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ABSTRACT
Background: As governments across Europe have issued non-pharmaceutical
interventions (NPIs) such as social distancing and school closing, the mobility
patterns in these countries have changed. Most states have implemented similar NPIs
at similar time points. However, it is likely different countries and populations
respond differently to the NPIs and that these differences cause mobility patterns and
thereby the epidemic development to change.
Methods:We build a Bayesian model that estimates the number of deaths on a given
day dependent on changes in the basic reproductive number, R0, due to differences
in mobility patterns. We utilise mobility data from Google mobility reports using
five different categories: retail and recreation, grocery and pharmacy, transit stations,
workplace and residential. The importance of each mobility category for predicting
changes in R0 is estimated through the model.
Findings: The changes in mobility have a considerable overlap with the introduction
of governmental NPIs, highlighting the importance of government action for
population behavioural change. The shift in mobility in all categories shows high
correlations with the death rates 1 month later. Reduction of movement within the
grocery and pharmacy sector is estimated to account for most of the decrease in R0.
Interpretation: Our model predicts 3-week epidemic forecasts, using real-time
observations of changes in mobility patterns, which can provide governments with
direct feedback on the effects of their NPIs. The model predicts the changes in a
majority of the countries accurately but overestimates the impact of NPIs in Sweden
and Denmark and underestimates them in France and Belgium.We also note that the
exponential nature of all epidemiological models based on the basic reproductive
number, R0 cause small errors to have extensive effects on the predicted outcome.

Subjects Bioinformatics, Epidemiology
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INTRODUCTION
In December 2019 a new coronavirus (COVID-19) emerged in Wuhan, China. China
implemented a quick strategy of suppression by imposing a lockdown in the city of Wuhan
on January 23 (https://www.reuters.com/article/us-china-health-who-idUSKBN1ZM1G9,
last accessed 1 May 2020), and implementing social distancing procedures nationwide,
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with a successful outcome (Li et al., 2020). Still, the virus rapidly spread across the world
through our increasingly interconnected flight network, and shortly arrived in Europe.
In February 2020 the number of cases started to increase quickly in some European
countries. European countries introduced non-pharmaceutical interventions (NPIs)
similar to those used in China to limit the spread of the virus. These NPIs include social
distancing, school closures, restrict international travel and lockdown (European Centre
of Disease Control, 2020). The NPIs results in behavioural changes, and these can be traced
by tracking the location of mobile phones.

After an initial rapid spread in China, control measures proved very successful to stop
the spread both in China (Lai et al., 2020) and in other parts of the world (Milne &
Xie, 2020; Flaxman et al., 2020a). However, there is still a risk for subsequent infections
upon lifting of these restrictions (Flaxman et al., 2020a; Ferguson et al., 2020). There is,
therefore, an urgent need both for understanding and tracking the effects of governmental
interventions and their removals. Largescale testing could provide valuable information
about the impact of interventions. However, these are expensive, sometimes inaccurate
and might violate privacy rights. In contrast, the use of largescale data from anonymous
tracking of mobile phones is inexpensive and readily available.

Google recently released a time-limited sharing of mobility data (https://www.google.
com/covid19/mobility, last accessed 29 March 2020) from across the world as represented
by summary statistics to combat COVID-19. The mobility data is measured in six
different sectors: retail and recreation, grocery and pharmacy, parks, transit stations,
workplace and residential. The effects of the government-issued NPIs can be seen through
changes in these patterns.

It is likely that different countries respond in different manners to the same NPIs,
why it is vital to consider the effect of NPIs country wise. Here, we show that by using
real-life mobility data to model changes in the basic reproductive number, R0, the impact
of NPIs across different countries can be modelled more accurately. The mobility
data utilised here have some uncertainties and lack resolution. Still, to the best of our
knowledge, this data is the best openly available data source for tracking a population’s
movement in the 11 studied countries. Governments can, in collaboration with telephone
companies, obtain much more fine-grained data, enabling them to evaluate the effect of the
NPIs in more detail.

