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Abstract

PD-1 blockade has transformed the management of advanced clear cell renal cell carcinoma 

(ccRCC), but the drivers and resistors of PD-1 response remain incompletely elucidated. Here, we 
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analyzed 592 tumors from advanced ccRCC patients enrolled in prospective clinical trials of 

treatment with PD-1 blockade by whole-exome and RNA-sequencing, integrated with 

immunofluorescence analysis, to uncover the immunogenomic determinants of therapeutic 

response. While conventional genomic markers (tumor mutation burden, neoantigen load) and 

degree of CD8+ T cell infiltration were not associated with clinical response, we discovered 

numerous chromosomal alterations associated with response or resistance to PD-1 blockade. 

These advanced ccRCC tumors were highly CD8+ T cell infiltrated, with only 27% having a non-

infiltrated phenotype. Our analysis revealed that infiltrated tumors are depleted of favorable 

PBRM1 mutations and enriched for unfavorable chromosomal losses of 9p21.3 when compared to 

non-infiltrated tumors, demonstrating how the potential interplay of immunophenotypes with 

somatic alterations impacts therapeutic efficacy.
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Immune checkpoint inhibitors (ICI) have become a key component of the therapeutic 

armamentarium for many cancer types1. PD-1 blockade has been particularly transformative 

for the management of advanced clear cell renal cell carcinoma (ccRCC), where anti-PD-1 

based therapies are now standard-of-care options in both the front-line and treatment 

refractory settings2–6. Across solid tumor malignancies, response to PD-1 blockade has been 

associated with numerous tumor-intrinsic (e.g. high tumor mutation burden7, high 

neoantigen load8) and microenvironment features (an increased infiltration by T cells9,10). In 

contrast to most other types of anti-PD-1 responsive solid tumors, ccRCC has only a modest 

mutation burden11. Moreover, a high infiltration by CD8+ T cells in this setting has been 

previously associated with a worse prognosis12. Previous genetic characterizations of 

ccRCC have contributed greatly to our knowledge of its tumor biology and its disease 

progression13,14, but the role of genomic alterations and patterns of immune infiltration (i.e. 

CD8+ T cell inflamed, excluded, or desert)15,16 in responsiveness to PD-1 blockade remain 

undefined. Drawing from three prospective clinical trials of PD-1 blockade (with one study 

where mTOR inhibition was administered to the control arm) in advanced ccRCC2,17,18, we 

performed an integrated genetic, transcriptomic, and immunopathologic analysis of 

advanced-stage ccRCC tumors from 592 patients. This analysis uncovered the landscape of 

somatic alterations in advanced ccRCC, and defined novel copy number changes associated 

with both the patterns of immune infiltration in ccRCC and the clinical outcome to PD-1 

blockade.

Genomic features of advanced ccRCC

Nivolumab (anti-PD-1) attained FDA-approval for the treatment of ccRCC based on the 

results of CheckMate 025 (CM-025), a randomized phase III trial which demonstrated an 

overall survival (OS) benefit with nivolumab over the mTOR inhibitor everolimus in 

previously treated patients with ccRCC2. This trial followed phase I and phase II studies 

conducted in a similar clinical setting (CheckMate 009 [CM-009]19, and CheckMate 010 
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[CM-010], respectively). We performed whole-exome sequencing (WES) of DNA extracted 

from clinically annotated tumor specimens and from whole blood (as matched germline 

source) from patients enrolled on CM-010 and CM-025. From the tumor specimens, we also 

generated RNA-sequencing (RNA-seq) data, and undertook spatial analysis of CD8+ T cell 

infiltrates by immunofluorescence (IF) (Fig. 1a, patient sample-level information, including 

clinical annotation, is provided in Supplementary Table 1). These data were further 

combined with existing WES and RNA-seq data generated from CM-00919. Following 

quality control (Extended Data Fig. 1), WES data were available from 454 patients (261 

patients treated with anti-PD1, 193 patients treated with mTOR inhibition; Supplementary 

Table 2). No significant differences in clinical response rates or progression-free survival 

(PFS) were observed between patients included in this study after quality control filtering, 

and those who were excluded due to lack of available tumor material, consent for genomic 

studies, or high-quality sequencing data (Extended Data Fig. 2).

By applying MutSig2CV20, we identified 17 recurrently mutated genes (q < 0.05; 

Supplementary Table 3), 11 of which were found in at least 10 patient samples (Fig 1b). In 

agreement with previous large-scale sequencing studies13, the top putative candidate drivers 

from these cohorts with advanced ccRCC were VHL (65%), PBRM1 (33%), SETD2 (25%), 

BAP1 (19%), and KDM5C (13%). We also identified frequent somatic single nucleotide 

variants (sSNVs) in the PI(3)K-AKT-mTOR pathway, including MTOR (9%), PTEN (6%), 

TSC1 (3%) and PIK3CA (3%) mutations. Numerous significantly recurrent copy number 

alterations were identified (Supplementary Table 3). By GISTIC221, nearly all samples 

(95%) had loss of chromosome 3p, a defining feature of ccRCC that is frequently concurrent 

with 5q gain (found in 72% of our cohorts)22. We also detected a high frequency of 9p 

(65%) and 14q (68%) losses, events previously identified as hallmark drivers of ccRCC 

metastasis14 (Fig 1b).

To determine whether advanced ccRCC (stage IV) is enriched for particular somatic 

alterations compared to earlier (stage I-III) disease, we compared the data generated from 

the CheckMate cohorts (where all patients had advanced disease at the time of trial 

enrollment) with TCGA ccRCC data (n=366 with mutation data; n=501 with copy number 

data), of which fewer than 20% of patients had stage IV disease (Fig. 2, Supplementary 

Table 3). The most common significantly mutated genes (i.e. VHL, PBRM1, SETD2, BAP1, 

KDM5C) were recurrent in both earlier and advanced disease (Fig. 2a). Earlier stage disease 

had recurrent mutations in members of the mammalian SWI/SNF chromatin remodeling 

complexes23 (ARID1A and SMARCA4) and in the DNA damage repair pathway (ATM). In 

contrast, in advanced disease we identified recurrent mutations in the PI(3)K-AKT-mTOR 

pathway member TSC1, and in NF2, a tumor suppressor that encodes a member of the 

Hippo signaling pathway. NF2 mutations have previously been described in other aggressive 

kidney cancer histologies, including unclassified RCC24, collecting duct cacinoma25, 

sarcomatoid histology26, and type 2 papillary RCC27. Here, we found NF2 mutations to 

associate with a worse overall survival (OS) in all stages of ccRCC, though this appeared to 

be abrogated by PD-1 blockade (Fig. 2b).

Our analysis also revealed advanced ccRCC (Fig. 2c, Supplementary Table 3) to be enriched 

for recurrent losses in chromosome 6p21.32 and 6p22.2, that contain members of the 
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immunoproteasome (PSMB8, PSMB9), antigen presentation machinery (TAP1, TAP2, 

TAPBP), and HLA class II alleles. We also identified loss of 9q34.3 as a frequent event in 

advanced RCC. The broader 9q34 region includes TSC128, while the 9q34.3 cytoband 

specifically contains numerous histone lysine methyltransferases.29 Of note, 9q34.3 loss was 

not associated with altered survival in patients who already had advanced disease, but rather 

was associated with worse survival only in patients with earlier stage disease (Fig. 2d).

Within advanced ccRCC, validated prognostic models have been used to stratify patients as 

favorable, intermediate, or poor risk based on a combination of clinical and laboratory 

parameters30,31. We examined whether genomic features differed between prognostic risk 

groups (Extended Data Fig 3). There were no differences in the total number of 

nonsynonymous mutations or neoantigens between risk groups. However, poor risk tumors 

did have a higher somatic copy number alteration burden (as measured by the weighted 

genome integrity index, wGII), which has previously been associated with a more aggressive 

phenotype in ccRCC14.

