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Abstract

Objective: To compare CNN models implemented using different strategies in the CT 

assessment of EGFR mutation status in patients with lung adenocarcinoma.

Methods: 1,010 consecutive lung adenocarcinoma patients with known EGFR mutation status 

were randomly divided into a training set (n=810) and a testing set (n=200). CNN models were 

constructed based on ResNet-101 architecture but implemented using different strategies: 

dimension filters (2D/3D), input sizes (small/middle/large and their fusion), slicing methods 

(transverse plane only and arbitrary multi-view planes), and training approaches (from scratch and 

fine-tuning a pre-trained CNN). The performance of the CNN models was compared using AUC.

Results: The fusion approach yielded consistently better performance than other input sizes, 

although the effect often did not reach statistical significance. Multi-view slicing was significantly 

superior to the transverse method when fine-tuning a pre-trained 2D CNN but not a CNN trained 

from scratch. The 3D CNN was significantly better than the 2D transverse plane method but only 

marginally better than the multi-view slicing method when trained from scratch. The highest 

performance (AUC=0.838) was achieved for the fine-tuned 2D CNN model when built using the 

fusion input size and multi-view slicing method.

Conclusion: The assessment of EGFR mutation status in patients is more accurate when CNN 

models use more spatial information and are fine-tuned by transfer learning. Our finding about 

implementation strategy of a CNN model could be a guidance to other medical 3D images 

applications. Compared with other published studies which used medical images to identify EGFR 

mutation status, our CNN model achieved the best performance in a biggest patient cohort.
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I. INTRODUCTION

The emerging technology of deep learning, in particular convolutional neural networks 

(CNN) [1–4], is increasingly demonstrating its value in medical applications including 

detection of lung nodules [5], segmentation of liver [6] or heart [7], and diagnosis of skin 

cancer [8]. CNNs are an advance over classification methods using traditional machine 

learning techniques [9, 10] (e.g., radiomic analysis), which consist of three separate steps: 1) 

feature extraction, using predefined methods which are based on mathematic equations 

and/or representations of prior knowledge that cannot be automatically adapted from task to 

task; 2) feature selection; and 3) classification. CNNs are able to incorporate the feature 

extraction and selection processes into the classification process. More importantly, CNN’s 

backward propagation of errors for training purposes enables the network to self-learn novel 

features which are most useful for a specific application, overcoming the limitations of pre-

defined features.

The impressive results achieved by CNNs have been enabled by the availability of huge 

datasets for training these algorithms. For example, the well-known ImageNet Large Scale 

Visual Recognition Challenge[11] provided about 1.4 million annotated images to train 

CNN architectures for analysis of 2D natural images. Far fewer images are available for 

most medical applications, usually less than one thousand. CNNs trained on these smaller 

datasets can suffer from overfitting, or learning to base its classification on random 

fluctuations in the training data, which limits the generalization of the algorithm to other 

datasets. The overfitting problem must be overcome for CNNs to succeed in medical 

applications. Researchers have proposed a number of strategies including data augmentation, 

transfer learning [12–14], and partition of input image [5, 15–17]. Augmentation can 

increase the amount of data available for training by creating new images through minor 

alterations to existing ones such as flips, translations, and/or rotations. Transfer learning 

means that the weights of a network model are initialized using a model pre-trained by a 

large dataset of natural images (ImageNet) and then fine-tuned using the smaller dataset of 

the specific medical application. Partition of input image trains CNNs using a region of 

interest (ROI) to reduce the size of the original image, thus offering fewer parameters which 

the algorithm might overfit.

