
Sparse Sliced Inverse Regression Via Lasso

Qian Lin, Zhigen Zhao, Jun S. Liuc)

Center of Statistical Science, Tsinghua University,

Department of Statistical Science, Temple University

Department of Statistics, Harvard University

Abstract

For multiple index models, it has recently been shown that the sliced inverse regression (SIR) is 

consistent for estimating the sufficient dimension reduction (SDR) space if and only if 

ρ = lim p
n = 0, where p is the dimension and n is the sample size. Thus, when p is of the same or a 

higher order of n, additional assumptions such as sparsity must be imposed in order to ensure 

consistency for SIR. By constructing artificial response variables made up from top eigenvectors 

of the estimated conditional covariance matrix, we introduce a simple Lasso regression method to 

obtain an estimate of the SDR space. The resulting algorithm, Lasso-SIR, is shown to be 

consistent and achieve the optimal convergence rate under certain sparsity conditions when p is of 

order o(n2λ2), where λ is the generalized signal-to-noise ratio. We also demonstrate the superior 

performance of Lasso-SIR compared with existing approaches via extensive numerical studies and 

several real data examples.

1 Introduction

Dimension reduction and variable selection have become indispensable steps for modern-

day data analysts in dealing with the “big data,” where thousands or even millions of 

features are often available for only hundreds or thousands of samples. With these ultra 

high-dimensional data, an effective modeling strategy is to assume that only a few features 

and/or a few linear combinations of these features carry the information that researchers are 

interested in. One can consider the following multiple index model [Li, 1991]:

y = f β1
τx, β2

τx, …, βd
τx, ϵ , (1)

where x follows a p-dimensional elliptical distribution with mean zero and covariance matrix 

Σ, the βi’s are unknown projection vectors, d is unknown but is assumed to be much smaller 

than p, and the error ϵ is independent of x and has mean 0. When p is very large, it is 

reasonable to further restrict each βi to be a sparse vector.

Since the introduction of the sliced inverse regression (SIR) method (Li [1991]), many 

methods have been proposed to estimate the space spanned by (β1, ⋯, βd) with few 
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assumptions on the link function f(·). Assume the multiple index model (1), the objective of 

all the SDR (Sufficient Dimension Reduction, Cook [1998]) methods is to find the minimal 

subspace S ⊆ ℝp such that y  ⫫ x|PSx, where PS stands for the projection operator to the 

subspace S. When the dimension of x is moderately large, all the SDR methods, including 

SIR, are proven to be successful [Xia et al., 2002, Ni et al., 2005, Li and Nachtsheim, 2006, 

Li, 2007, Zhu et al., 2006]. However, these methods were previously known to work well 

when the sample size n grows much faster than the dimension p, an assumption that 

becomes inappropriate for many modern-day datasets, such as those from biomedical 

researches. It is important to have a thorough investigation of “the behavior of these SDR 

estimators when n is not large relative to p”, as raised by Cook et al. [2012].

Lin et al. [2015] made an attempt to address the aforementioned challenge for SIR. They 

showed that, under mild conditions, the SIR estimate of the central space is consistent if and 

only if ρn =def p/n goes to zero as n grows. Additionally, they showed that the convergence 

rate of the SIR estimate of the central space (without any sparsity assumption) is ρn. When p 
is greater than n, certain constraints must be imposed in order for SIR to be consistent. The 

sparsity assumption, i.e., the number of active variables s must be an order of magnitude 

smaller than n and p, appears to be a reasonable one. In a follow-up work, Neykov et al. 

[2016a] studied the sign support recovery problem of the single index model (d = 1), 

suggesting that the correct optimal convergence rate for estimating the central space might 

be slog(p)
n , a speculation that is partially confirmed in Lin et al. [2016]. It is shown that, for 

multiple index models with bounded dimension d and the identity covariance matrix, the 

optimal rate for estimating the central space is ds + slog(p/s)
nλ , where s is the number of active 

covariates and λ is the smallest non-zero eigenvalue of var (E[x |y]). They further showed 

that the Diagonal-Thresholding algorithm proposed in Lin et al. [2015] achieves the optimal 

rate for the single index model with the identity covariance matrix.