Somatic alteration burden and HLA zygosity are not associated with 

therapeutic outcomes

Somatic alterations can lead to the formation of neoantigens; neoantigen load per tumor has 

been associated with response to PD-1 blockade in several tumor types.8,32,33 Although 

ccRCC has a modest total mutation burden, it has a relatively high proportion of frameshift 

insertions and deletions (indels), which can potentially generate novel open reading frames 

(neoORFs) and consequently, may provide a rich source of neoantigens34. To investigate 

whether the somatic alteration burden in ccRCC is indeed associated with response to PD-1 

blockade, we categorized ccRCC specimens based on previously defined criteria for clinical 

response, namely either conventional objective response categories or “clinical benefit” 

criteria19. Briefly, patients with objective responses (complete or partial), or stable disease 

with tumor shrinkage and PFS of at least 6 months, were classified as having clinical benefit 

(CB). Patients with progressive disease and PFS less than 3 months were classified as having 

no clinical benefit (NCB). All other patients were classified as intermediate clinical benefit 

(ICB). For our analysis, we compared responding (CB) patients with therapy-resistant 

(NCB) patients.

In our study cohorts, neither the total number of nonsynonymous mutations (Fig. 3a), 

neoantigens (Fig. 3b), frameshift indels (Fig. 3c), nor somatic copy number alterations 

(wGII; Fig. 3d)14 was associated with clinical response or improved survival with PD-1 

blockade or mTOR inhibition (Extended Data Fig. 4). Germline factors, such as HLA class I 

genotype, can affect the ability to present immunogenic antigens, and therefore also may 

influence response to PD-1 blockade. However, we did not find any association between 

maximal HLA class I heterozygosity (i.e. heterozygous at HLA-A, HLA-B, and HLA-C) 

and improved survival with PD-1 blockade in these ccRCC cohorts (Fig. 3e).
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Genomic correlates of response and resistance to PD-1 blockade

We systematically evaluated whether any individual mutations or copy number alterations 

were associated with response or resistance to PD-1 blockade by determining if any (i) were 

significantly recurrent (using MutSig2CV for mutations, and GISTIC2 for copy number 

alterations), and further, (ii) had a significant effect on survival (PFS and OS) with PD-1 

blockade but not with mTOR inhibition. For sSNVs and somatic insertion and deletions 

(sIndels), we focused on truncating mutations (frameshift indels, nonsense, and splice site 

mutations), as these are most likely to lead to loss-of-function19. Within the CM-009 cohort, 

truncating mutations in PBRM1 were previously associated with improved survival 

following PD-1 blockade in previously treated (anti-angiogenic-refractory) patients19, which 

was then validated using the CM-025 cohort35. Our pooled analysis of all three cohorts 

(consisting mostly of previously treated, anti-angiogenic-refractory patients) again 

demonstrated the association of truncating mutations in PBRM1 with improved response 

and survival (p < 0.001 for OS). We found that PBRM1 alterations were associated with 

higher angiogenesis gene expression36 (p < 0.001, Wilcoxon rank-sum test for angiogenesis 

signature), but lower IL6-JAK-STAT3 signaling (p = 0.01 for ssGSEA scores). No other 

recurrent sSNVs or sIndels were associated with improved survival with PD-1 blockade 

(Fig. 4a-d, Extended Data Fig. 5a for PFS).

Among the significantly recurrent somatic copy number alterations (sCNAs), only focal loss 

of 10q23.31 (in 35% of tumors) was associated with improved PFS and OS following PD-1 

blockade, but not mTOR inhibition (Fig. 4e-h, Extended Data Fig. 5b for PFS). The 

10q23.31 cytoband contains the tumor suppressor PTEN – whose loss previously has been 

shown to associate with increased PI(3)K-AKT-mTOR pathway activity and resistance to 

PD-1 blockade37,38. By gene set enrichment analysis (GSEA)39 using the 50 Hallmark genes 

sets from the Molecular Signatures Database40, ccRCC tumors with del(10q23.31) did not 

reveal an increase in mTOR pathway activity, arguing against a functional role for PTEN 
loss in these patients. The only enriched gene signature associated with 10q23.31 loss 

involved Hedgehog signaling (q = 0.18, Wilcoxon rank-sum test). Of note, multiple negative 

regulators of Hedgehog signaling, including SUFU and BTRC, are located on chromosome 

10q, slightly distal to PTEN (10q24.32)41, and thus may play a functional role in these 

patients. In contrast, no chromosomal gains were associated with both PFS and OS after 

anti-PD-1 therapy (Extended Data Fig. 5c-d)

Human endogenous retroviruses (ERVs) are aberrantly expressed in ccRCC42,43, with 

specific ERVs associated with improved response to ICI44, and one ERV epitope (derived 

from HERVE-4) identified as target antigen in a long-term responder to allogeneic stem cell 

transplant for ccRCC45. We therefore evaluated whether ERV expression was associated 

with response or survival in this cohort. We experimentally validated RNA-seq—based 

inference of ERV expression by RT-qPCR (Extended Data Fig. 5e). Of note, ERV3–2 

expression was not reliably inferred using RNA-seq data, highlighting a potential limitation 

of using RNA-seq to measure ERV expression in FFPE tissue. With this notable constraint, 

we identified two ERVs (out of 3,173) that were potentially weakly associated with clinical 

outcomes in this anti-PD-1 treated cohort (Extended Data Fig. 5f-g).
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Baseline CD8+ T cell infiltration does not predict response to PD-1 blockade

Beyond tumor-intrinsic properties, a common paradigm in solid tumor immunology is that 

effective responses to PD-1 blockade occur when tumors are highly inflamed with CD8+ T 

cells (“infiltrated” or “hot” tumors), and that tumors lacking such an infiltrate (“deserts” or 

immunologically “cold” tumors) are resistant to these therapies15,16. Another proposed 

mechanism of resistance is immune exclusion, whereby CD8+ T cells are recruited to the 

tumor, but are unable to infiltrate the tumor core. Immune exclusion was recently described 

in nearly 50% of metastatic urothelial carcinoma, and was associated with resistance to PD-

L1 blockade10.

To establish the patterns of CD8+ T cell infiltration in advanced ccRCC, and explore their 

associations with response to anti-PD-1 therapy, we performed CD8 IF analysis on 219 

tumor samples (153 treated with PD-1 blockade, 66 treated with mTOR inhibition), 

quantifying the density of CD8+ cells in the tumor center and the tumor margin (Fig. 5a). 

Tumors were categorized as either “immune excluded” (at least five-fold greater CD8+ T 

cells in the tumor margin than in the tumor center), “immune desert” (not excluded, and 

below the 25th percentile for CD8+ T cells [50 cells/mm2] in the tumor center), or “immune 

infiltrated” (not excluded, and at or above the 25th percentile for CD8+ T cells in the tumor 

center). Unlike urothelial cancer, only 5% of ccRCC were immune excluded, while the 

majority (73%) were immune infiltrated (median: 155 CD8+ T cells/mm2). By immune 

deconvolution of the matched bulk transcriptomes (using CIBERSORTx)46 (Fig. 5b, 

Extended Data Fig. 6a), we observed that infiltrated tumors were enriched in anti-

tumorigenic M1 macrophages, activated CD4+ memory T cells and activated NK cells. By 

contrast, CD8+ deserts and excluded tumors were enriched in pro-tumorigenic M2 

macrophages, resting CD4+ memory T cells and resting NK cells. This is consistent with 

prior reports demonstrating an association between CD8+ T cell infiltration and NK cell, 

CD4+ T cell, and macrophage cells expressing anti-tumorigenic markers in ccRCC47. 

However, the use of transcriptomic data to infer immune cell infiltration can lead to 

misclassifications (Extended Data Fig. 6b).

We observed no difference in the proportions of infiltrated, desert, or excluded tumors 

between patients who experienced clinical benefit, intermediate clinical benefit, or no 

clinical benefit with anti-PD-1 therapy (p = 0.28) or mTOR inhibition (p = 0.29, Fig. 5c). 