Medical applications pose a problem for CNNs not merely because of the small number of 

study patients available for training the algorithm, but also because medical images acquired 

from CT, MR, and PET machines are three dimensional (3D). 3D images entail a vast 

increase in the data to be processed, causing limitations from the current capability of 

computer hardware (e.g., memory). As a result, there has been no 3D pre-trained CNN 

architecture from which a new 3D CNN model could be fine-tuned for a specific clinical 

application. One approach to construct a 3D clinical model is to crop volumes of interest 

(VOI) from full-size 3D image series [5, 18, 19] and then use the VOIs to train the 3D model 
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from scratch. Such models may not be robust due to overfitting from the limited training 

sample data. Multiple approaches to VOI size have been proposed, but the effect of VOI size 

on a model’s performance has not been studied. A more popular approach to constructing a 

clinical model to handle 3D images is to adopt an existing 2D CNN architecture that are 

already pre-trained by natural images. To do so, a 3D image volume needs to be sliced into 

2D images [16, 17, 20], either along the transverse direction or at an arbitrary direction in 

3D. The sliced 2D images are then used as the input images to fine-tune the existing 2D 

CNN for the desired clinical application. To the best of our knowledge, to date there has 

been no study reporting the effects of these different implementation strategies on CNN 

models for any clinical application.

Our work addresses this gap in the literature by using a well-studied backbone CNN 

architecture, ResNet-101, for an important medical application, assessment of epithelial 

growth factor receptor (EGFR) mutation status of patients with lung adenocarcinoma using 

CT images[21]. Such assessment of EGFR mutation status is a clinical prerequisite for 

initiating treatment with tyrosine kinase inhibitors (TKIs) in stage IV non-small cell lung 

cancer (NSCLC) [22]. While EFGR mutations are usually assessed by genomic analysis of 

biopsy samples acquired through endoscope or fine needle aspiration (FNA), such biopsies 

have limitations in clinical practice. First, they are invasive, limiting the potential to perform 

repeated assessments during the course of treatment to monitor genetic changes. Second, 

because such assays are localized to the biopsy site, they poorly capture the intra- and inter-

tumor heterogeneity which is a major factor in treatment success and the development of 

resistance to targeted therapies. Third, not all tumors are appropriate for biopsy due to their 

small sizes and atypical locations. Characterizing tumor phenotypes via imaging and image 

features (radiomic features) can overcome the limitations of molecular- and tissue-based 

analyses, offering the promise of a “virtual biopsy” that can depict the entire tumor, tumor 

metastases, and surrounding tissues at multiple body sites sequentially using non-invasive 

CT scan images that are routinely acquired in clinical practice and clinical trials.

In this paper, we examined multiple approaches to building ResNet-101 CNN models in the 

test case of automated CT assessment of EGFR mutation status of patients with lung 

adenocarcinoma. Our analysis quantitatively compared the performances of models 

constructed using different implementation strategies, including input dimensions, input 

image sizes, the method used to slice 3D image series into 2D images, and training methods.

II. MATERIALS AND METHODS

A. Clinical data

CT images from 1,010 consecutive patients with known EGFR status were retrospectively 

collected from 2013 to 2017, including 510 patients whose tumors were EGFR-mutated and 

500 who were wild type [23]. Details are shown in TABLE I. The median tumor diameter 

was 26 mm (max: 95 mm; min: 8 mm). Patients were randomized into a training set (810 

patients) and testing set (200 patients). Patient characteristics including gender, age, EGFR 

status, and sample type did not differ significantly between these two sets. 710 patients in 

the training set were used to train the model and the remaining 100 patients were used as 

validation set.
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EGFR mutation tests were based on tissue samples acquired from surgery or biopsy via the 

PCR machine (Stratagene Mx3000PTM) provided by Agilent. The Human EGFR Gene 

Mutation Detection Kit was manufactured by Amoy Diagnostics Co., Ltd.

B. Image data

Non-contrast enhanced CT scans were performed about a week before surgery or biopsy, on 

two scanner types (GE Discovery and Philips Brilliance) available in the institution. The 

image resolutions were 5 mm slice thickness and about 1 mm in-plane resolutions. Linear 

interpolation was applied to the original image data to obtain isotropic image resolutions at 1 

mm along the x -, y-, and z-axial directions. Regions of interest (ROI) were delineated by 

two experienced clinicians using the lung window (−400 HU∼1600 HU) to define a closed 

boundary surrounding the tumor area in each image containing the tumor.

