Table 6.
Variation | Supplemented Se level from Se yeast, mg/kg | Regression equationsa | Estimated days | Estimated Se content in eggs, mg/kg | P-values | R2 |
---|---|---|---|---|---|---|
Yolk Se content (mg/kg) | 0 | Y = 0.71 – 0.0095 × (36.0 – X) | 36 | 0.71 | <0.001 | 0.510 |
0.05 | Y = 0.68 – 0.0012 × (18.9 – X)2 | 19 | 0.68 | <0.001 | 0.622 | |
0.15 | Y = 0.75 – 0.0036 × (12.3 – X)2 | 13 | 0.75 | <0.001 | 0.650 | |
0.25 | Y = 0.87 – 0.0013 × (20.0 – X)2 | 20 | 0.87 | <0.001 | 0.647 | |
Albumen Se content (mg/kg) | 0.05 | Y = 0.28 – 0.00050 × (16.3 – X)2 | 17 | 0.28 | 0.018 | 0.492 |
0.15 | Y = 0.38 – 0.0012 × (14.4 – X)2 | 15 | 0.38 | <0.001 | 0.805 | |
0.25 | Y = 0.48 – 0.0043 × (9.7 – X)2 | 10 | 0.48 | <0.001 | 0.704 | |
Whole-egg Se contents (mg/kg) | 0 | Y = 0.33 – 0.0042 × (36.7 – X) | 37 | 0.33 | 0.001 | 0.567 |
0.05 | Y = 0.37 – 0.00068 × (17.7 – X)2 | 18 | 0.37 | 0.001 | 0.650 | |
0.15 | Y = 0.44 – 0.0018 × (12.9 – X)2 | 13 | 0.44 | <0.001 | 0.724 | |
0.25 | Y = 0.53 – 0.0029 × (11.8 – X)2 | 12 | 0.53 | <0.001 | 0.877 |
The regression equation for the non-Se-yeast-supplementation group was the linear broken-line model Y = L + U × (R – X), while for the Se-yeast-supplementation treatment groups, it was the quadratic broken-line model Y = L + U × (R – X)2, where L is the plateau at values of X > R, R is the abscissa of the breakpoint, and the value of (R – X) is zero at values of X > R. Y means the Se content in eggs, L means the Se content at the plateau, and R means the experimental day.