There was no difference in PFS or OS between the different immune phenotypes in patients 

treated with PD-1 blockade (Fig. 5d) or mTOR inhibition (Extended Data Fig. 6c). Further, 

we assessed numerous immune-related gene expression signatures36,48,49, but did not 

observe any association between high signature expression and improved response or 

survival with anti-PD-1 therapy (Extended Data Fig. 7).

Interplay of immune phenotypes and somatic alterations influence 

response to PD-1 blockade

Given the unexpected finding that tumors with immune excluded and desert phenotypes 

(“non-infiltrated”) respond similarly to PD-1 blockade as CD8+ T cell infiltrated tumors, we 

investigated whether any tumor-intrinsic features affect response within the context of 
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different immune subtypes. We therefore systematically evaluated somatic events for 

preferential enrichment in either infiltrated or non-infiltrated tumors.

Of the recurrent sSNVs and sIndels, only truncating mutations in PBRM1 were enriched in 

non-infiltrated tumors, and no mutations were enriched in infiltrated tumors (Extended Data 

Fig. 8a). Consistent with this finding, tumors with PBRM1 mutations had a lower total 

CD8+ T cell infiltration by IF (p = 0.013, Wilcoxon rank-sum test). PBRM1 mutations, 

which we found to be associated with improved response, PFS, and OS with PD-1 blockade 

(Fig. 4a-b), were detected in 47% of immune deserts and 29% of immune excluded tumors, 

but only 22% of immune infiltrated tumors (Fig. 6a, p = 0.01 for non-infiltrated vs. 

infiltrated tumors). As for sCNAs, none were enriched in non-infiltrated tumors, but multiple 

focal chromosomal losses or gains were detected more frequently in infiltrated tumors (e.g 

amplifications of 12q24.32, 20q13.33, and 8q24.3; and deletions of 9p21.3, 9q34.3, 6p22.2, 

and 6p21.32; all q < 0.05, Fig. 6b). Infiltrated tumors had higher wGII (i.e. more genomic 

instability) than non-infiltrated tumors (p = 0.01), however, the degree of chromosomal 

instability (wGII high vs. low) was not associated with survival in infiltrated tumors 

(Extended Data Fig. 8b-d).

As the overall copy number burden did not affect survival, we explored whether any 

individual chromosomal loss or gain was (i) enriched in infiltrated tumors, and (ii) 

associated with altered PFS and OS within those infiltrated tumors. No chromosomal 

amplifications fulfilled these criteria (Extended Data Fig. 9). Among chromosomal losses, 

only del(9p21.3) was enriched in infiltrated tumors, and also associated with worse PFS and 

OS in infiltrated tumors with PD-1 blockade, but not with mTOR inhibition (Fig. 6c-d, 

Extended Data Fig. 9a-c). Tumors with del(9p21.3) had a higher total CD8+ T cell 

infiltration as compared to wildtype (p = 0.002, Wilcoxon rank-sum test). 9p21.3, which 

contains the CDKN2A (encoding the tumor suppressor p16) and CDKN2B genes, is a 

recurrent deletion event in ccRCC13,50, and is associated with the development of metastasis 

and with worsened survival14. By GSEA, 9p21.3 deleted tumors displayed an increase in 

mTOR signaling (Extended Data Fig. 10), which previously was shown to be associated (via 

PTEN loss) with resistance to anti-PD-1 therapy37,38. Interestingly, multiple other hallmark 

gene signatures were enriched in 9p21.3 loss, including angiogenesis, hypoxia, and 

glycolysis (with a relative depletion in oxidative phosphorylation and fatty acid metabolism), 

raising the possibility that multiple biologic processes could contribute to the poor outcome 

of PD-1 treated patients with this chromosomal alteration.

Discussion

The common paradigm in solid tumor immunology that pre-existing CD8+ T cell 

infiltration, in combination with high numbers of nonsynonymous mutations (which, in the 

context of diverse HLA class I alleles, may be presented as neoantigens) drives response to 

PD-1 blockade7,8,15,32,33, has not been thoroughly explored in ccRCC. Clear cell RCC has 

challenged conventional wisdom in cancer immunology, because ccRCC has a modest 

mutation burden11 yet is responsive to immunotherapies, and higher CD8+ T cell infiltration 

has traditionally correlated with a worse prognosis12. Through a comprehensive 

immunogenomic characterization of advanced ccRCC treated with PD-1 blockade, we 
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identified numerous copy number alterations in advanced ccRCC, including deletions of 

9q34.3, and loss of the regions of 6p containing components of antigen presenting 

machinery and HLA class II molecules. However, in contrast to other cancer types, tumor 

mutation burden, neoantigen load, and HLA zygosity were not associated with response to 

anti-PD-1 therapy in ccRCC. Further, we found only two (out of 3,173) ERVs with a 

potentially weak association with clinical outcomes in this dataset, which may be due to 

limitations in inferring ERV expression from FFPE tissue, or because expression alone is 

insufficient to predict response to PD-1 blockade for many ERVs.

We defined the patterns of CD8+ T cell infiltration in ccRCC, and demonstrated that, in 

contrast to other genitourinary malignancies10, immune exclusion is a rare immune 

phenotype. Importantly, we found that immune infiltrated tumors did not differ in response 

to or survival following PD-1 blockade in comparison to immune desert and excluded 

tumors. To explain this observation, we integrated genomic and transcriptomic analysis with 

immune phenotyping by CD8 IF. Of note, we elected to use immunofluorescence as a “gold 

standard” approach to quantifying CD8+ T cell infiltration in tumors, given the very 

substantial limitations in using only transcriptomic data to perform immune classifications. 

We identified that CD8+ T cell infiltrated tumors are relatively depleted for PBRM1 
mutations (which are associated with response19,35), and are enriched for chromosomal 

losses of 9p21.3 (which is associated with resistance to PD-1 blockade in infiltrated tumors). 

Overall then, although infiltrated tumors are immunogenically “hot” (and therefore, should 

conceptually be primed to respond better to PD-1 blockade), they are relatively depleted of 

PBRM1 mutations (which are correlated with improved survival with anti-PD-1 therapy), 

and are enriched for 9p21.3 deletions (which are associated with worse outcomes with PD-1 

blockade) (Fig. 6e). Our integrative approach provides a potential explanation for why CD8+ 

T cell infiltration by itself is not associated with response to anti-PD-1 therapy, and also puts 

forward a conceptual framework for analyzing and understanding mechanisms of response 

and resistance to PD-1 blockade in other tumor types. Given the limited number of samples 

for which immunofluorescence and WES data were available, this potential interplay 

between CD8+ T cell infiltration and del(9p21.3) will need to be confirmed in future studies 

of anti-PD-1 monotherapy in ccRCC.

This study does have several important limitations. There are inherent constraints in bulk 

genomic and transcriptomic analyses, and ultimately, single cell transcriptomic approaches 

will be needed to comprehensively understand tumor and immune cell composition and 

cellular states, and to fully dissect heterogeneity within these defined immune phenotypes. 

Further, genomic and immune assessments are based on a single tumor sample from each 

patient, which likely does not capture the entirety of the genomic heterogeneity found in 

ccRCC51,52 or the potential immune heterogeneity that has been described in other tumor 

types53. With respect to the therapeutic setting, these clinical studies were performed in the 

previously treated, anti-angiogenic refractory setting, and prior studies of front-line anti-PD-

L1—based-therapy did not demonstrate a benefit from PBRM1 mutations in the first-line 

setting. Further, the exact mechanism by which PBRM1 alterations could alter response to 

PD-1 blockade remains largely undefined. In agreement with prior studies36,54, PBRM1 
alterations were associated with higher angiogenesis gene expression; however, in contrast 

to past reports55,56, we found PBRM1 alterations were associated with lower IL6-JAK-
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STAT3 signaling, potentially attributable to differences in cohorts (including differences in 

immune infiltration), or to limitations in transcriptomic analysis from FFPE tissue. As 

mostly archival (prior to anti-angiogenic therapy) tumor specimens were available for study, 

not all tumors may have been at an advanced stage at the time of tissue sampling, and the 

somatic alteration landscape and immune infiltrate may have further evolved prior to PD-1 

blockade; such changes would not be captured by the current study. Further, patients with 

particularly aggressive disease unfortunately may not have survived long enough to 

participate in these trials, and thus this type of ccRCC patient would not have been included 

in our analysis. Finally, our study examines only clear cell histology, but there is an unmet 

clinical need for improved understanding of and therapy for non-clear cell RCCs.