C. Models

Based on a residual net with 101 layers (ResNet 101), we designed several CNN models 

using different implementation approaches (Fig. 1). The CNN models included 2D and 3D 

structures. For 2D models, we chose transverse plane (only) and arbitrary multi-view plane 

to slice 3D volume images into 2D images and took them as input images. For 3D models, 

we used multiple sizes of VOIs as 3D input images. All models, except the 3D one (no pre-

trained 3D model available), were built using pre-trained as well as from scratch training 

methods. The detail of each method is described below.

1) Input Size: Three different input sizes (small, middle, large) were used to capture the 

information of lung tumors. For a 2D CNN, the pixel resolution was 1mm∗1mm, and the 

input sizes were 51∗51 (small), 101∗101 (medium), or 151∗151 pixels (large). For a 3D 

CNN, the voxel resolution was 2mm∗2mm∗2mm, and the input sizes were 21∗21∗21 

(small), 31∗31∗31 (medium), and 41∗41∗41 voxels (large). A lower resolution was used for 

3D CNN due to limitations on computer memory (GPU). Each CNN (small, medium, or 

large input size) output a probability of EGFR gene mutation. A fourth approach, fusion, 

was obtained by combining the output of these three CNNs. Specifically, the output 

probability of EGFR for each CNN was regarded as a feature, and the three features 

(corresponding to small/middle/large input sizes) were fused by logistical regression whose 

output was the fusing prediction result.

2) 2D/3D CNN Structure: The filters of a CNN can be two dimensions (2D CNN; Fig. 

1(top)) or three dimensions (3D CNN; Fig. 1(bottom)). The number of filters/kernels in a 3D 

CNN structure is smaller than that in a 2D CNN. The input of each CNN contains the 

original image data and its corresponding segmented tumor mask. For 2D CNN, the input 

has three channels which correspond to R.G.B. of natural images: CT image, tumor mask, 

and CT image + tumor mask. For 3D CNN, the input has two channels, CT image and tumor 

mask. Both 2D slice input and 3D volume input were cropped from the original images 

focused at the tumor center. In the implementation, the input slices/volumes were augmented 

to reduce overfitting and increase the model’s accuracy. Explicitly, for each iteration, the 2D 

slices were generated by randomly transmuting several pixels and the 3D volumes were 

augmented by randomly transmuting several voxels and rotating a random angle in 3D 
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directions. Theoretically, this random generation for each iteration meant that the CNNs 

could be trained on an infinite number of different images, as it is highly unlikely that the 

process would generate two exactly identical images.

3) Transverse/Multi-view Slicing: For 2D CNNs, the input slice was cropped either 

from a fixed transverse plane or from an arbitrary multi-view plane. For transverse plane 

models, the 2D slice was taken along the x-y transverse plane. For multi-view plane models, 

the 2D slice was taken along any arbitrary direction in 3D. In both cases, the 2D slice always 

passed through the center of the rotated tumor.

4) Transfer Learning/Training From Scratch: Two training methods were used for 

2D CNN models: training from scratch or transfer learning. For training from scratch, 

training weights were initialized by Xavier filter. For transfer learning, training weights were 

initially adopted from the ImageNet[11] pre-trained model and then fine-tuned using the 

EFGR image data.

5) Constructed models: By combining the implementation strategies described above, 

we constructed 5 groups of CNN models:

a. 2D-Transverse-Scratch: 2D CNN with input of transverse plane and trained from 

scratch;

b. 2D-Transverse-Fine-tune: 2D CNN with input of transverse plane and using the 

fine-tune (transfer learning) training method;

c. 2D-MultiView-Scratch: 2D CNN with input of multi-view plane and trained 

from scratch;

d. 2D-MultiView-Fine-tune: 2D CNN with input of multi-view plane and using the 

fine-tune (transfer learning) training method;

e. 3D-Volume-Scratch: 3D CNN with input of volume using and trained from 

scratch.