The main idea.

In this article, we introduce an efficient Lasso variant of SIR for the multiple index model 

(1) with a general covariance matrix Σ. Consider first the single index model: y = f(βτx,ϵ). 

Let η be the eigenvector associated with the largest eigenvalue of var (E[x |y]). Since β ∝Σ
−1η, there are two immediate ways to estimate the space spanned by β. The first approach, 

as discussed in Lin et al. [2015], estimates Σ−1 and η separately (see Algorithm 1). The 

second one avoids a direct estimation of Σ−1 by solving the following penalized least square 

problem: 1
nXXτβ − η 2

2
+ μ β 1, where X is the p × n covariate matrix formed by the n 

samples (see Algorithm 2). However, similar to most L1-penalization methods for nonlinear 

models, theoretical underpinning of this approach has not been well understood. Since these 

two approaches provide good estimates compared with earlier approaches (e.g.,Li [1991], Li 

and Nachtsheim [2006], Li [2007]) as shown in Lin et al. [2015] and Supplementary 

Materials, we set the two approaches as benchmarks for comparisons.

We note that an eigenvector η of var(E[x |y]), where var(E[x |y]) is an estimate of the 

conditional covariance matrix var(E[x |y]) using SIR [Li, 1991], must be a linear combination 
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of the column vectors of X. Thus, we can construct an artificial response vector y ∈ ℝn such 

that η = 1
nXy, and estimate β by solving another penalized least square problem: 

1
2n y − Xτβ 2

2 + μ β 1 (see Algorithm 3). We call this algorithm “Lasso-SIR”, which is 

computationally very efficient. In Section 3, we further show that the convergence rate of the 

estimator resulting from Lasso-SIR is s log(p)
nλ , which is optimal if s = O(p1−δ) for some 

positive constant δ. Note that Lasso-SIR can be easily extended to other regularization and 

SDR methods, such as SCAD (Fan and Li [2001]), Group Lasso (Yuan and Lin [2006]), 

sparse Group Lasso (Simon et al. [2013]), SAVE (Cook [2000]), etc.

Connection to Other work Estimating the central space is widely considered as a 

generalized eigenvector problem in the literature [Li, 1991, Li and Nachtsheim, 2006, Li, 

2007, Chen and Li, 1998]. Lin et al. [2016] explicitly described the similarities and 

differences between SIR and PCA (as first studied by Jung and Marron [2009]) under the 

“high dimension, low sample size (HDLSS)” scenario. However, after comparing their 

results with those for Lasso regression, Lin et al. [2016] advocated that a more appropriate 

prototype of SIR (at least for the single index model) should be the linear regression. In the 

past three decades, tremendous efforts have been put into the study of linear regression 

models y = xτβ + ϵ for HDLSS data. By imposing the L1 penalty on the regression 

coefficients, the Lasso approach [Tibshirani, 1996] produces a sparse estimator of β, which 

turns out to be rate optimal [Raskutti et al., 2011]. Because of apparent limitations of linear 

models, there are many attempts to build flexible and computationally friendly semi-

parametric models, such as the projection pursuit regression [Friedman and Stuetzle, 1981, 

Chen, 1991], sliced inverse regression [Li, 1991], MAVE [Xia et al., 2002]. However, none 

of these methods work under the HDLSS setting. Existing theoretical results for HDLSS 

data mainly focus on linear regressions [Raskutti et al., 2011] and submatrix detections 

[Butucea et al., 2013], and are not applicable to index models. In this paper, we provide a 

new framework for the theoretical investigation of regularized SDR methods for HDLSS 

data.

The rest of the paper is organized as follows. After briefly reviewing SIR, we present the 

Lasso-SIR algorithm in Section 2. The consistency of the Lasso-SIR estimate and its 

connection to the Lasso regression are presented in Section 3. Numerical simulations and 

real data applications are reported in Sections 4 and 5. Some potential extensions are briefly 

discussed in Section 6. To improve the readability, we defer all the proofs and brief reviews 

of some existing results to the appendix.

2 Sparse SIR for High Dimensional Data

Notations.