Recently, a group from Imperial College released a report (Flaxman et al., 2020a) that
estimates the effects of NPIs on R0. Subsequently, a modified version of this report was
published (Flaxman et al., 2020b). The report had a massive impact on how the UK
government changed its intervention strategy (https://www.imperial.ac.uk/news/196477/j-
ideas-neil-ferguson-tells-mps-lockdown/, last accessed 1 May 2020). A limitation of the
Imperial College London (ICL) model is the assumption that each intervention has the
same impact in all countries, ignoring cultural and sociological differences as well as
differences in the details of the NPIs. Here, we try to overcome this by developing an
extension to their model utilising country-specific mobility data in a Bayesian framework
(Banerjee, Carlin & Gelfand, 2015), we estimate the impact of each change in mobility
pattern on R0. The resulting information provides a smooth, straightforward way for

Bryant and Elofsson (2020), PeerJ, DOI 10.7717/peerj.9879 2/17

https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
https://www.imperial.ac.uk/news/196477/j-ideas-neil-ferguson-tells-mps-lockdown/
https://www.imperial.ac.uk/news/196477/j-ideas-neil-ferguson-tells-mps-lockdown/
http://dx.doi.org/10.7717/peerj.9879
https://peerj.com/


governments to analyse if NPIs are working and to what extent. We show that in a 3-week
forecast, our method makes a better prediction than the model from Imperial College.

METHODS
Here, we introduce an Markov-Chain Monte-Carlo (MCMC) model to estimate the spread
of the COVID-19 infection in various countries. The ICL model strongly inspires the
model, and all parameters are taken from earlier studies. For each country, we define a
starting point when the total number of observed deaths has reached 10. The model is
trained using data starting 30 days before this day and until 29 of March 2020. Finally, the
model is used to simulate a 3-week forecast from 30 March to 19 April.

Infection model
The number of cases acquired at day τ in country m, ct;m is modelled with a discrete
renewal process (Fraser, 2007; Cauchemez et al., 2008):

ct;m ¼ Rt;m

Xt�1

t¼0

ct;mgt�t (1)

where

gt�t � Gamma 6:5; 0:62ð Þ (2)

(Gamma distribution with a mean of 6.5 days and a standard deviation of 0.62 days) is
the serial interval distribution used to model the number of cases (Flaxman et al., 2020a;
Backer, Klinkenberg & Wallinga, 2020).

gs is discretized in steps of 1 day accordingly:

gs ¼
Z sþ0:5

t¼s�0:5
g tð Þdt for s ¼ 2; 3;… and g1 ¼

Z 1:5

t¼0
g tð Þdt (3)

The number of cases today is thus dependent on the cumulative number of cases from
the previous days, weighted by the serial interval distribution, multiplied with the basic
reproductive number (R0) at day t. The discretizations, here and elsewhere, of 1 day
are motivated by the intervals in reporting. Just as in the ICL model (Flaxman et al.,
2020a), we assume the starting point for the infection was 30 days before the day after each
country has observed 10 deaths in total. The time delay of 30 days is necessary due to
the relationship between infection and death (see Death model described below). From this
assumed starting point, we initialise our model with 6 days (Li et al., 2020) of cases drawn
from an Exponential (0.03) distribution, which are inferred in the Bayesian posterior
distribution (Dt,m).

Impact on the basic reproductive number
Our model is based on the model used in the recent report (Flaxman et al., 2020a) from
ICL. The ICL report tries to estimate the impact of NPIs on R0 in the same 11 countries
modelled here. The main difference between the ICL model and the current one is the
modelling of the change of R0. In the ICL model, the basic reproductive number at day t in

Bryant and Elofsson (2020), PeerJ, DOI 10.7717/peerj.9879 3/17

http://dx.doi.org/10.7717/peerj.9879
https://peerj.com/


country m (Rt,m) is estimated as a function of the NPI indicators Ik,t,m in place at day t in
country m as:

Rt;m ¼ R0;me
�
P6

I¼1
akIk;t;m (4)

where I = 1 when intervention k is implemented at day t in country m and a the impact of
each intervention.