Each model group contained four models, three of which were models having one input 

image size of small, middle, and large, respectively. The forth one, fusion model, fused the 

previous three input size models. In total, 20 (5∗4) models were constructed using the 

different implementation approaches for comparison of their performance.

6) Training and Testing: Cross-entropy function (loss function) and stochastic gradient 

descent (SGD) were used to train all CNN models. The initial learning rate was 0.1 when 

training from scratch and 0.001 when fine-tuning a model. The learning rate was reduced to 

0.96 for each 10 epochs, with the maximum iterative epoch set to 1000.

Given a test sample, the input slice/volume was generated 32 times and obtained 32 different 

prediction probabilities, and the final prediction result was computed by averaging all 

prediction probabilities.
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D. Statistical Analysis

The area under receiver operating characteristic (ROC) curve (AUC) was used to evaluate 

the performance of the models. The performance of the 20 models was pairwise compared 

using the DeLong test [24]. P-value less than 0.05 was considered as significant. For each 

pairwise comparison, only one variable / implementation strategy (e.g., input size, training 

method) changed while the others remained the same. To guarantee the generalization, 5-

folds cross-validation on the entire data was performed as well in supplementary.

III. RESULTS

The performances (AUCs) of the 20 models are reported in TABLE II. The 2D CNN fusion 

model using the multi-view plane and the fine-tuning methods, 2D-MultiView-Fine-tune 
fusion model, showed the highest AUC value of 0.838 in the detection of EGFR mutation. 

The two 2D CNN models using the transverse plane and the large input size either with or 

without pre-training, 2D-Transverse-Fine-tuneand 2D-Transverse-Scratch, showed the 

lowest AUC values of 0.642 and 0.649 respectively. Notably, 2D CNN models using the 

multi-view plane and the fine-tuning methods had AUCs larger than 0.80 at all input sizes.

To determine the effect of input size on CNN performance, the models using the small, 

middle, and large input sizes were individually compared with the fusion model within each 

model group. Although the fusion models showed higher AUCs compared to the other three 

models across the 5 model groups, the differences were statistically significant only for the 

2D-Transverse-Fine-tune model using the large input size, 2D-Transverse-Scratch models 

using the middle and large input sizes, and the 3D-Volume-Scratch model using the small 

input size (TABLE III).

To determine the effect of transverse/multi-view slicing, comparisons were made within 2D 

CNNs using the same training method (from scratch or fine-tuning). As slicing is not 

required for 3D models, they are omitted from these comparisons. The model group using 

the transverse plane was pairwise compared with the group using the multi-view plane (2D-
Transverse-Scratch vs 2D-MultiView-Scratch and 2D-Transverse-Fine-tune vs 2D-
MultiView-Fine-tune). Using the fine-tuning method, the multi-view plane method 

significantly outperformed the transverse plane method at all input sizes, but this was not 

true when the models were trained from scratch (with the exception of the model using the 

large input size) (TABLE IV).

To determine the effect of training method, comparisons were made within 2D CNNs using 

the same slicing method (transverse or multi-view). As no datasets currently exist to enable 

fine-tuning of 3D CNNs, they are omitted from these comparisons. The model groups using 

the from scratch and fine-tuning training methods were pairwise compared (i.e., 2D-
Transverse-Scratch vs. 2D-Transverse-Fine-tune and 2D-MultiView-Scratch vs. 2D-
MultiView-Fine-tune). The performance of the 2D CNN built by fine-tuning a pre-trained 

model was significantly superior to that of the model trained from scratch using all input 

sizes when using the multi-view plane. This was not true for the transverse plane method 

(TABLE V), with the exception of the fusion input size.
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To determine the effect of 2D vs. 3D CNN architecture, comparisons were made between 

the 3D CNN and the 2D models (transverse and multi-view). Given that no pre-trained 3D 

CNN architectures are available, comparisons were only made within the model groups 

trained from scratch (i.e., 3D-Volume-Scratch vs. 2D-Transverse-Scratch and 3D-Volume-
Scratch vs. 2D-MultiView-Scratch). The 3D model performed significantly better than the 

2D models at all input sizes when using the transverse plane. However, the advantage of the 

3D model disappeared when the 2D models were built using multi-view planes with small or 

large input sizes (TABLE VI).