We adopt the following notations throughout this paper. For a matrix V, we call the space 

generated by its column vectors the column space and denote it by col(V). The i-th row and 

j-th column of the matrix are denoted by Vi,* and V*,j, respectively. For (column) vectors x 

and β ∈ ℝp, we denote their inner product 〈x, β〉 by x(β), and the k-th entry of x by x(k). For 

two positive numbers a, b, we use a ∨ b and a ∧ b to denote max{a, b} and min{a, b} 
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respectively; We use C, C′, C1 and C2 to denote generic absolute constants, though the 

actual value may vary from case to case. For two sequences {an} and {bn}, we denote an ≻ 
bn and an ≺ bn if there exist positive constants C and C′ such that an ≥ Cbn and an ≤ C′bn, 

respectively. We denote an ≍ bn if both an ≻ bn and an ≺ bn hold. The (1, ∞) norm and (∞, 

∞) norm of matrix A are defined as A 1, ∞ = max1 ≤ j ≤ p∑i = 1
p Ai, j  and max1≤i,j≤n∥Ai,j∥ 

respectively. To simplify discussions, we assume that s log(p)
nλ  is sufficiently small. We 

emphasize again that our covariate data X is a p × n instead of the traditional n × p matrix.

A brief review of Sliced Inverse Regression (SIR).

In the multiple index model (1), the matrix B formed by the vectors β1,…,βd is not 

identifiable. However, col(B), the space spanned by the columns of B is uniquely defined. 

Given n i.i.d. samples (yi, xi), i = 1, ⋯, n, SIR [Li, 1991] first divides the data into H equal-

sized slices according to the order statistics y(i), i = 1,…,n. To ease notations and arguments, 

we assume that n = cH and E[x] = 0, and re-express the data as yh,j and xh,j, where h refers to 

the slice number and j refers to the order number of a sample in the h-th slice, i.e., yh,j = 

y(c(h-1)+j), xh,j = x(c(h-1)+j) Here x(k) is the concomitant of y(k). Let the sample mean in the h-

th slice be denoted by xℎ, ⋅ , then Λ ≜ var(E[x |y]) can be estimated by:

ΛH = 1
H ∑

ℎ = 1

H
xℎ, xℎ, .

τ = 1
H XHXH

τ
(2)

where XH is a p×H matrix formed by the H sample means, i.e., XH = x1, ⋅ , …, xH, ⋅ . Thus, 

col(Λ) is estimated by  col  V H , where V H is the matrix formed by the top d eigenvectors of 

ΛH. The  col  V H  was shown to be a consistent estimator of col(Λ) under a few technical 

conditions when p is fixed [Duan and Li, 1991, Hsing and Carroll, 1992, Zhu et al., 2006, 

Li, 1991, Lin et al., 2015], which are summarized in the online supplementary file. Recently, 

Lin et al. [2015, 2016] showed that  col  V H  is consistent for col(Λ) if and only if 

ρn = p
n 0 as n → ∞, when the number of slices H can be chosen as a fixed integer 

independent of n and p when the dimension d of the central space is bounded. When x’s 

distribution is elliptically symmetric, Li [1991] showed that

Σ col(B) = col( Λ ), (3)

and thus our goal is to recover col(B) by solving the above equation. It is shown in [Lin et 

al., 2015] that when ρn 0, col(B) = Σ−1 col V H  consistently estimate col(B) where 

Σ = 1
nXXτ is the sample covariance matrix of X. However, this simple approach breaks 

down when ρn ↛ 0, especially when p ≫ n. Although stepwise methods [Zhong et al., 2012, 

Jiang and Liu, 2014] can work under HDLSS settings, the sparse SDR algorithms proposed 

in Li [2007] and Li and Nachtsheim [2006] appeared to be ineffective. Below we describe 

two intuitive non-stepwise methods for HDLSS scenarios, which will be used as benchmarks 

in our simulation studies to measure the performance of newly proposed SDR algorithms.
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Diagonal Thresholding-SIR.