Here, we instead estimate Rt,m to be a function of the relative change in mobility pattern
for each country:

Rt;m ¼ R0;me
a1I1;t;mþa2I2;t;mþa3I3;t;mþa4I4;t;m�a5I5;t;m (5)

where I1–5,t,m is the relative mobility in retail and recreation, grocery and pharmacy,
transit stations, workplace and residential sectors respectively at day t in country m.
The residential mobility parameter has a negative sign as it is assumed that when
people stay at home it lowers R0. In our model, we assume that the impact of each relative
mobility change has the same relative impact across all countries and across time.
This assumption is a requirement to enable the estimation of the impact of mobility on R0.
If the mobility impacts were allowed to differ between countries, it would not be possible to
discern between other country-specific factors and the effect of changes in mobility.

The parameter alpha is set to be gamma distributed with mean 0.5 and a standard
deviation of one. A narrow gamma distribution was chosen due to the assumption that the
impact on R0 is almost instantaneous, with an effect that decreases quickly with time.
We did not include the data for the mobility category ‘Parks’ as this data displayed much
noise and cyclic peaks, possibly caused by varying weather (https://www.google.com/
covid19/mobility, last accessed 29 March). The prior for R0 is set to:

R0;m � Normalð2:79jjÞ; with j � Normal 0; 0:5ð Þ (6)

The value of 2.79 is chosen from the median value of a recent analysis of 12 modelling
studies (Liu et al., 2020), and the normal distribution from (Li et al., 2020).

The relative mobility is modelled as the relative value change compared to a mobility
baseline estimated by Google (https://www.google.com/covid19/mobility, last accessed
29 March). The baseline is the median value, for the corresponding day of the week, during
the 5-week period of 2020-01-03 to 2020-02-06. For the days for which no mobility
data is available, the values were set to zero. The mobility data for the forecast (and days
beyond the date for the last available mobility data) was set to the same values as the last
observed days. The time points for the interventions were taken from the ICL report
(Flaxman et al., 2020a), whose initial efforts were crowdsourced.

Death model
As the number of deaths in each country is likely to be the most accurate COVID-19
related data, we use this as the core of the model, being the posterior in the Bayesian
simulations. The number of deaths in countrym at day t is modelled as a negative binomial
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distribution as used in earlier models (Fraser, 2007; Lloyd-Smith et al., 2005) with mean
and variance accordingly:

Dt;m � Negative Binomial dt;m;
d2t;m
c

� �
; c � Normalþ 0; 5ð Þ (7)

The expected number of deaths, dt,m, at day t in country m is given by:

dt;m ¼
Xt�1

t¼0

ct;mpt�t;m (8)

where pm is the infection to death distribution in the countrym given by a combination of
the infection to onset distribution (Gamma(5.1, 0.86)) and onset to death distribution
(Gamma(17.8, 0.45)) (combined with mean 22.9 days and standard deviation 0.45 days)
times the infection fatality rate (ifr) (Flaxman et al., 2020a; Verity et al., 2020; Lauer et al.,
2020):

pt;m � ifrm � Gamma 5:1þ 17:8; 0:45ð Þ (9)

πt,m is discretized in steps of 1 day accordingly:

ps;m ¼
Z sþ0:5

t¼s�0:5
pm tð Þdt for s ¼ 2; 3;… and p1;m ¼

Z 1:5

t¼0
pm tð Þdt (10)

The ifrs are taken from previous estimates of the population at risk is about 1%
(Lourenco et al., 2020) and adjusted for the predicted attack rate in the age group 50–59
years of age, assuming a uniform attack rate (Flaxman et al., 2020a; Ferguson et al.,
2020; Verity et al., 2020), chosen due to having the least predicted underreporting in
analyses of data from the Chinese epidemic (Verity et al., 2020). The uniform attack
rate is required due to a lack of age-specific data. The number of deaths today is thus
dependent on the cumulative number of cases from the previous days, weighted by the
country-specific infection to death distribution.