IV. DISCUSSION

Achieving the potential of deep learning methods [1–4, 25] for clinical applications requires 

understanding how different strategies for developing and implementing a CNN structure 

influence the performance of the resulting model. For clinical applications using 3D 

radiographic images, the dimensionality of the CNN backbone architecture represents a key 

decision. 3D CNNs are designed to process the spatial information contained in 3D images, 

but no pre-trained CNN architectures are currently available. 2D CNNs can be pre-trained 

through transfer learning using vast existing image databases of 2D natural images (e.g. 

ImageNet), which may improve their performance, but the decision to analyze 3D images 

using a 2D architecture requires making another choice regarding whether the source images 

should be sliced using transverse or multi-view planes. For both types of architecture, the 

input image size used presents another strategic decision.

The comparison study presented in this paper is the first effort to quantify the effect of these 

decisions on the performance of a CNN model for a clinical application using 3D 

radiographic image. In our study, we adopted the ResNet 101 CNN architecture with either 

2D or 3D input filters, which is widely available and has been used in a variety of medical 

contexts. The clinical application we chose was assessment of EGFR mutation status in 

patients with lung adenocarcinoma using routinely acquired CT images. As there is no a 

priori reason to expect that the effect of strategic decisions on the performance of CNNs will 

be significantly different between this model task and other clinical applications. Our results 

should thus be widely applicable to other efforts to deploy CNNs for the interpretation of 

medical images.

Many medical images are 3D, while almost all natural images – including the vast databases 

such as ImageNet which have been used to pretrain CNNs – are 2D. This difference may be 

the most significant consideration when using CNNs in medical applications. In order to use 

a CNN structure developed for analysis of 2D natural images in 3D medical applications, 3D 

images need to be sliced into 2D images. The most common slicing method is to derive the 

input to the 2D CNN model by taking one or more 2D slices from the 3D volume images. A 

2D slice can be taken along the transverse plane direction or in any arbitrary direction in 3D 

(multi-view plane). In this study, the two slicing methods were compared with the 2D CNN 

models built with and without transfer learning (i.e., from scratch vs. fine-tuned). We found 

that when a model was built using the multi-view slicing method, it yielded better 

performance than a model using the transverse method. The likely rationale for this finding 

is that more information from a tumor can be used when several 2D images are taken from 
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multi-view planes than when only the transverse plane is used. This additional information is 

likely to make the multi-view CNN model more robust in the training phase, and to enable 

better performance when tested in the testing phase.

Due to the wide size range of lung cancer tumors, the selection of input image size is an 

important strategic decision. If the input image size is too small, it cannot cover the entirety 

of a large tumor, so that potentially useful information will not be available to guide the 

CNN in characterizing some of the tumors in the dataset. On the other hand, if the chosen 

input image size is too large, the risk of overfitting is increased by the greater availability of 

irrelevant information from structures surrounding a small tumor. To understand this 

problem, we designed three individual CNN models, each taking one size (small, medium, 

and large) as the input image size. Feature maps of 2D CNNs using multi-view plane inputs 

are shown in Fig. 2, demonstrating that when using the small input size only the CNN 

focused on the tumor itself while using larger input size caused extra attention to be paid to 

the surrounding of tumor. We also constructed a fusion model which combined the 

information of these three individual CNN models. We found that the fusion model achieved 

better performance (higher AUC) than models using the small, middle, or large input size 

alone. This result was remarkably consistent across all 5 model groups, although most of the 

pairwise comparisons between the fusion model and small, medium, or large input sizes did 

not reach statistical significance at p <= 0.05.