When p ≫ n, the Diagonal Thresholding (DT) screening method [Lin et al., 2015] proceeds 

by marginally screening all the variables via the diagonal elements of ΛH and then applying 

SIR to those retained variables to obtain an estimate of col(B). The procedure is shown to be 

consistent if the number of nonzero entries in each row of Σ is bounded.

Matrix Lasso.

We can bypass the estimation and inversion of Σ by solving an L1 penalization problem. 

Since (3) holds at the population level, a reasonable estimate of col(B) can be obtained by 

solving a sample-version of the equation with an appropriate regularization term to cope 

with the high dimensionality. Let η1, ⋯, ηd be the eigenvectors associated with the largest d 

eigenvalues of ΛH. Replacing Σ by its sample version 1
nXXτ and imposing an L1 penalty, we 

obtain a penalized sample version of (3):

1
nXXτβ − ηi 2

2
+ μi‖β‖1 (4)

for some appropriate μi’s.

This simple procedure can be easily implemented to produce sparse estimates of βi’s. 

Empirically it works reasonably well, so we set it as another benchmark to compare with. 

Since we later observed that its numerical performance was consistently worse than that of 

our main algorithm, Lasso-SIR, we did not further investigate its theoretical properties.

The Lasso-SIR algorithm.

First consider the single index model

y = f xτβ0, ϵ . (5)

Without loss of generality, we assume that (xi,yi), i = 1,…,n, are arranged in a way such that 

y1 ≤ y2 ≤ ⋯ ≤ yn. Construct an n × H matrix M = IH ⊗ 1c, where 1c is the c × 1 vector with 

all entries being 1. Then, according to the definition of XH, we can write XH = XM/c. Let λ

be the largest eigenvalue of ΛH = 1
H XHXH

τ  and let η be the corresponding eigenvector of 

length 1. That is,
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λη = 1
H XHXH

τ η = 1
ncXMMτXτη .

Thus, by defining

y = 1
cλ

MMτXτη (6)

we have η = 1
nXy. Note that a key in estimating the central space col(β) of SIR is the 

equation η ∝ Σβ. If approximating η and Σ by η and 1
nXXτ respectively, this equation can be 

written as 1
nXy ∝ 1

nXXτβ. To recover a sparse vector β ∝ β, one can consider the following 

optimization problem

min β 1,  subject to  X y − Xτβ ∞ ≤ μ,

which is known as the Dantzig selector [Candes and Tao, 2007]. A related formulation is the 

Lasso regression, where β is estimated by the minimizer of

ℒβ = 1
2n y − Xτβ 2

2 + μ‖β‖1 . (7)

As shown by Bickel et al. [2009], the Dantzig selector is asymptotically equivalent to the 

Lasso for linear regressions. We thus propose and study the Lasso-SIR algorithm in this 

paper.

There is no need to estimate the inverse of Σ in Lasso-SIR. Moreover, since the optimization 

problem (7) is well studied for linear regression models [Tibshirani, 1996, Efron et al., 2004, 

Friedman et al., 2010], we may formally “transplant” their results to the index models. 

Practically, we use the R package glmnet to solve the optimization problem where the tuning 

parameter μ is chosen using cross-validation.

Last but not least, Lasso-SIR can be easily generalized to the multiple index model (1). Let 

λi, 1 ≤ i ≤ d, be the d-top eigenvalues of ΛH and η = η1, ⋯, ηd  be the corresponding 

eigenvectors. Similar to the definition of the “pseudo response variable” for the single index 

model, we define a multivariate pseudo response Y  as
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Y = 1
c MMτXτηdiag 1

λ1
, ⋯, 1

λd
. (8)

We then apply the Lasso on each column of the pseudo response matrix to produce the 

corresponding estimate.

The number of directions d plays an important role when implementing Algorithm 4. A 

common practice is to locate the maximum gap among the ordered eigenvalues of the matrix 

ΛH, which does not work well under HDLSS settings. In Section 3, we show that there 

exists a gap among the adjusted eigenvalues λi
a = λi β i 2 where β i is the i-th output of 

Algorithm 4. Motivated by this, we estimate d according to the following algorithm:

Remark 1. In another paper that the authors are preparing, it is shown that the Lasso-SIR 

algorithm works on the joint distribution of (X, Y) and is thus not tied to the single or 

multiple index models. We choose the single/multiple index models to have a clear 

representation of the central subspace S, i.e., S = span β1, …, βd .