The current study nonetheless provides critical insights into immunogenomic mechanisms 

contributing to response and resistance to immunotherapy in ccRCC. Moving forward, it 

will be critical to validate these findings in future clinical trials, and to explore the 

interaction of immune infiltration and somatic alterations in the context of anti-PD-1—based 

combination therapies, as these regimens have become standard-of-care first-line therapeutic 

options for patients with advanced ccRCC3–5. Given the additional complexity of drug-drug 

interactions in combination therapy, where improved efficacy may result from independent, 

additive, or synergistic effects57, it is essential to first gain insight into the biology 

underlying response and resistance to anti-PD-1 monotherapy, in order to better understand 

the effects of these drugs in combination. The detailed clinical, genomic, transcriptomic, and 

immunopathology data produced by this study will serve as a valuable resource for the 

cancer immunology community. This work, therefore, will be important for ongoing 

initiatives in precision medicine and immuno-oncology, helping to identify which patients 

are likely to respond to current therapies, and providing fundamental information to aid in 

development of rational combination therapies to overcome resistance in the future.

Methods

Clinical cohorts

Patient data from three prospective clinical trials of the anti-PD-1 antibody nivolumab in 

advanced clear cell renal cell carcinoma (ccRCC) were used in this study – CheckMate 009 

(CM-009; NCT01358721)17, CheckMate 010 (CM-010; NCT01354431)18 and CheckMate 

025 (CM-025; NCT01668784)4. Patients enrolled in these CM-010 and CM-025 had 

advanced (metastatic) renal cell carcinoma, clear cell histology, and had progressed on at 

least one prior systemic anti-angiogenic therapy (CM-009 had similar eligibility criteria, 

though a subset of N=10 patients were treated with nivolumab as front-line therapy). 

CM-010 was a phase II dose-finding study of nivolumab, which found no dose-dependent 

relationship with progression free survival (PFS). CM-025 was a randomized phase III trial 

which demonstrated an improved overall survival (OS) with nivolumab over the mTOR 

inhibitor everolimus. Institutional Review Board approval and informed consent was 

obtained prior to tissue acquisition and genomic sequencing. Analysis was performed under 

a secondary use protocol, approved by the Dana-Farber Cancer Institute IRB. Formalin-

fixed, paraffin embedded tumor tissue (mostly archival; see Supplementary Table 1 for 

timing of sample collection) and peripheral blood (for germline control) were obtained prior 
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to initial anti-angiogenic therapy for patients enrolled in the CM-010 and CM-025. All 

genomic, transcriptomic, and immunofluorescence analysis for CM-010 and CM-025 was 

performed on these tissue samples. Patients who were consented for genomic studies and 

had tumor material that passed quality control were included in this post-hoc analysis; these 

patients did not differ significantly from other patients enrolled in the initial clinical trials 

with respect to PFS. For this analysis, data from CM-010 and CM-025 were combined with 

WES, RNA-seq, and clinical data from the phase I CM-009 study19.

DNA and RNA library preparation and sequencing

DNA/RNA extraction.—DNA and RNA extractions were performed using the AllPrep 

DNA/RNA FFPE Mini Kit (Qiagen). RNA quality was assessed with Caliper LabChip GX2 

(Perkin Elmer) and RNA 6000 Nano Kit reagents for CM-010 and CM-025 respectively. The 

percentage of fragments with a size greater than 200nt (DV200) was calculated.

RNA-Seq libraries were prepared using a transcriptome capture approach (TruSeq RNA 

Access Library Prep Kit (Illumina)) following a validated SOP. Briefly, total RNA samples 

are fragmented, randomly primed for first and second strand cDNA synthesis ensuring 

strandedness, and then enriched into indexed double-straned cDNA libraries. Indexed 

libraries are then subsequently enriched for coding RNA using hybrid capture probes 

specific for coding RNA. After enrichment, the libraries were quantified with qPCR using 

the KAPA Library Quantification Kit for Illumina Sequencing Platforms for CM-010 and by 

Agilent D1000 Assay using the TapeStation (Agilent) for CM-025, followed by equimolar 

pooling. Flowcell cluster amplification and sequencing were performed according to the 

manufacturer’s protocols using HiSeq 2000 or 2500 (Illumina). Each run was a 76bp paired-

end for CM-010 and 50bp paired-end for CM-025.

WES libraries were performed using the KAPA Library Prep kit, with palindromic forked 

adapters from Integrated DNA Technologies for CM-010 and the SureSelectXT v5 Kit 

(Agilent) following validated SOPs for both the DNA extracted from tumors and germline 

control samples for CM-025. Hybridization and capture were performed using the relevant 

components of Illumina’s Rapid Capture Enrichment Kit for CM-010 and by a liquid-phase 

hybridization capture step aimed to enrich for exonic regions of protein-coding genes for 

CM-025. All library construction, hybridization and capture steps were automated on the 

Agilent Bravo liquid handling system. Libraries were then quantitatively and qualitatively 

evaluated using qPCR and Agilent’s D1000 Assay using the TapeStation (Agilent), 

respectively. Finally, equimolar amounts of libraries were pooled and sequenced using 

Illumina HiSeq2500 following a 2×76 2×100 paired-end sequencing recipes for CM-010 and 

CM-025 respectively.

Mutation analysis

We have utilized the Getz Lab CGA WES Characterization pipeline [https://

docs.google.com/document/d/1VO2kX_fgfUd0×3mBS9NjLUWGZu794WbTepBel3cBg08/

edit] developed at the Broad Institute to call, filter and annotate somatic mutations for 

CM-010 and CM-025. Paired-end Illumina reads were aligned to the hg19 human genome 

reference using the Picard pipeline [https://software.broadinstitute.org/gatk/documentation/
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tooldocs/4.0.1.0/picard_fingerprint_CrosscheckFingerprints.php https://

software.broadinstitute.org/gatk/documentation/tooldocs/4.0.0.0/

picard_analysis_CollectMultipleMetrics.php]. Cross-sample contamination were assessed 

with the ContEst58 tool, and samples with ≥5% contamination were excluded. Point 

mutations and indels were identified using MuTect59 and Strelka60, respectively. Mutations 

were annotated using Oncotator61. Possible artifacts due to orientation bias, germline 

variants, sequencing and poor mapping were filtered using a variety of tools including 

Orientation Bias Filter62, MAFPoNFilter20, and RealignmentFilter.

In addition to the biases filtered by the CGA WES characterization pipeline, there are other 

artifacts that can arise in FFPE data. For example, we observed occasional false mutation 

calls in homopolymeric tracts or in difficult to align regions of the genome, which were 

characterized by the presence of many aligned reads with several mismatches (on manual 

IGV review). Therefore in this study, beyond the CGA WES characterization pipeline, we 

further implemented a specific set of filters in order to reduce the high false positive rate in 

CM-010 and CM-025. For every set of reads in the tumor sample that aligned to the 

reference at the same start and/or end positions, only one read corresponding to the best 

alignment was kept. Optical and PCR duplicates were removed. Only reads that had no more 

than one additional event (SNV, insertion, deletion) apart from the mutation were 

considered. In this step, events that were also represented in the normal sample at allele 

frequency ≥ 2% were considered to be germline variants, and were not counted as additional 

events. Aligned reads in the normal sample with no more than 3 events were used to 

calculate the allele frequency of an event in the normal sample. Finally, only mutations that 

had at least one supporting read in both orientations, or at least 3 reads in any one 

orientation, were preserved. In addition, mutations in all genes that were identified as 

recurrent by MutSig2CV20 were visually inspected in IGV63.