The implications on R0 due to relative mobility variations were estimated
simultaneously for all countries in a hierarchical Bayesian framework using MCMC
(Banerjee, Carlin & Gelfand, 2015) simulations in Stan (Stan, 2020). The death data
(https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-
distribution-covid-19-cases-worldwide, last accessed 19 April 2020) used in the form of the
number of deaths per day is from European Centre of Disease Control (ECDC), available
and updated daily. We ran the model with eight chains, using 4,000 iterations (2,000
warm-up), as in the earlier work (Flaxman et al., 2020a; Stan, 2020). The parameter
specifics of the simulation are available in the code (see below).

MCMC convergence
Markov-Chain Monte-Carlo (MCMC) simulations are considered to converge when the
Rhat statistics (a metric for comparing the variance between pooled and within-chain
inferences) reach one (Brooks & Gelman, 1998). A histogram of Rhat statistics for the
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modelled parameters in all simulation runs were constructed and analysed. We also ensure
that no divergent transitions were observed by setting the adapt delta in the sampler
(see code).

Leave one country out analysis
Since all countries are in different stages of their epidemics, different amounts of data
are available for each country. To analyse how the model is influenced by different
countries, we fit models using data from all countries except one using all 11 combinations
(Hastie, Tibshirani & Friedman, 2013). We then estimate the importance of each mobility
parameter in the leave-one-country-out (LOO) analysis. The relative difference in each
mobility parameter provides an estimate of how each country affects R0 and thus the
number of cases and deaths as well. Furthermore, the Pearson correlation coefficients for
the mean R0 across all time points are calculated for each country in the different runs
when the other 10 were left out (see Fig. S1).

Forecast validation
To ensure the forecasts are reliable, we leave out 3 weeks of data (30 March–19 April)
and fit a model using data from the beginning of the epidemic up to the date for the
beginning of the left-out data. We then evaluate the model with 1-week intervals from
the 30th of March to the 19th of April. We evaluate by the average error and the
average fractional error (average error ÷ Σobserved deaths) during each of the 3 weeks.
We compare our results with simulations obtained from the ICL model (Flaxman et al.,
2020a). We should note here that the ICL model does not converge for 3-week predictions
using 4,000 iterations (see Fig. S2).

EpiEstim estimates of the basic reproductive number (R0)
To validate our estimates of R0, we estimate R0 independently using case data from ECDC
and the R package EpiEstim (Thompson et al., 2019), based on the SIR model (McKendrick,
1925). The serial interval used for the estimations is variable accordingly: estimate_R
(country_cases, method=“uncertain_si”, config = make_config(list(mean_si = 7.5,
std_mean_si = 2, min_mean_si = 1, max_mean_si = 8.4, std_si = 3.4, std_std_si = 1,
min_std_si = 0.5, max_std_si = 4, n1 = 1,000, n2 = 1,000))), allowing more possible
scenarios to be explored (see code, “Methods” section). The R0 estimates are smoothed
using 1-week averages, since they are uncertain in the beginning of the epidemic when
cases are few. These values are compared with those of the mobility model, only including
values under five due to the high uncertainty of the larger values in the beginning of
the epidemic. The correlations are high and the average errors are low, mainly arising in
areas of large uncertainties (see Fig. S8).

Correlation analysis
To ensure that there is a true relationship between the daily deaths and the mobility
changes, correlations between the deaths per day and the different mobility parameters
were analysed. Both the death data and the mobility data were first smoothed using 1-week
averages. The correlations were made by shifting the daily deaths to infer the time delay of
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which type of mobility affects the daily deaths. The shifts are from 0 to 48 days, ensuring
all countries have at least 10 days of data for the correlation analysis. The correlations,
without shifts, between the different mobility parameters, were also analysed (see Fig. S3).