Remark 2. When dealing with real data, we suggest that the users employ quantile 

normalization to transform each covariate when X is not normally distributed. When p is too 

large and beyond our bound of n = O( p), as required by our provided R-package (see 

Section 7 for its downloading information), the user can first conduct variable screening 

based on DT-SIR, which is also included in this package.

3 Consistency of Lasso-SIR

For simplicity, we assume that x ~ N(0, Σ). The normality assumption can be relaxed to 

elliptically symmetric distributions with sub-Gaussian tail; however, this will make technical 

arguments unnecessarily tedious and is not the main focus of this paper. From now on, we 

assume that d, the dimension of the central space, is bounded; thus we can assume that H, 

the number of slices, is a large enough but finite integer [Lin et al., 2016, 2015]. In order to 

prove the consistency, we need the following technical conditions:
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A1) There exist constants Cmin and Cmax such that 0 < Cmin < λmin(Σ) ≤ λmax(Σ) < 

Cmax;

A2) There exists a constant κ ≥ 1, such that

0 < λ = λd(var (E[x |y]) ≤ … ≤ λ1(var (E[x |y]) ≤ κλ ≤ λmax(Σ);

A3) The central curve m(y) = E[x |y] satisfies the sliced stability condition.

Condition A1 is commonly imposed in the analyses of high-dimensional linear regression 

models. Condition A2 is merely a refinement of the coverage condition that is commonly 

imposed in the SIR literature, i.e., rank (var (E[x |y])) = d. For single index models, there is a 

more intuitive explanation of condition A2. Since rank (var (E[x |y])) = 1, condition A2 is 

simplified to 0 < λ = λ1 ≤ λmαx(Σ) which is a direct corollary of the total variance 

decomposition identity (i.e., var (x) =  var (E[x y]) + E[var (x y)]). We may treat λ as a 

generalized SNR and A2 simply requires that the generalized SNR is non-zero. Condition 

A3 is a property of the central curve, or equivalently, a regularity condition on the link 

function f(·) and the noise ϵ introduced in Lin et al. [2015].

Remark 3 (Generalized SNR and eigenvalue bound). Recall that the signal-to-noise ratio 

(SNR) for the linear model y = βτx + ϵ, where x ~ N(0, Σ) and ϵ ~ N(0,1), is defined as

SNR =
E βτx 2

E y2 =
β 2

2β0
τΣβ0

1 + β 2
2β0

τΣβ0
.

where β0 = β/∥β∥2. A simple calculation shows that

var(E[x |y]) = ΣββτΣ
β0

τΣβ0 β 2
2 + 1

,

and

λ(var(E[x |y])) =
β0

τΣΣβ0 β 2
2

β0
τΣβ0 β 2

2 + 1
,

where λ(var (E[x |y])) is the unique non-zero eigenvalue of var (E[x |y]). This leads to the 

following identity for the linear model:

λ(var(E[x |y])) =
β0

τΣΣβ0
β0

τΣβ0
SNR .

Thus, in a multiple index model we call λ, the smallest non-zero eigenvalue of var (E[x |y]), 
the model’s generalized SNR.
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Theorem 1 (Consistency of Lasso-SIR for Single Index Models). Assume that nλ = pα for 

some α > ½ and that conditions A1–A3 hold for the single index model, y = f β0
τx, ϵ , where 

β0 is a unit vector. Let β(μ) be the output of Algorithm 3, then

Pβ − Pβ0 F
≤ C1

s log(p)
nλ

holds with probability at least 1 – C2 exp(−C3 log(p)) for some constants C2 and C3.

When no sparsity on η is assumed, the condition α > 1/2 is necessary. This condition can be 

relaxed if a certain sparsity structure is imposed on η or Σ such that Σβ becomes sparse. 

Next, we state the theoretical result regarding the multiple index model (1).