Published mutations calls for CM-00919 were reannotated by Oncotator61 in order to obtain 

gene annotations consistent with CM-010 and CM-025 for downstream analysis.

Recurrently mutated genes in a given cohort were identified by MutSig2CV using an FDR 

threshold of 0.0520.

Copy number analysis

Copy number events were called and filtered using GATK4 ModelSegments [https://

gatkforums.broadinstitute.org/dsde/discussion/11682/; https://gatkforums.broadinstitute.org/

dsde/discussion/11683] Copy number panel-of-normals was created based on matched 

germline samples in a given cohort. We applied a custom conversion script to format the 

outputs of ModelSegments (both copy ratio and allelic fraction) to be compatible with 

ABSOLUTE64, the tool used to estimate sample purity and ploidy as well as cancer cell 

fractions (CCFs). ABSOLUTE solutions were picked by two independent analysts; a third 

analyst was consulted in cases of discordant calls. The final chosen purity and ploidy 

solutions were used to estimate CCFs for detected somatic alterations in each sample. 

Mutations were considered clonal if the expected CCF of the mutation as estimated by 

ABSOLUTE was 1, or if the estimated probability of the mutation being clonal was greater 

than 0.5.
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Samples that lacked both a 3p deletion as well as mutations in any of the previously 

identified recurrent genes in TCGA were removed from downstream analyses. Additionally, 

samples with excessively noisy copy number profiles (i.e. were unable to be adequately 

fitted to thresholded ploidy profiles by ABSOLUTE due to excessive noise) were excluded 

from downstream copy number analyses. GISTIC221 was used to identify recurrent 

amplification and deletion events in each cohort (q < 0.1). ISAR-GISTIC65 was deployed to 

estimate purity- and ploidy-corrected segment values.

Analysis of advanced ccRCC

Mutation and copy data for TCGA patients were downloaded from NCI Genomics Data 

Commons (GDC) from the following locations:

i. public MC3 mutation annotation file - mc3.v0.2.8.PUBLIC.maf.gz (https://

api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc);

ii. SNP6 whitelisted copy number segments file - 

broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.seg (https://

api.gdc.cancer.gov/data/00a32f7a-c85f-4f86-850d-be53973cbc4d).

Clinical data for TCGA clear cell renal cell carcinoma (KIRC) was downloaded from the 

cBioPortal (https://www.cbioportal.org/study/clinicalData?id=kirc_tcga). KIRC samples 

from stages I-III were considered early stage whereas those from stage IV were considered 

advanced stage. The advanced stage cohort was comprised of samples from CM-009, 

CM-010, CM-025 and stage IV samples TCGA KIRC.

Sample-level somatic alteration burden statistics

Tumor mutation burden (TMB) was calculated as the sum of all non-synonymous mutations 

in a sample. The variant classes used for TMB were De_novo_Start_InFrame, 

De_novo_Start_OutOfFrame, Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, 

In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_Site, 

Start_Codon_Del, Start_Codon_Ins, Start_Codon_SNP and Stop_Codon_Del. Similarly, the 

FrameShift indels metric (FS) was calculated as the sum of all frameshift mutations 

(frameshift insertions and frameshift deletions) per sample. Neoantigen load was computed 

as the sum of all predicted HLA:peptide binders within a sample with percentile rank less 

than 2.0, based on each patient’s inferred HLA class I alleles (Polysolver66). Copy number 

burden (or chromosomal instability) was estimated by the Weighted Genome Integrity Index 

(wGII) score, which was computed as follows: the ploidy of the sample was first determined 

as the weighted median integer copy number, with weights equal to the lengths of the copy 

number segments. For each of the 22 autosomal chromosomes, the percentage of gained and 

lost genomic material was calculated relative to the ploidy of the sample. The wGII score of 

a sample was defined as the average of this percentage value over the 22 autosomal 

chromosomes.

HLA and neoantigen analysis

Polysolver66 was used to computationally infer alleles and mutations in class I HLA genes 

(HLA-A/B/C). Binding affinities were predicted for all possible mutation-bearing or 
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neoORF-derived 9 and 10-mer peptides against all inferred HLA alleles within a sample 

using NetMHCpan-4.067. Strong and weak affinity neoantigen binders were identified based 

on the percentile ranks (≤ 0.5% for strong, ≤ 2% for weak).

Transcriptomic analysis

RNA-seq data from the CheckMate 010 and 025 cohorts were aligned using STAR68, 

quantified using RSEM69, and evaluated for quality using RNA-seqQC270. Samples were 

excluded if they had an interquartile range of log2(TPM+1) < 0.5 (indicating low dynamic 

range), had less than 15,000 genes detected (indicating low library complexity), had an End 

2 Sense Rate<0.90, or End 1 Sense Rate>0.10 (as defined by RNA-seqQC2, indicating 

strand bias). For samples where RNA-seq was performed in duplicates, the run with a higher 

interquartile range of log2(TPM+1), utilized as a surrogate for better quality data, was used. 

For the CheckMate 009 cohort, the previously published TPM matrix was used19. We 

subsequently filtered genes that were not expressed in any of the samples (in each cohort 

independently) then upper quartile-normalized the TPMs to an upper quartile of 1000, and 

log2-transformed them. Since the sequencing had been performed in 4 separate batches, 

principal component analysis (PCA) was used to evaluate for batch effects and 4 batches 

were observed. These 4 batches were corrected for using ComBat71. Subsequently, a PCA 

was performed on the ComBat-corrected expression matrix to confirm that batch effects had 

been adequately corrected for. Moreover, a constant that was equal to the first integer above 

the minimum negative expression value obtained post-ComBat (constant of +21) to 

eliminate negative gene expression values that were a by-product of ComBat correction. The 

ComBat-corrected expression matrix was used for all downstream analyses.

We implemented a pipeline to quantify the expression of ERVs in RNA-seq data. Briefly, a 

reference set of 3,173 hERV sequences was first obtained from Vargiu et al72. Bowtie2 

v2.3.4.3 was used to align RNA-Seq FASTQ files for pairs to hg38 human transcriptome. 

All unmapped, single-end mapped, and ill-formed pair-end alignments to the human 

transcriptome were selected and aligned to hERV reference transcriptome using bowtie2. 

Mapped reads to hERV reference were kept, followed by filtering of single-end perfect 

matches to the human transcriptome. Finally, pair-end alignments with no more than one 

mismatch and single-end alignments with perfect matches to the hERV reference but not to 

human transcriptome were preserved. Duplicates in the final kept reads were removed using 

MarkDuplicates tool in Picard v2.19.0 [http://broadinstitute.github.io/picard] and then 

quantified using HTSeq73 v0.11.0 with the settings (htseq-count --stranded=no --

mode=union --secondary-alignments=score --supplementary-alignments=score --

nonunique=all -a 0). Raw counts of paired-end and single-end alignments were added with 

different weights (pair-counts*2 + single-counts) and then normalized to counts per million 

total FASTQ reads (CPM). CPM was used for experimental validation with RT-qPCR 

measurements. For survival and response analysis, ERV raw counts were normalized using 

the R package “DESeq2”74 v1.24.0, filtered for hERVs that were expressed in at least one 

sample in each Checkmate cohort independently, and log2-transformed. Batch effects were 

corrected by ComBat71 using the R package “sva”, and a constant equal to the first integer 

above the minimum negative expression value post-ComBat was added. The ComBat-

corrected hERV expression matrix was used for downstream analyses. For each ERV, 
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univariable Cox regression models for OS and PFS were computed for anti-PD-1—treated 

patients with ERV expression included as a continuous independent. For response, Wilcoxon 

rank-sum test (clinical benefit vs. no clinical benefit) was performed for each ERV for anti-

PD-1—treated patients. For individual ERVs significant for association with response, PFS, 

and OS, ERV expression was dichotomized at its median expression (within the overall 

group of 311 patients with RNA-seq) for each ERV individually, the Kaplan-Meier method 

was used to summarize the survival outcomes (PFS and OS) of the groups (high vs. low) 

dichotomized at the median of ERV expression, and the groups were compared using the 

log-rank test.