Transfer learning, an approach to fine-tune a pre-trained CNN model, is widely used to 

achieve better performance in analysis of natural images. Unfortunately, the relative shortage 

of 3D medical images for transfer learning means that reliable pre-trained CNN 

architectures are available only for 2D CNN models, not 3D. We thus compared the two 

training methods, trained from scratch and fine-tune training using transfer learning from a 

natural image dataset (ImageNet), in 2D CNN models. We found that fine-tuned models 

achieved significantly better performance (higher AUC) than models trained from scratch. 

The fine-tuned models found more information in the surface and surroundings of the tumor 

which correlated to EGFR mutation statue, while the model trained from scratch paid more 

attention to the inside of the tumor (Fig. 2).

3D CNN models can utilize the full information of a 3D medical image series, whereas 

sliced 2D images can only address part of the information. However, the probability of 

overfitting is increased by the much larger number of kernel weights used in a 3D CNN as 

compared to a 2D CNN structure. It is thus necessary to compare whether 2D or 3D models 

are more suitable for applications using 3D medical images. We thus compared 2D and 3D 

models, both using the training from scratch method. The 3D model achieved consistently 

superior performance (higher AUC) over the 2D model group, although this difference was 

only statistically significant for the 2D models sliced using only the transverse plane.

The overall direction of our findings can be seen clearly by focusing on the fusion models 

(TABLE VII), which achieved uniformly higher AUC than the other input size models. 

Performance consistently improved as models incorporated more spatial information 

(downward movement in TABLE VII). 2D multi-view models outperformed transverse 

models (although for the fusion input size this difference was only significant for fine-tuned 
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models), and were in turn significantly outper-formed by 3D models (p < 0.001 for 

transverse 2D models and p < 0.01 for multi-view models, both trained from scratch). 

Likewise, fine-tuned models consistently outperformed models trained from scratch (p < 

0.05 for transverse models and p < 0.001 for multi-view models). Taken together, these 

results strongly suggest that when a sufficiently large dataset of medical images is available 

to enable transfer learning for 3D CNNs models, the resulting fine-tuned 3D CNNs will 

offer better performance for medical applications than any of the other strategies studied in 

this paper.

Training and testing models was done using the same hardware, including a NVIDIA 

TITAN Xp GPU and an Intel Xeon E5–2620 CPU. The average training time of one epoch 

and testing time of one testing sample are summarized for each model in TABLE VIII, 

showing that: (1) using multi-view plane input increases the computational cost of image 

pre-processing, requiring more time for training/testing 2D models; (2) larger input sizes 

increase the time for training/testing models; (3) training/testing 2D models required more 

time than 3D models because of the greater number of filters used in 2D CNN.

The clinical utility of CNNs to medical application, and the potential impact of the methods 

selected for model building, can be shown by comparison of our results to other studies 

which similarly attempted to assess EGFR mutation status in lung cancer patients on the 

basis of their imaging phenotype. The studies published to date in this on-going research 

area [26–29] built their predictive models using a traditional machine learning method, 

radiomics. A comparison between the performance of their models and our optimal model, 

2D-MultiView-Fine-tune, is shown in TABLE IX. The models reported by Velazquez E 

R[26] and Stephen SF Yip[28] achieved AUCs less than 0.7 in their testing groups. Although 

Ying Liu[27] and Stefania Rizzo[29] achieved relatively higher AUC scores of 0.709 and 

0.82, respectively, their studies did not include independent testing groups which are 

essential to establishing the robustness of predictive models. Junfeng Xiong [23] and 

Xiaoyang Li [19] showed impressive results by using 3D deep learning model trained from 

scratch and achieved AUC scores of 0.776 and 0.809, respectively. Our model was trained 

and validated using the same patient cohort as Li’s work [19] and, in an independent testing 

group, achieved a higher AUC score than any previously published study in this area. 