Theorem 2 (Consistency of Lasso-SIR). Assume that nλ = pα for some α > ½, where λ is 
the smallest nonzero eigenvalue of var (E[x |y]), and that conditions A1–A3 hold for the 
multiple index model (1). Assume further that the dimension d of the central subspace is 
known. Let B be the output of Algorithm 4, then

PB − PB F
≤ C1

s log(p)
nλ

holds with probability at least 1 − C2 exp(−C3 log(p)) for some constants C2 and C3.

Lin et al. [2016] have shown that the lower bound of the risk E PB − PB F
2  is s log(p/s)

nλ  when 

(i) d = 1, or (ii) d(> 1) is finite and λ > c0 > 0. This implies that if s = O(p1–δ) for some 

positive constant δ, the Lasso-SIR algorithm achieves the optimal rate, i.e., we have the 

following corollary.

Corollary 1. Assume that conditions A1–A3 hold. If nλ = pα for some α > 1/2 and s = 

O(p1−δ), then Lasso-SIR estimate PB achieves the minimax rate when (i) d =1, or (ii) d(> 1) 

is finite and λ > c0 > 0.

Remark 4. Consider the linear regression y = βτx + ϵ, where x ~ N(0, Σ), ϵ ~ N(0,1). It is 

shown in Raskutti et al. [2011] that the lower bound of the minimax rate of the l2 distance 

between any estimator and the true β is s log(p/s)
n  and the convergence rate of Lasso estimator 

β  Lasso  is s log(p)
n . Namely, the Lasso estimator is rate optimal for linear regression when s = 

O(p1–δ) for some positive constant δ. A simple calculation shows that λ(var (E[x |y])) β 2
2, 

if ||β||2 is bounded away from ∞. Consequently,

PβLasso  − Pβ F ≤ 4 βLasso  − β 2
β 2

≤ C slog(p)
nλ(var(E[x y])) (9)

holds with high probability. In other words, if we treat Lasso as a dimension reduction 

method (where d = 1 and the link function is linear), the projection matrix PβLasso based on 
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Lasso is rate optimal. The Lasso-SIR has extended the Lasso to the non-linear multiple 

index models. This justifies a statement in Chen and Li [1998], stating that ”SIR should be 

viewed as an alternative or generalization of the multiple linear regression”. The connection 

also justifies a speculation in Lin et al. [2016] that ”a more appropriate prototype of the high 

dimensional SIR problem should be the sparse linear regression rather than the sparse PCA 

and the generalized eigenvector problem”.

Determining the dimension d of the central space is a challenging problem for SDR, 

especially for HDLSS cases. If we want to discern signals (i.e., the true directions) from 

noises (i.e., the other directions) simply via the eigenvalues λi of ΛH, i = 1,…, H, we face 

the problem that all these λi‘s are of order p/n, but the gap between the signals and noises is 

of order λ (≤ Cmax). With the Lasso-SIR, we can bypass this difficulty by using the adjusted 

eigenvalues λi
a = λi β i 2, i = 1,…, H. To this end, we have the following theorem.

Theorem 3. Let β i be the output of Algorithm 4 for i = 1,…, H. Assume that nλ = pα for 

some α > ½, s log(p) = o(nλ), and H > d, then, for some constants C1,C2 C3 and C4,

λi
a ≥ C1 λ − C2

slog(p)
n ,  for 1 ≤ i ≤ d,  and

λi
a ≤ C3

plog(p)
nλ λ + C4

slog(p)
n ,  for d + 1 ≤ i ≤ H,

hold with probability at least 1 − C5 exp(−C6 log(p)) for some constants C5 and C6.

Theorem 3 states that, if s log(p) ∨ (plog(p))½ = o(nλ), there is a clear gap between signals 

and noise. The Lasso-SIR algorithm then provides us the rate optimal estimation of the 

central space. It can be easily verified that p½ dominants s log(p) if s < p½ and s log(p) 

dominants p½ if s > p½. The region s2 = o(p) and the region p = o(s2) are often referred to as 

the “highly sparse” and “moderately sparse” regions [Ingster et al., 2010], respectively. 

These two scenarios should be treated differently in high dimensional SIR and SDR 

frameworks, just like what has been done in high dimensional linear regression (Ingster et al. 