Code
The code is written in Python using the Stan package pystan (v. 2.19.1.1) for MCMC
simulations. The code is freely available under the GPLv3 licence. https://github.com/
patrickbryant1/COVID19.github.io/tree/master/simulations/mobility.

RESULTS
Estimating the cumulative number of cases, the number of deaths per
day and changes in the basic reproductive number, R0

In Fig. 1, for Italy and Sweden, and Fig. S4, for all 11 modelled countries, estimates of
cumulative cases, daily deaths and the basic reproductive number R0 are shown.
We simulate a 3-week forecast from 30 March to 19 April using data up to 29 March from
the ECDC in the form of the number of deaths per day, and relative mobility data
estimated by Google (https://www.google.com/covid19/mobility, last accessed 29 March).
According to the model, most countries appear to have their epidemic under control
(April 19) (Table 1). The most successful nation in terms of reducing R0 is Italy (R0 ≈ 0.22),
and the least is Sweden (R0 ≈ 2.01).

From Fig. S4, it can be seen that in all countries, the interventions have some positive
effect, decreasing the estimated R0 between the epidemic start and March 29. It can be
noted that during the development of the epidemic, R0 displays a wide range of values.
In some countries, the mean of the estimated R0 shows a rapid increase to values as high as
10, coupled with an increase in mobility (primarily) to grocery and pharmacies exactly
when the interventions were introduced. Most posterior distributions for the mean R0

values are centred around the prior of 2.79 (Fig. 2). Notable is that Italy and Spain, which
both had very rapid spread have distributions centred higher than the prior.

The estimated number of deaths for up to 3 weeks after the model is trained, have a
good correspondence with the observed number (Fig. 1; Fig. S4; Table 2). Compared with
the ICL model (Flaxman et al., 2020a), our model displays both lower errors and less
uncertainty (see Fig. 3; Fig. S5; Table S1). The average absolute errors over the 11 countries
in the number of deaths are lower across all 3 weeks (week 1: 60 vs 159, week 2: 95 vs 472,
and week 3: 88 vs 1,429 for our model and the ICL model respectively).

Comparing mobility data across countries
When overlaying the implementation dates of the NPIs with the mobility data, it is clear
that governmental decisions have a significant impact on the populations in the 11
modelled countries (see Fig. S4). Most countries display very similar relative changes in
their mobility patterns, with mobility in retail and recreation, grocery and pharmacy,
transit stations and workplace decreasing, while mobility in the residential category is
increasing.
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Most countries have similar relative changes across the sectors (Fig. S4). The ones
that display smaller relative changes (Denmark, Norway and Sweden) also demonstrate
more modest reductions in R0, which is a natural consequence of our model, as it assumes
that changes in R0 are directly related to changes in mobility. The mobility patterns in
Sweden display barely half of the relative changes compared with France, Spain, and Italy,
and the reduction in R0 is, therefore, smaller in Sweden.

The importance of mobility sectors for modelling changes in R0

Analyzing the importance of each mobility parameter for predicting the reduction in
R0 (1 − e−alpha) shows that the grocery and pharmacy sector appears to be the clearest
indicator for R0 change (see Fig. 4). The grocery and pharmacy sector is estimated to
account for most of the reduc revision2_trackedtion of R0, with a median reduction of

Figure 1 Model results for Italy and Sweden. Model results in the form of the cumulative number of cases, deaths per day and R0 for Italy (A–C)
and Sweden (D–F), are displayed on the left axes. The model results start from 30 days before 10 accumulated deaths had been observed. The blue
curves represent the estimations so far, while the green represents a 3-week forecast (30 March–19 April). The 50% and 95% confidence intervals are
displayed in darker and lighter shades respectively, with the mean as a solid line. The histograms represent the number of cases and deaths reported
by the European Center for Disease Control (ECDC). Mobility data for the five modelled sectors represented in terms of relative change compared to
baseline (observed in a 5-week period of 2020-01-03 to 2020-02-06) is displayed on the right axes. The dates for the introduction of different NPIs
are marked with vertical lines. As can be seen, the NPIs have very strong implications for the mobility patterns. The mobility data ranges from
2020-02-15 to 2020-03-29, after which the final levels are fixed. The graph for Rt includes a dashed horizontal line marking the value one of halted
epidemic growth. Full-size DOI: 10.7717/peerj.9879/fig-1
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95.6% compared to less than 10% for the other sectors (retail and recreation 3.8%, transit
stations 3.0%, workplace 4.0%, residential 7.9%).

