Skip to main content
. 2020 Sep 4;11:547327. doi: 10.3389/fgene.2020.547327

TABLE 4.

Comparison of BCNNs and Fast BCNNs.

Accuracy (%)
Magnification Factor
Backbone network Type of BCNNs 40× 100× 200× 400× Mixed FPS NOP (million)
Inceptionv3 BCNNs 95.74 ± 0.21 94.72 ± 0.18 94.78 ± 0.26 94.51 ± 0.23 96.14 ± 0.16 45.5 81.4
Fast BCNNs 95.99 ± 0.17 95.84 ± 0.16 94.70 ± 0.28 94.51 ± 0.15 95.95 ± 0.19 62.5 59.6
ResNet50 BCNNs 95.74 ± 0.24 95.44 ± 0.32 94.53 ± 0.25 94.88 ± 0.34 95.27 ± 0.26 38.5 84.9
Fast BCNNs 95.49 ± 0.27 95.78 ± 0.29 94.29 ± 0.26 94.43 ± 0.19 94.96 ± 0.23 58.8 61.3
InceptionResNetV2 BCNNs 95.24 ± 0.13 94.16 ± 0.22 94.03 ± 0.29 93.70 ± 0.23 95.08 ± 0.14 27.8 130.0
Fast BCNNs 95.99 ± 0.21 93.53 ± 0.18 94.79 ± 0.24 93.78 ± 0.15 95.20 ± 0.17 45.5 75.6

Frames per second (FPS) and Number of Parameters (NOP) were calculated to evaluate the speed. Average accuracies ± standard deviations were calculated from 5-fold cross validation of the BreaKHis dataset.