Skip to main content
. 2020 Sep 4;7:591. doi: 10.3389/fvets.2020.00591

Table 6.

Estimated change of Se content in eggs with the increase in experimental days.

Variation Supplemented Se level from Se yeast, mg/kg Regression equationsa Estimated days Estimated Se content in eggs, mg/kg P-values R2
Yolk Se content (mg/kg) 0 Y = 0.71 – 0.0095 × (36.0 – X) 36 0.71 <0.001 0.510
0.05 Y = 0.68 – 0.0012 × (18.9 – X)2 19 0.68 <0.001 0.622
0.15 Y = 0.75 – 0.0036 × (12.3 – X)2 13 0.75 <0.001 0.650
0.25 Y = 0.87 – 0.0013 × (20.0 – X)2 20 0.87 <0.001 0.647
Albumen Se content (mg/kg) 0.05 Y = 0.28 – 0.00050 × (16.3 – X)2 17 0.28 0.018 0.492
0.15 Y = 0.38 – 0.0012 × (14.4 – X)2 15 0.38 <0.001 0.805
0.25 Y = 0.48 – 0.0043 × (9.7 – X)2 10 0.48 <0.001 0.704
Whole-egg Se contents (mg/kg) 0 Y = 0.33 – 0.0042 × (36.7 – X) 37 0.33 0.001 0.567
0.05 Y = 0.37 – 0.00068 × (17.7 – X)2 18 0.37 0.001 0.650
0.15 Y = 0.44 – 0.0018 × (12.9 – X)2 13 0.44 <0.001 0.724
0.25 Y = 0.53 – 0.0029 × (11.8 – X)2 12 0.53 <0.001 0.877
a

The regression equation for the non-Se-yeast-supplementation group was the linear broken-line model Y = L + U × (R – X), while for the Se-yeast-supplementation treatment groups, it was the quadratic broken-line model Y = L + U × (R – X)2, where L is the plateau at values of X > R, R is the abscissa of the breakpoint, and the value of (R – X) is zero at values of X > R. Y means the Se content in eggs, L means the Se content at the plateau, and R means the experimental day.