Skip to main content
. 2020 Sep 4;11:547327. doi: 10.3389/fgene.2020.547327

TABLE 3.

Performance of ResNet50, InceptionV3 and InceptionResNetV2 models with or without fine grained methods on images with different magnification factors.

Accuracy (%)
Magnification factor
Backbone network Fine-grained method 40× 100× 200× 400× Mixed
Inceptionv3 Not used 91.72 ± 0.16 91.84 ± 0.22 89.83 ± 0.17 87.64 ± 0.22 92.24 ± 0.13
SE Block 94.99 ± 0.31 94.48 ± 0.24 94.79 ± 0.26 94.23 ± 0.39 94.90 ± 0.23
BCNNs 95.74 ± 0.21 94.72 ± 0.18 94.78 ± 0.26 94.51 ± 0.23 96.14 ± 0.16
ResNet50 Not used 90.23 ± 0.15 90.17 ± 0.32 89.83 ± 0.54 89.01 ± 0.48 92.48 ± 0.29
SE Block 92.98 ± 0.32 90.93 ± 0.26 88.09 ± 0.38 92.31 ± 0.28 92.79 ± 0.22
BCNNs 95.74 ± 0.24 95.44 ± 0.32 94.53 ± 0.25 94.88 ± 0.34 95.27 ± 0.26
InceptionResNetV2 Not used 91.48 ± 0.12 91.52 ± 0.19 92.30 ± 0.26 90.65 ± 0.26 92.62 ± 0.17
SE Block 94.99 ± 0.28 93.93 ± 0.34 92.31 ± 0.29 91.97 ± 0.36 94.02 ± 0.30
BCNNs 95.24 ± 0.13 94.16 ± 0.22 94.03 ± 0.29 93.70 ± 0.23 95.08 ± 0.14

Average accuracies ± standard deviations were calculated from 5-fold cross validation of the BreaKHis dataset.