Notably, the lowest-performing model in our study (a fine-tuned 2D CNN using the large 

input size and transverse slicing method) achieved a lower AUC (0.642) than any prior 

studies, highlighting the importance of optimally selecting the methods used to construct 

CNNs for medical applications.

Our study has some limitations. First, patient clinical features such as smoking history and 

gender may be associated with EGFR mutation status. Prior work has shown that 

incorporating these clinical features into image-based models (radiomics or deep learning) 

showed no significant improvement for the detection of EGFR mutation status [19, 23]. 

Accordingly, we did not include clinical features in the study presented here, which was 

focused on comparing CNN models constructed using different implementation strategies. 

Fusion of multimodality data promises to offer improvement in diagnosing Alzheimer’s 

disease [30, 31]. Hence, our future work may determine a way to combine clinical and 

image information to improve model performance using regression methods[32, 33]. 
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Second, our dataset was collected from a single institution whose patient population offered 

limited diversity (all individuals studied were Asian). Application of our model to 

international patient population groups will be an important planned extension of our work. 

Third, due to the lack of medical image datasets available to pre-train a 3D CNN model, we 

were not able to extend the comparison of models trained from scratch vs. fine-tuned to 

include 3D CNN architectures. Building a 3D medical model pre-trained using a sufficiently 

large volume of medical data is a major goal for our group, and the results of the current 

study suggest that this method will enable still further improvements over previously studied 

approaches. Third, deep learning model is an end-to-end model. The input is the images and 

the outputs were the corresponding prediction results. We provided some example feature 

maps of CNN models and subjective analysis. We plan to continue performing more 

visualizations to help us well understand the ‘black box’.

V. CONCLUSION

Our study demonstrated that utilizing more spatial information improves the robustness and 

performance of CNN models for medical applications based on 3D images. Strategies which 

increase the spatial information available to the model include using fusion input size rather 

than one fixed input size; using multi-view plane 2D slices rather than transverse plane only; 

and using 3D CNNs rather than 2D CNNs. We also demonstrated that models fine-tuned 

using transfer learning were significantly more accurate than models trained from scratch. 

Taken together, our findings suggest that 3D CNN models will, once a large scale dataset of 

3D medical images becomes available for fine-tuning them, have great potential to 

outperform all 2D CNN models. Given the current lack of pre-trained 3D CNN 

architectures, we found that of all approaches compared in this study, the fine-tuned, multi-

view fusion 2D CNN is best suited to assess EGFR mutation status in patients with lung 

adenocarcinoma and does so better than any previous attempt.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structure of the ResNet 101 CNN using 2D filters (top) and 3D filters (bottom).
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Fig. 2. 
Examples of feature maps extracted from the output of 2D CNNs at the end of the first 

stage: original CT images (top) and their feature maps of CNN trained from scratch (middle) 

or fine-tuned (bottom). The left, middle, and right panels correspond to the small, middle, 

and large input sizes, respectively.
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TABLE I

CHARACTERISTICS OF THE PATIENT COHORT

Characteristic Overall (n= 1010) Mutation (n=510) Wild Type (n=500)

Gender

Male 553 209 (40.9%) 344 (68.8%)

Female 457 301 (58.9%) 156 (31.2%)

Age

Median age 63 62 61

Range 25–88 30–88 25–85

Sample Type

Biopsy 386 (38.2%) 177 (34.7%) 209(41.8%)

Surgery 624 (61.8%) 333 (65.3%) 291 (58.2%)
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TABLE II

PERFORMANCE OF EACH CNN MODEL MEASURED BY AUC

Comparison Method Training Method Small Input Size Middle Input Size Large Input Size Fusion

2D slice image transverse plane
scratch 0.703 0.687 0.649 0.712

fine-tune 0.739 0.721 0.642 0.766

2D slice image multi-view plane
scratch 0.711 0.722 0.721 0.733

fine-tune 0.808 0.821 0.806 0.838

3D volume image[19] scratch 0.753 0.784 0.774 0.809
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TABLE III

