTGCGTCGCTGACGTTCACGTCCC This study

aUnderlining indicates mutation sites.
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14 mg/ml, and then flash frozen in liquid nitrogen for storage at – 80°C. SDS-PAGE and native PAGE were
carried out as previously described (29).

Enzyme activity assays. HisD activity was determined spectrophotometrically as previously de-
scribed (30), with some modifications. The initial rate of reaction at 30°C was measured by monitoring
2,6-dichlorophenolindophenol (DCIP) reduction at 600 nm in the presence of phenazine methosulfate
(PMS). The reaction mixture contained 50 mM Tris-HCl buffer (pH 8.0), 500 �M PMS, 50 �M DCIP, and a
0.5 mM mixture of 6-hydroxy-N-methylmyosmine and 6-hydroxypseudooxynictine. One unit of enzyme
activity was defined as the amount of enzyme catalyzing the oxidation of 1 �mol of DCIP per min.

Crystallization, data collection, processing, and refinement. HisD crystals were grown from a 1:1
(vol/vol) mixture of a HisD protein solution (14 mg/ml) and reservoir solution (0.5 M ammonium sulfate,
0.1 M sodium citrate dihydrate [pH 5.6], and 1.0 M lithium sulfate monohydrate) using the hanging-drop
vapor diffusion method at 20°C. Crystallization conditions included 25% (vol/vol) glycerol that was
subsequently used as a cryoprotectant, and thus crystals were rapidly looped and transferred into
cryoprotectant prior to flash freezing in liquid nitrogen. All 0.9789-Å wavelength data were collected at
100K using a Dectris PILATUS3 6M detector at beamline BL19U1 of the Shanghai Synchrotron Radiation
Facility (SSRF). Data were processed with HKL3000 (31). The crystal structure was resolved by the
molecular replacement method with the program Phaser (32) using the Nocardioides simplex histamine
dehydrogenase (PDB 3K30) structure as the search model. Structure refinement was achieved with the
Coot (33) and Refmac5 (34) programs. All molecular figures were generated with PyMOL. The HisD
structure has been deposited in the PDB under access code 6L6J. Data collection and refinement
statistics for HisD are summarized in Table 3.

Preparation of HisD/NPG/GCE electrode and cyclic voltammetry. A glassy carbon electrode (GCE)
was polished on a piece of chamois leather with 0.3-�m gamma alumina powder (CH Instruments). The
electrodes were then cleaned ultrasonically in absolute ethyl alcohol and ultrapure water for 60 s each.
Nanoporous gold (NPG) was made by dealloying silver from 12-carat white gold leaves (5 mm 	 5 mm,
Au50Ag50 wt%; Sepp Leaf Products) in concentrated HNO3 at 30°C for 30 min and then washed with
ultrapure water three times. The GCE was also immersed in water and then slowly covered with NPG leaf

TABLE 3 Data collection and refinement statistics for HisD

Parameter Value for HisD

Data collection statistics
Space group C222
Wavelength (Å) 0.97918
Cell dimensions

a, b, c (Å) 114.95, 212.99, 79.35
�, �, � (°) 90.00, 90.00, 90.00

Molecules per asymmetric unit 1
Resolution range (Å) (outer shell) 50.00–2.60 (2.69–2.60)
Completeness (%) (outer shell) 99.7 (97.9)
Redundancy (outer shell) 9.3 (8.2)
Total no. of observations 276,129
No. of unique reflections 29,678
Rmerge (%) (outer shell) 16.4 (60.1)
I/�I (outer shell) 12.75 (2.67)

Refinement statistics
Resolution range (Å) 39.94–2.60
Rwork/Rfree (%) 20.10/23.98
No. of reflections 28,917 (2,029)
RMSD

Bond length (Å) 0.005
Bond angle (°) 1.410

Ramachandran plot (%)
Most favored 94.0
Allowed 5.4
Disallowed 0.6

No. of atoms
Protein 5,360
ADP 27
FMN 31
[4Fe-4S] 8
Water 123

Avg B-factor (Å2)
Protein 34.91
ADP 34.98
FMN 28.73
[4Fe-4S] 28.49
Water 33.49
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to form an NPG/GCE electrode. The electrochemical activity region was detected by cyclic voltammetry
(CV) in 0.5 M H2SO4 aqueous solution at a scanning rate of 50 mV s�1. The HisD/NPG/GCE electrode was
prepared by immersing an NPG/GCE electrode in HisD enzyme solution (100 �g/ml) for 24 h and was
stored at 4°C for future use. The HisD/NPG/GCE electrode was tested as a control in phosphate-buffered
saline (PBS; 50 mM [pH 7.4]), and then substrate was added. All electrochemical measurements were
carried out in a conventional three-electrode system using a CHI 760E electrochemical workstation
(Shanghai Chenhua Apparatus Corporation, China).

Docking study. Molecular docking was carried out using the software AutoDock (35), and the
substrate was docked into the active site of HisD. The coordinates of the central grid (47.442, 50.643, and
22.056) were determined based on the location of the FMN, and the grid box size was set as 40 	 40 	 40
Å3. The programs AutoGrid 4 and AutoDock 4 were employed with default parameters.

Data availability. The structure of HisD has been deposited in the PDB database under access code
6L6J.
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