Investigating the correlation between the deaths per day and the different mobility
parameters (Fig. 5), one can see that all sectors display high opposite correlations with
a shift of about 20 days. These correlations are due to the time-delayed relationship
between the initial spread of the disease, causing deaths occurring after the reduction in
mobility, see Fig. S4. The mobility changes have the highest correlations with the number
of deaths 30–40 days after they occur, suggesting that the mobility affects the death
rate with a time delay of 30–40 days. Roughly in agreement with the 22.9 days in our
model. Since the grocery and pharmacy sector displays the most significant correlations,

Table 1 Changes in R0 and mobility in the grocery and pharmacy sector during the epidemic.

Country Modelled start
of the epidemic

Estimated mean R0

at epidemic start
Estimated mean
R0 at 29 March

Relative change in
groceries and pharmacies
on 29 March (%)

Austria 2020-02-22 3.11 0.36 −64

Belgium 2020-02-18 3.24 0.51 −53

Denmark 2020-02-21 3.02 1.36 −22

France 2020-02-07 2.91 0.30 −72

Germany 2020-02-15 3.08 0.56 −51

Italy 2020-01-27 3.17 0.22 −85

Norway 2020-02-24 2.82 0.92 −32

Spain 2020-02-09 3.19 0.29 −76

Sweden 2020-02-18 2.89 2.01 −10

Switzerland 2020-02-14 2.81 0.53 −51

United Kingdom 2020-02-12 2.82 0.61 −46

Figure 2 Posterior distributions for the mean initial R0 sampled per country (A) Austria, (B) Belgium, (C) Denmark, (D) France,
(E) Germany, (F) Italy, (G) Norway, (H) Spain, (I) Sweden, (J) Switzerland, and (K) United Kingdom. The dashed line corresponds to the
prior mean, set to 2.79. Full-size DOI: 10.7717/peerj.9879/fig-2
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the model assigns most weight to that sector, although the mobility in all sectors is highly
correlated with each other (Fig. S3).

Model validation
The posterior distributions for the mobility parameters (see Fig. S6) are almost identical
in the LOO analysis. A bimodal distribution is observed when leaving Italy out in the
grocery and pharmacy sector though, emphasising the importance of the Italian data.
The variable R0 values in the LOO analysis show Pearson correlations close to one,
with Italy and especially the United Kingdom displaying lower correlations of around
0.8 and consistently below 0.8 respectively (see Fig. S1). Italy and the United Kingdom
correlate badly with each other, with Pearson correlations of close to 0. 11 of 4,000
iterations ended with a divergence (0.275%) Spain was excluded. A histogram of Rhat
statistics for the modelled parameters in all simulations for the main analysis is displayed
in Fig. S7.

To validate the R0 estimates, we used a SIR model using EpiEstim (Thompson et al.,
2019) to estimate R0 independently from case data (and not death data as in our and the
ICL models). This model does not try to determine the cause of changes in R0, but just
estimates the changes from the number of reported cases. In general, the overlap of
the two estimates of R0 estimates is high, in particular at the crucial time points before and
after the effects of NPI implementation (see Table S2; Fig. S8). Denmark, Norway and
Spain display the most substantial differences between the estimates, differing 2.98,
1.94 and 3.48 respectively at the point before NPI implementation. The differences that do

Table 2 Average error and average fractional error in the number of deaths for the mobility model.
Average error and average fractional error in the number of deaths for each country between the mean
predicted number of deaths per day and the observed number in 1, 2 and 3 week forecasts, respectively.
A corresponding table for the ICL model can be found in Table S2.