Gene set enrichment analysis (GSEA39) was performed using MSigDB’s hallmark gene 

sets40. Single sample GSEA (ssGSEA) was additionally computed using the R package 

“GSVA” to obtain sample-level GSEA scores39. Differential gene expression analysis was 

run using the non-parametric Wilcoxon rank-sum test on ssGSEA scores and Benjamini-

Hochberg false discovery rate correction with q<0.25 considered significant.

Signature analysis was performed using five immune-related signatures listed below:

1. IMmotion150_Angio: VEGFA, KDR, ESM1, PECAM1, ANGPTL4, CD34. 

(Note: PECAM1 was not in the batch-corrected expression matrix)

2. IMmotion150_Teff: CD8A, EOMES, PRF1, IFNG, CD274.

3. IMmotion150_Myeloid: IL6, CXCL1, CXCL2, CXCL3, CXCL8, PTGS2. (Note: 

IL6 was not in the batch-corrected expression matrix)

4. JAVELIN: CD3G, CD3E, CD8B, THEMIS, TRAT1, GRAP2, CD247, CD2, 
CD96, PRF1, CD6, IL7R, ITK, GPR18, EOMES, SIT1, NLRC3, CD244, 
KLRD1, SH2D1A, CCL5, XCL2, CST7, GFI1, KCNA3, PSTPIP1. (Note: CCL5 
was not in the batch-corrected expression matrix)

5. Tumor Inflammation Score (TIS): PSMB10, HLA-DQA1, HLA-DRB1, 
CMKLR1, HLA-E, NKG7, CD8A, CCL5, CXCL9, CD27, CXCR6, IDO1, 
STAT1, TIGIT, LAG3, CD274, PDCD1LG2, CD276. (Note: CCL5 was not in 

the batch-corrected expression matrix)

The signature score was calculated as the arithmetic mean of expression of all genes in that 

signature for each sample. Comparison of each signature score between groups (clinical 

benefit vs. no clinical benefit, CR/PR vs. PD) were done with the non-parametric Wilcoxon 

rank-sum test, separately for Anti-PD1 treatment and mTOR inhibition. All comparisons 

were two-sided with an alpha-level of 0.05.

The CIBERSORTx deconvolution algorithm46 was used to infer immune cell infiltration 

from RNA-seq data (Job type: “Impute cell fractions”), in absolute mode, on the LM22 

signature, with B mode batch correction (in order to correct for the batch effect between the 

LM22 signature, which was derived from microarray data, and the data used in this study 

which consisted of RNA-seq), with quantile normalization disabled, and in 1000 

permutations. All samples which had a p-value for deconvolution >0.05 were considered to 

have failed deconvolution and were therefore discarded from all downstream analyses. 
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Relative cell proportions were obtained by normalizing the CIBERSORTx output to the 

sample-level sum of cell counts (in order to obtain percentages of immune infiltration). A 

constant of 10−06 was added to all proportions in order to allow the computation of immune 

cell ratios. All immune cell proportions and ratios were compared using a non-parametric 

Wilcoxon rank-sum test with Benjamini-Hochberg correction and a q-value threshold of 

0.05 for statistical significance.

RT-qPCR for validation of ERV expression

RNAs were extracted using the AllPrep DNA/RNA FFPE Mini Kit (Qiagen) from a 5 cm2 

tumor-enriched area macrodissected from 4-mm-thick FFPE tissue sections prepared form a 

single tumor block. The tumor-enriched area contained an estimated percentage of TCs that 

ranged from 30% to 70%. Total RNA was assessed for quality using the Caliper LabChip 

GX2 (Perkin Elmer). The percentage of fragments with a size greater than 200nt (DV200) 

was calculated using software. An aliquot of 200ng of RNA was used as the input for first 

strand cDNA synthesis using TruSeq RNA Access Library Prep Kit (Illumina, San Diego, 

California, USA). Synthesis of the second strand of cDNA was followed by indexed adapter 

ligation. After RNA isolation, 400 ng of total RNA were treated with ezDNase (Life 

technologies). Transcript specific cDNA synthesis was then performed using a cocktail 

containing the different PCR reverse primers (see table of primer sequences below) and the 

SuperScript IV Reverse Transcriptase Kit (Life Technologies). RT-PCRs were performed in 

triplicate in 384 well plates on a 7900 Fast Real-Time PCR Detection System (Applied 

Biosystem) using the TaqMan Universal PCR Master Mix reagent (Life Technologies). 16 

ng and 8 ng of reverse transcribed RNA were used per PCR reaction to amplify the cDNA of 

the hERVs and the reference genes, respectively. Primer and probe sequences used are listed 

in the table below. Relative transcript expression levels were calculated using the standard 

curve methods. Serial dilution of reverse transcribed RNA from a ccRCC from the TCGA 

(TCGA_CZ_5468_01) known to expresses high levels of ERVE4 and hERV470043 was used 

as reference samples to generate the standard curves. Mean expression level of each 

transcript was calculated from the three technical replicates. hERV expression levels were 

normalized using the geometric mean of HPRT and 18S mean expression levels.

Transcript Forward Primer Reverse Primer Probe Amplicon 
Size

Reference 
(PMID)

ERVE-4/C
T-RCC/
HERV-E

GCAGATCCTGGGAGCACTCT TGTTCAACCGCTGTGTTAATTCTC TGCCCTGGTCAAATGCCTTGCG 104 bp 45

ERV3.2 TACAAGGAGGCAGGTGGAAG TTCCCATGTGTGTTCCCTGA TGGGAGGCTAGCTATTCCGGAAGCA 102 bp

hERV4700 
GAG

GACGCTCCCAGCAGAATAAA CCGGTCAGGAAACCAAGAAA TTGTCTGTGGCTTGTCCTGCTACA 99 bp 43

hERV4700 
POL

CCATCCTTGGATGTCACTAGAC CCAGGGTTACCACTGCATATC TACGTGGACGGGAGCAACTTTGTC 101 bp 43

hERV4700 
ENV

CTGCTTAGGTCCATCCAGAATC TGATCAGGTGACGGAGTGTA ACGGCTCCCTCTGGACTATACTGG 97 bp 43

HPRT GGCAGTATAATCCAAAGATGGTCAA GTCTGGCTTATATCCAACACTTCGT CAAGCTTGCTGGTGAAAAGGACCCC 80 bp 75

18S GTGACGGGGAATCAGGGTTC CTGCCTTCCTTGGATGTGGT CGGAGAGGGAGCCTGAGAAACGGC 70 bp
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Multiplex immunofluorescence assay and image analysis

Cluster of differentiation (CD8) immunostain was performed as part of either a 5-plex 

(CM-010) or 6-plex (CM-025) fluorescent IHC panel using the Opal multiplex IHC system 

(PerkinElmer) on 4 mm-thick formalin-fixed paraffin-embedded tissue sections. Specifically, 

anti-CD8 antibody (C8/144B, mouse monoclonal antibody, Agilent - 1:10000 in CM-010 

and 1:5000 in CM-025) was detected using the Opal 520 fluorophore (1:50 in CM-010 and 

1:150 in CM-025, FITC); slides were then counterstained with Spectral DAPI (PerkinElmer) 

and manually coverslipped. The staining protocol was optimized by staining nonneoplastic 

tonsil tissue and obtaining a staining pattern in accordance with published data76,77.

The slides were imaged using the Vectra 3 automated quantitative pathology imaging system 

(PerkinElmer) and whole slide multispectral images were acquired at 10x magnification.

Digital whole slide multispectral images in .qptiff file format were uploaded into HALO 

Image Analysis platform version 2.1.1637.18 (Indica Labs). For each case annotations were 

created as follows: a yellow line was drawn at the interface between the tumor and the 

surrounding tissue; a tumor margin (TM) including 500 μm in and out from the interface 

was automatically created using the appropriate advanced annotation tool (green layer); the 

tumor center (TC) was set to include the whole remaining tumor area (red layer). Empty 

spaces, necrosis, red blood cells and fibrotic septa were excluded from the analyzed area 

using classifiers and/or additional annotations. Image analysis algorithms were built using 

Indica Labs High-Plex FL v2.0 module to measure the area within each layer, perform 

DAPI-based nuclear segmentation and detect CD8 (FITC)-positive cells by setting a dye 

cytoplasm positive threshold. A unique algorithm was created for each tumor and its 

accuracy was validated through visual inspection by at least one pathologist (M.F. and/or 

M.S.).