EFFECT OF INPUT SIZE ON CNN PERFORMANCE: P-VALUES OF PAIRWISE COMPARED ROCS BETWEEN MODELS USING A SINGLE 

INPUT SIZE (SMALL/MIDDLE/LARGE) AND THEIR FUSION

Comparison Method Training Method Small Input Size Middle Input Size Large Input Size

2D slice image transverse plane
scratch 0.414 0.045 0.008

fine-tune 0.161 0.078 <0.001

2D slice image multi-view plane
scratch 0.196 0.410 0.155

fine-tune 0.093 0.156 0.077

3D volume image scratch 0.033 0.112 0.115
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TABLE IV

EFFECT OF TRANSVERSE/MULTI-VIEW SLICING ON THE PERFORMANCE OF 2D CNN MODELS: P-VALUES OF PAIRWISE COMPARED 

ROCS BETWEEN MODELS USING THE TRANSVERSE PLANE AND THE MULTI-VIEW PLANE

Comparison Method Training Method Small Input Size Middle Input Size Large Input Size Fusion

2D slice image
scratch 0.896 0.229 0.037 0.378

fine-tune 0.040 0.005 <0.001 0.006
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TABLE V

EFFECT OF TRAINING METHOD ON THE PERFORMANCE OF 2D CNN MODELS: P-VALUES OF PAIRWISE COMPARED ROCS 

BETWEEN MODELS TRAINED FROM SCRATCH AND USING THE FINE-TUNING METHOD

Comparison Method Small Input Size Middle Input Size Large Input Size Fusion

2D transverse plane 0.232 0.374 0.881 0.046

2D multi-view plane 0.004 <0.001 0.005 <0.001
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TABLE VI

EFFECT OF 2D/3D CNN ARCHITECTURE ON THE PERFORMANCE OF MODELS TRAINED FROM SCRATCH: P-VALUES OF PAIRWISE 

COMPARED ROCS BETWEEN THE 3D CNN MODEL GROUP AND TWO 2D CNN MODEL GROUPS

Comparison Method Small Input Size Middle Input Size Large Input Size Fusion

2D transverse plane 0.049 0.006 0.003 <0.001

2D multi-view plane 0.082 0.023 0.125 0.006
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TABLE VII

EFFECT OF 2D/3D CNN ARCHITECTURE ON THE PERFORMANCE OF MODELS TRAINED FROM SCRATCH: P-VALUES OF PAIRWISE 

COMPARED ROCS BETWEEN THE 3D CNN MODEL GROUP AND TWO 2D CNN MODEL GROUPS

Scratch Fine-tune

2D slice image transverse plane 0.712 0.766

2D slice image multi-view plane 0.733 0.838

3D volume image[19] 0.809 N/A
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TABLE VIII

AVERAGE PROCESSING TIME OF TRAINING AND TESTING

Comparison Method Small Input Size Middle Input Size Large Input Size Fusion

2D slice image transverse plane
training 53.4s 77.3s 160.5s N/A

testing 0.252s 0.262s 0.268s 0.782s

2D slice image multi-view plane
training 56.6s 81.5s 169.2s N/A

testing 0.254s 0.263s 0.270s 0.788s

3D volume image
training 35.5s 75.3s 134.1s N/A

testing 0.191s 0.210s 0.222s 0.624s
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TABLE IX

RESULTS OF STUDIES ASSESSING EFGR MUTATIONAL STATUS USING RADIOGRAPHIC IMAGE PHENOTYPE, COMPARING OUR WORK 

TO PREVIOUS PUBLICATIONS

Method (Author) N (mutation %) AUC in training group AUC in testing group

Velazquez E R[26] 258 (45) - 0.67

Ying Liu[27] 298 (46) 0.709 -

Stephen SF Yip[28] 348 (13) - 0.67

Stefania Rizzo[29] 285 (21) 0.82 -

Junfeng Xiong[23] 503 (61) - 0.776

Xiaoyang Li[19] 1010(50) - 0.809

Our research 1010(50) - 0.838
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