Three-week predictions for the number of deaths per day

Country Average error Average fractional error

Week 1 Week 2 Week 3 Week 1 (%) Week 2 (%) Week 3 (%)

Austria −3 −6 −2 −2.3 −4.0 −1.7

Belgium −46 −179 −186 −5.0 −8.7 −8.8

Denmark 0 10 28 0.4 10.2 32.2

France −318 −445 −427 −6.1 −7.1 −7.8

Germany −21 −7 −26 −2.2 −0.5 −1.6

Italy 144 201 29 2.7 4.9 0.8

Norway 1 1 3 1.7 2.2 6.9

Spain −98 84 −8 −1.6 1.8 −0.2

Sweden −3 28 180 −1.2 5.4 28.9

Switzerland 13 41 48 4.3 14.1 17.1

United Kingdom 17 −42 32 0.4 −0.7 0.5

Average absolute error 60 95 88 2.5 5.4 9.7
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arise are mainly during the periods with considerable uncertainty in the R0 estimates, that
is when the number of reported cases is low. Sweden shows the most substantial error
between the estimates after NPI implementation (0.98). Further, the models show very
different speeds of the changes in R0 values, EpiEstim having a much slower response than
the mobility model.

Figure 3 Three-week predictions for all countries. Three-week predictions for all countries, (A) Austria, (B) Germany, (C) Sweden, (D) Belgium,
(E) Italy, (F), Switzerland, (G) Denmark, (H) Norway, (I) United Kingdom, (J) France, and (K) Spain, in the form of deaths per day for the weeks 1:
(Mar 30–April 5), week 2 (April 6–April 12) and week 3 (April 13–April 19)/. The 50% and 95% confidence intervals are displayed in darker and
lighter shades respectively, with the mean as a solid line. The blue histogram represents the observed deaths.

Full-size DOI: 10.7717/peerj.9879/fig-3
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Figure 4 Posterior distributions of the impact of each mobility parameter. Posterior distributions of the impact of each mobility parameter for
predicting the reduction in R0. The grocery and pharmacy sector appears to be the clearest indicator for R0 change. The median impacts are 3.8%,
95.6%, 3.0%, 4.0% and 7.9% for the (A) retail and recreation, (B) grocery and pharmacy, (C) transit, (D) workplace and (E) residential sectors
respectively. Full-size DOI: 10.7717/peerj.9879/fig-4

Figure 5 Correlation between daily deaths and mobility changes in different sectors (A–E). Correlation between deaths per day and mobility
changes for different time delays. Each country is represented by one line. The mobility changes have the highest correlations with the deaths about
30–40 days after they occur, suggesting that mobility affects the death rate with a time delay of 30–40 days.

Full-size DOI: 10.7717/peerj.9879/fig-5

Bryant and Elofsson (2020), PeerJ, DOI 10.7717/peerj.9879 12/17

http://dx.doi.org/10.7717/peerj.9879/fig-4
http://dx.doi.org/10.7717/peerj.9879/fig-5
http://dx.doi.org/10.7717/peerj.9879
https://peerj.com/


DISCUSSION
The model makes it clear that the NPIs introduced by governments across Europe
have had substantial effects on both mobility patterns and in preventing the spread of
COVID-19. By tracking the relative change in mobility in the grocery and pharmacy
sector, it is possible to account for most of the reduction in the basic reproductive number,
R0, in our model. This information can, therefore, provide a useful, straightforward way for
governments to analyse the effect of their NPIs.

Why the grocery and pharmacy sector has been assigned the highest importance is likely
because this sector displays the strongest correlation with the daily deaths. The correlations
are highest assuming a 30–40 day shift, suggesting that mobility affects the death rate
with a time delay of 30–40 days, in rough agreement with our model. Since R0 is strongly
dependent on the changes in mobility, rapid changes in mobility lead to rapid changes
in R0, with drastic consequences to the estimated development of the epidemic in a
country. However, changes in R0 will not manifest in the number of deaths per day until
about 3 weeks later (the mean value in the gamma distribution for infection to death is
22.9 days, see “Methods” section). Therefore, a 3-week forecast is provided.

