TABLE 4.
Accuracy (%) |
||||||||
Magnification Factor |
||||||||
Backbone network | Type of BCNNs | 40× | 100× | 200× | 400× | Mixed | FPS | NOP (million) |
Inceptionv3 | BCNNs | 95.74 ± 0.21 | 94.72 ± 0.18 | 94.78 ± 0.26 | 94.51 ± 0.23 | 96.14 ± 0.16 | 45.5 | 81.4 |
Fast BCNNs | 95.99 ± 0.17 | 95.84 ± 0.16 | 94.70 ± 0.28 | 94.51 ± 0.15 | 95.95 ± 0.19 | 62.5 | 59.6 | |
ResNet50 | BCNNs | 95.74 ± 0.24 | 95.44 ± 0.32 | 94.53 ± 0.25 | 94.88 ± 0.34 | 95.27 ± 0.26 | 38.5 | 84.9 |
Fast BCNNs | 95.49 ± 0.27 | 95.78 ± 0.29 | 94.29 ± 0.26 | 94.43 ± 0.19 | 94.96 ± 0.23 | 58.8 | 61.3 | |
InceptionResNetV2 | BCNNs | 95.24 ± 0.13 | 94.16 ± 0.22 | 94.03 ± 0.29 | 93.70 ± 0.23 | 95.08 ± 0.14 | 27.8 | 130.0 |
Fast BCNNs | 95.99 ± 0.21 | 93.53 ± 0.18 | 94.79 ± 0.24 | 93.78 ± 0.15 | 95.20 ± 0.17 | 45.5 | 75.6 |
Frames per second (FPS) and Number of Parameters (NOP) were calculated to evaluate the speed. Average accuracies ± standard deviations were calculated from 5-fold cross validation of the BreaKHis dataset.