CM-010 multiplex immunofluorescence assay.—Paraffin embedded tissue sections 

were rehydrated and boiled in EDTA buffer pH 8 (Life Technologies) with a pressure cooker 

(Biocare Medical) for 30 seconds at 125°C. Tissue sections were allowed to cool down at 

room temperature before being incubated for 10 minute with a peroxidase block (Dual 

Endogenous Enzyme Block, Agilent) and for 15 minute with a protein block (Serum Free 

Block, Agilent). Tissue sections were then incubated for 60 min at room temperature with 

the primary antibody diluted in Antibody Diluent with Background Reducing Components 

(Agilent). Sections were next incubated for 10 minutes at room temperature with EnVision 

horseradish (HRP)-conjugated antibody (Agilent) and HRP-mediated visualization was 

performed by using Opal Fluorochrome working solution for 5 minutes (PerkinElmer). 

Tissue sections were washed for 5 minutes in wash buffer (0.1 mM Tris, pH7.4 + 0.05% 

Tween 20) between each step. To strip the primary and secondary antibodies, the slides were 

boiled in AR6 buffer (PerkinElmer) using a 1300W microwave oven (Panasonic) for 5 

minutes at a power level of 2. After cooling down at room temperature, tissue sections were 

incubated with the protein block and another staining cycle was performed. At last, nuclei 

were counterstained with Spectral DAPI (PerkinElmer) for 5 min at room temperature and 

tissue sections were manually coverslipped using Prolong Gold Antifade Mountant (Life 

Technologies).
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CM-025 multiplex immunofluorescence assay.—Slides were baked for 30 min at 

60°C and automated multiplex IF was performed with BOND RX (Leica Biosystems) using 

BOND Polymer Refine Detection Kit (Leica Biosystems). First, tissue sections were 

deparaffinized using BOND Dewax Solution (Leica Biosystems) at 72°C for 30 min and 

rehydrated. Antigen retrieval was performed using BOND Epitope Retrieval Solution 1 

(Leica Biosystems; citrate, pH 6.0) at 98°C for 10 min. Tissue sections were then washed 

with BOND Wash Solution (Leica Biosystems) for 9 min, incubated at room temperature 

with BOND Peroxide Block (Leica Biosystems) for 10 min and washed again for 6 min 

before incubation with Dako Protein Block Serum-Free (Agilent) for 15 min. Sections were 

next incubated for 40 min at room temperature with the primary antibody diluted in Leica 

Biosystems BOND Primary Antibody Diluent (CD8), washed for 6 minutes and incubated at 

room temperature with BOND Post Primary (Leica Biosystems) for 15 min. Tissue sections 

were then washed for 6 min and incubated with BOND Polymer (Leica Biosystems) at room 

temperature for 10 min, washed again for 8 min and incubated for 5 min with Opal 

Fluorophore Working Solution (PerkinElmer). After an additional 8 min wash, primary and 

secondary antibody stripping was performed using BOND Epitope Retrieval Solution 1 

(Leica Biosystems; citrate, pH 6.0) at 98°C for 10 min to allow for another round of 

staining. Of note, an extra antigen retrieval step was performed after the last staining cycle to 

reduce background. Finally, nuclei were counterstained with DAPI (PerkinElmer) for 10 min 

at room temperature and tissue sections were manually coverslipped with Invitrogen 

ProLong Diamond Antifade Mountant (Thermo Fisher Scientific).

Immunophenotype assignment

Tumors were categorized as either “immune excluded” (at least five-fold greater CD8+ cells 

in the tumor margin than in the tumor center), “immune desert” (not excluded, and below the 

25th percentile for CD8+ cells [50 cells/mm2] in the tumor center), or “immune infiltrated” 

(not excluded, and at or above the 25th percentile for CD8+ cells in the tumor center). For 

immune exclusion, there was a clear threshold (5) based on the distribution of the CD8 in 

tumor margin to tumor center ratio. We utilized agnostic algorithms to attempt to define an 

optimal cutpoint between infiltrated and desert tumors (recursive partitioning [rpart() 

function from rpart package in R] and maximally selected rank statistic [maxstat.test() 

function from maxstat package in R]). We did not identify any threshold containing at least 

10% of patients that resulted in a statistically significant difference in PFS or OS between 

infiltrated and desert tumors. A median cutoff was explored for CD8+ T cells in the tumor 

center; however, upon visual inspection, cases with a substantial degree of inflammation in 

the tumor center were found to be misclassified as “desert” We therefore examined the lower 

(Q1) quartile of CD8+ T cells in the tumor center, and this threshold was confirmed by 

visual review by a trained pathologist (M.F.). All cases were visualized by independently by 

two pathologists (M.F. and M.S.) to confirm they were classified correctly.

Statistical analysis

All study findings in the pooled cohort were repeated within each cohort. The inference 

results and direction of association in the pooled cohort data is similar with the within-

cohort data (figures not shown). The combined failure-time endpoints plot for all cohorts 

graphically shows no significant difference in both endpoints among the cohorts (Extended 
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Data Fig. 2g). Kaplan-Meier analysis and univariable Cox regression analysis (coxph() 

function) were done using the R packages survival and survminer to evaluate the association 

between progression-free and overall survival times and genomic alterations (amplification, 

deletion, truncating mutation, HLA heterozygosity or infiltration). Significance testing for 

differences in progression-free survival (PFS) or overall survival (OS) was performed using 

the log-rank test (survdiff() function) at a significance level of p < 0.05. Additional 

multivariable analysis including MSKCC risk group, lines of therapy (≤1 or ≥2), or timing 

of sample collection (days before beginning trial therapy) as covariates confirmed the 

significant association of truncating mutations in PBRM1, del(10q23.31), and del(9p21.3) 

within infiltrated tumors as significantly associated with altered PFS and OS. All 

comparisons of discrete variables between groups (clinical benefit vs. no clinical benefit, 

CRPR vs. PD, genomic alteration vs. WT, or infiltrated vs. not infiltrated) were done with 

the non-parametric Wilcoxon rank-sum test (wilcox.test() or stat_compare_means(method = 

“wilcox”) R function, two-sided, from stats or matrixTests package). All comparisons were 

two-sided with an alpha-level of 0.05. For all box-plots, data distribution is shown through 

the violin-plot, the center line represents the median; the box limits represents the upper and 

lower quartiles; and the whiskers represent 1.5 times the interquartile range (outlier points 

outside of this range are shown as part of the box-plot). Comparisons of the copy number 

alterations by infiltration state were done with Fisher’s exact tests (fisher.test() R function, 

two-sided, from stats package). The Benjamini-Hochberg method for controlling false 

discovery rate (FDR) was applied to control for multiple hypothesis testing among different 

comparisons: for immune infiltration phenotype comparisons with a threshold of q < 0.05; 

for ssGSEA and CIBERSORTx scores comparisons with two thresholds of q < 0.05 and q < 

0.25. All statistical analyses and figures were generated in R version 3.6.0.

DATA AVAILABILITY STATEMENT:

All relevant data are available from the authors and/or are included with the manuscript. 