The estimates have an acceptable correspondence with the observed numbers in
most countries (see Fig. 3; Table 2), and compared with the ICL-model, our model displays
both lower errors and less uncertainty (Fig. 3; Fig. S5; Tables 2; Table S1). It can also
be noted that the ICL model overpredicts the number of deaths in all countries. The higher
accuracy when including mobility data, further suggests the usefulness of our model.

The estimated number of cases has considerable uncertainty across all countries.
One limitation of our model is that it does not take herd-immunity effects into account,
which should be reached when around 60–80% of the population is infected (Kwok et al.,
2020). Still, it is unlikely that sufficiently high infection has been reached yet for this to
have a significant effect. Another limitation of the model is the assumption that the impact
of each relative mobility change has the same relative impact across all countries and
across time. If the mobility impact were allowed to differ between countries and in time,
it would not be possible to discern between other country-specific and time factors and
the mobility impact. Likely both more detailed mobility data and intermixing patterns
need to be considered, metrics that are not available.

The number of cases is also highly dependent on having the correct ifr. This quantity
is only modelled for the age group 50–59 years and does thereby not consider the attack
rates for the whole of each country’s population (see “Methods” section). If a nation
managed to avoid the elderly being infected, that would lower the ifr (Ruan et al., 2020),
which could explain prediction differences to some extent.

The model validation, by a LOO analysis, comparing with independent R0 estimates
from EpiEstim (Thompson et al., 2019) and predicting a 3-week forecast ensures the
model’s robustness. The LOO analysis shows that the estimates are mostly affected by
the data from Italy and the UK, likely due to these countries having more available data
and higher death tolls early in the epidemic, making the model somewhat biased to these
data in the beginning of the estimates (Fig. S4). The comparison with the R0 estimates
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from EpiEstim show differences that arise mainly during the periods with considerable
uncertainty in the R0 estimates, that is when the number of reported cases are low.
The estimates also show very different speeds of the changes in R0 values, EpiEstim having
a much slower response than the mobility model (Fig. S8).

The countries in the 3-week forecast where the errors stand out are Denmark and
Sweden, with over-predictions, and Belgium and France, which are under-predicted.
We note that these two pairs of countries are close both geographically and culturally
(Warner-Søderholm, 2012; Hofstede & Hofstede, 2001), possibly explaining the systematic
differences. The differences may also be caused by differences in reporting between the
countries (https://www.bloomberg.com/news/articles/2020-04-09/french-virus-deaths-
jump-with-more-nursing-home-patients-counted, last accessed May 1; https://www.
politico.com/news/2020/04/19/why-is-belgiums-death-toll-so-high-195778, last accessed
May 1). For instance, on April 5 more than 2,000 deaths were reported in France, due
to sudden inclusion of potential COVID-19 attributed deaths in nursing homes occurring
at earlier dates (https://www.usnews.com/news/world/articles/2020-04-02/frances-
coronavirus-death-toll-jumps-to-nearly-5-400-as-nursing-homes-included, last accessed
May 1). We note the sensitivity to small errors of all epidemic models using exponential
measures, such as the basic reproductive number, and the significant effects these minor
errors have on the predicted outcome.

CONCLUSIONS
Here, we present a model to estimate the effects of public interventions on the spread
of COVID-19 that does not assume that interventions have identical results in different
geographical and cultural settings. In contrast, our model uses observational data of
mobility patterns in five environments to estimate changes in the transmission rate.
Our model creates the possibility to track rapid changes in the spread, instantaneously
and predict their consequences 3 weeks ahead in time. Therefore, our model enables
governments to use anonymous real-time data to adjust their policies. We do foresee that
such models will become incrementally more powerful as more detailed mobility data
becomes available in the future.
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