TABLE 3.
Performance of ResNet50, InceptionV3 and InceptionResNetV2 models with or without fine grained methods on images with different magnification factors.
Accuracy (%) |
||||||
Magnification factor |
||||||
Backbone network | Fine-grained method | 40× | 100× | 200× | 400× | Mixed |
Inceptionv3 | Not used | 91.72 ± 0.16 | 91.84 ± 0.22 | 89.83 ± 0.17 | 87.64 ± 0.22 | 92.24 ± 0.13 |
SE Block | 94.99 ± 0.31 | 94.48 ± 0.24 | 94.79 ± 0.26 | 94.23 ± 0.39 | 94.90 ± 0.23 | |
BCNNs | 95.74 ± 0.21 | 94.72 ± 0.18 | 94.78 ± 0.26 | 94.51 ± 0.23 | 96.14 ± 0.16 | |
ResNet50 | Not used | 90.23 ± 0.15 | 90.17 ± 0.32 | 89.83 ± 0.54 | 89.01 ± 0.48 | 92.48 ± 0.29 |
SE Block | 92.98 ± 0.32 | 90.93 ± 0.26 | 88.09 ± 0.38 | 92.31 ± 0.28 | 92.79 ± 0.22 | |
BCNNs | 95.74 ± 0.24 | 95.44 ± 0.32 | 94.53 ± 0.25 | 94.88 ± 0.34 | 95.27 ± 0.26 | |
InceptionResNetV2 | Not used | 91.48 ± 0.12 | 91.52 ± 0.19 | 92.30 ± 0.26 | 90.65 ± 0.26 | 92.62 ± 0.17 |
SE Block | 94.99 ± 0.28 | 93.93 ± 0.34 | 92.31 ± 0.29 | 91.97 ± 0.36 | 94.02 ± 0.30 | |
BCNNs | 95.24 ± 0.13 | 94.16 ± 0.22 | 94.03 ± 0.29 | 93.70 ± 0.23 | 95.08 ± 0.14 |
Average accuracies ± standard deviations were calculated from 5-fold cross validation of the BreaKHis dataset.