Clinical data about the patients and tumor immunophenotyping are listed in Supplementary 

Table 1. Somatic mutations are available in Supplementary Table 2. Significantly recurrent 
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supplementary table 3. Normalized RNA-seq expression data, single sample gene set 
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(inferred from RNA-seq data) are available in Supplementary Table 4. WES data from 
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Extended Data

Extended Data Fig 1. 
Sample inclusion and exclusion criteria including quality control filtering for CM-010

Braun et al. Page 19

Nat Med. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig 2. 
Response and survival for sequenced vs non-sequenced patients in each cohort
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Extended Data Fig 3. 
Genomic and immune features associated with MSKCC risk groups
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Extended Data Fig 4. 
Survival of patients with high versus low somatic alteration burden

Braun et al. Page 22

Nat Med. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig 5. 
Genomic correlates of survival following anti-PD-1 or mTOR treatment
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Extended Data Fig 6. 
Characterization of immune infiltration and its association with clinical outcome
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Extended Data Fig 7. 
Immune-related gene signature expression is not associated with improved response or 

survival with anti-PD-1 therapy
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Extended Data Fig 8. 
Enrichment of individual mutations and chromosomal instability in infiltrated versus 

noninfiltrated tumors
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Extended Data Fig 9. 
Association of focal amplifications and deletions with T cell infiltration and survival with 

PD1 blockade
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Extended Data Fig 10. 
GSEA of 9p21 3 deleted tumors versus wildtype using the Hallmark gene sets

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Somatic alteration landscape of the Checkmate cohorts. (a) Immunogenomic 

characterization of Checkmate cohorts. WES, RNA-seq and IF data were generated from 

samples collected prior to PD-1 blockade (or mTOR inhibition) from three prospective 

clinical trials (Checkmate-009, −010, −025). (b) Somatic alterations in ccRCC. Top 

histogram, mutation rate per sample; Top tracks, indication of cohort and treatment arm, 

clinical outcome and purity of each sample. Left histograms, MutSig2CV significance for 

recurrently mutated genes; right histograms, frequency of somatic alterations. Upper 

heatmap, distribution of synonymous and nonsynonymous mutation events; middle heatmap, 

distribution of copy number events (negative values indicating loss, positive indicating gain; 

1 and 2 indicating low and high amplitude, respectively). Lower chart, allele fractions per 

sample.
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Figure 2. 
Genomic features of advanced renal cell carcinoma (RCC) tumors. (a) NF2 and TSC1 genes 

are recurrently mutated in advanced RCC. MutSig2CV q-values for early stage RCC (TCGA 

stages I-III, n = 452 patients) versus corresponding q-values for advanced stage RCC 

samples (CheckMate cohorts + TCGA stage IV, n = 1089 patients). Dotted lines indicate a 

MutSig2CV FDR threshold of q = 0.05. (b) NF2 mutations are associated with worse OS 

across RCC stages (two-sided log-rank test). (c) 9q34.3 locus is recurrently deleted in 

advanced RCC. Upper panel, GISTIC2 peaks in advanced RCC. Lower panel, GISTIC2 
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peaks in earlier stage RCC. Recurrent copy number events (GISTIC2 q < 0.1) are colored by 

gain and loss. (d) 9q34.3 loss is associated with worse OS in earlier stage disease (two-sided 

log-rank test).
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Figure 3. 
Somatic alteration burden and HLA zygosity are not associated with clinical outcome with 

PD-1 blockade. (a-d). Measures of sample-wide somatic burden, including number of (a) 
tumor mutations, (b) neoantigen load, (c) frameshift indels and (d) weighted genome 

integrity index (wGII) were not associated with clinical benefit with PD-1 blockade (two-

sided Wilcoxon rank-sum test). Boxplot hinges represent 25th to 75th percentiles, central 

lines represent the medians, the whiskers extend to highest and lowest values no greater than 

1.5× interquartile range and the dots indicate outliers; the violin component refers to the 

kernel probability density and encompasses all cells. (e) HLA zygosity was not associated 

with progression-free or overall survival (two-sided log-rank test).
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Figure 4. 
Genomic correlates of response and resistance to anti-PD-1 therapy. (a) PBRM1 truncating 

mutations are recurrent (MutSig2CV q < 0.05) and associated with better survival (p < 0.05, 

two-sided univariable cox regression with mutation status as a categorical covariate) with 

anti-PD-1 therapy (n = 249 patients with anti-PD-1 therapy). Truncating mutations in 

PBRM1 are associated with improved (b) response (p = 0.005, two-sided Fisher’s exact test 

for clinical benefit vs. no clinical benefit tumors. Error bars are SEM and measure of center 

is mean), (c) PFS, and (d) OS with PD-1 blockade but not with mTOR inhibition (two-sided 

log-rank test). (e) Deletions in 10q23.31 are recurrent (GISTIC2 q < 0.1) and associated with 

improved progression-free and overall survival (p < 0.05, two-sided univariate cox 

regression with copy number deletion status as a categorical covariate) following anti-PD-1 

therapy but not mTOR inhibition (two-sided log-rank test, n = 249 patients with anti-PD-1 
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therapy). Deletions in 10q23.31 are associated with (f) response (p = 0.066, two-sided 

Fisher’s exact test for clinical benefit vs. no clinical benefit tumors. Error bars are SEM and 

measure of center is mean), (g) PFS, and (h) OS with PD-1 blockade but not with mTOR 

inhibition (two-sided log-rank test).
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Figure 5. 
Baseline CD8+ infiltration of RCC tumors is not associated with response to anti-PD-1 

therapy. (a) The majority of ccRCC samples (73%) are infiltrated with CD8+ T cells (n = 

160 for infiltrated, n = 48 for desert, n = 11 for excluded groups). Thresholds of tumor center 

density (horizontal dotted line; 25th percentile or 50 CD8+ T cells/mm2) and ratio of tumor 

margin to tumor center densities (vertical dotted line; CD8 tumor margin:tumor center ratio 

>=5) were used for immune phenotyping, and classifications were confirmed by manual 

review by pathologists (see Methods). Right panels, CD8 and DAPI staining of 

representative samples (from n = 219 stained samples) classified as immune infiltrated (top), 

desert (middle) and excluded (bottom). (b) Immune compartments with a higher relative 

proportion in immune infiltrated and non-infiltrated samples, by CIBERSORTx 

deconvolution of RNA-seq data. Dotted lines indicate FDR threshold of q = 0.25 (dark) and 

q = 0.05 (light) respectively (two-sided Wilcoxon rank-sum test and Benjamini-Hochberg 

method for FDR correction, n = 79 infiltrated and n = 24 non-infiltrated). (c-d). No 

association was observed between immune infiltration phenotype and (c) clinical benefit 

(two-sided chi-squared test, n = 153 patients with anti-PD-1 treatment and n = 66 patients 

with mTOR inhibition. Error bars are SEM and measure of center is mean.) or (d) survival 

(two-sided log-rank test) with PD-1 blockade.
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Figure 6. 
Potential interplay of immune infiltration and genomic features modulate response to PD-1 

blockade. (a) Truncating mutations in PBRM1 are preferentially enriched in non-infiltrated 

(desert or excluded) samples as compared to infiltrated samples (two-sided Fisher’s exact 

test for infiltrated vs. non-infiltrated tumors, p = 0.0126, n = 105 infiltrated and n = 39 non-

infiltrated). (b) Numerous copy number aberrations are significantly enriched in infiltrated 

samples (two-sided Fisher’s exact test for infiltrated vs. non-infiltrated tumors, n = 91 

infiltrated and n = 38 non-infiltrated). Dotted lines indicate a q-value of 0.25 (dark) and 0.05 
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(light). (c) 9p21.3 loss is enriched in immune infiltrated samples (two-sided Fisher’s exact 

test, q < 0.05) and associated with altered PFS and OS (two-sided log-rank test, p < 0.05) 

following anti-PD-1 therapy (n = 57 infiltrated patients with anti-PD-1 therapy). (d) 
del(9p21.3) is associated with worse OS following PD-1 blockade but not mTOR inhibition 

(two-sided log-rank test). (e) Schematic representation of potential interplay of immune 

infiltration and tumor genomics. CD8+ T cell infiltrated tumors are poised to respond to 

PD-1 blockade, but are also enriched for unfavorable 9p21.3 deletions, which decreases 

survival in this context. By contrast, non-infiltrated tumors may be less likely to respond, but 

are enriched for favorable PBRM1 mutations, which are associated with improved clinical 

outcome with anti-PD-1 therapy.
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