[2010]).

4 Simulation Studies

4.1 Single index models

Let β be the vector of coefficients and let S be the active set; namely, βi = 0, ∀i ∈ Sc. 

Furthermore, for each i ∈ S, we simulated independently βi ~ N(0,1). Let x be the design 

matrix with each row following N(0, Σ). We consider two types of covariance matrices: (i) Σ 
= (σi,j) where σii = 1 and σi,j = ρ|i–j|; and (ii) σii = 1, σi,j = ρ when i, j ∈ S or i, j ∈ Sc, and 

σi,j = 0.1 when i ∈ S, j ∈ Sc or vice versa. The first one represents a covariance matrix 

which is essentially sparse and we choose ρ among 0, 0.3, 0.5, and 0.8. The second one 

represents a dense covariance matrix with ρ chosen as 0.2. In all the simulations, we set n = 
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1, 000 and let p vary among 100, 1,000, 2,000, and 4,000. For all the settings, the random 

error ϵ follows N(0, In). For single index models, we consider the following model settings:

I. y = xβ + ϵ where S = 1, 2, ⋯, 10 ;.

II. y = (xβ)3/2 + ϵ where S = 1, 2, ⋯, 20 ;.

III. y = sin(xβ) * exp(xβ) + ϵ where S = 1, 2, ⋯, 10 ;.

IV. y = exp(xβ/10) + ϵ where S = 1, 2, ⋯, 50 ;.

V. y = exp(xβ + ϵ) where S = 1, 2, ⋯, 7 ..

The goal is to estimate col(β), the space spanned by β. As in Lin et al. [2015], the estimation 

error is defined as D( col (β), col(β)), where D(M, N), the distance between two subspaces 

M, N ⊂ ℛp, is defined as the Frobenius norm of PM − PN where PM and PN are the 

projection matrices associated with these two spaces. The methods we compared with are 

DT-SIR, matrix Lasso (M-Lasso), and Lasso. The number of slices H is chosen as 20 in all 

simulation studies. The number of directions d is chosen according to Algorithm 5. Note that 

both benchmarks (i.e., DT-SIR and M-Lasso) require the knowledge of d as well. To be fair, 

we use the d estimated based on Algorithm 5 for both benchmarks. For comparison, we have 

also included the estimation error of Lasso-SIR assuming d is known. For each p, n, and ρ, 

we replicate the above steps 100 times to calculate the average estimation error for each 

setting. We tabulated the results for the first type of covariance matrix with ρ = 0.5 in Table 

1 and put the results for other settings in Tables 4–7 in the online supplementary file. The 

average of estimated directions d is reported in the last column of these tables.

The simulation results in Table 1 show that Lasso-SIR outperformed both DT-SIR and M-

Lasso under all settings. The performance of DT-SIR has become worse when the 

dependence is stronger and denser. The reason is that this method is based on the diagonal 

threshold and is only supposed to work well for the diagonal covariance matrix. Overall, 

Algorithm 5 provided a reasonable estimate of d especially for moderate covariance matrix. 

When assuming d is known, the performances of both DT-SIR and M-Lasso are inferior to 

Lasso-SIR, and are thus not reported.

Under Setting I when the true model is linear, Lasso performed the best among all the 

methods, as expected. However, the difference between Lasso and Lasso-SIR is not 

significant, implying that Lasso-SIR does not sacrifice much efficiency without the 

knowledge of the underlying linearity. On the other hand, when the models are not linear 

(Case II-VI), Lasso-SIR worked much better than Lasso. We observed that Lasso performed 

better than Lasso-SIR for Setting V when ρ=0.8 (Supplemental Materials) or when the 

covariance matrix is dense. One explanation is that Lasso-SIR tends to overestimate d under 

these conditions while Lasso used the actual d. If assuming known d = 1, Lasso-SIR’s 

estimation error is smaller than that of Lasso.

The results, reported in the supplementary material, for the other values of ρ are similar to 

what we observed when ρ = 0.5. The Lasso-SIR performed the best when compared to its 

competitors.
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4.2 Multiple index models

Let β be the p × 2 matrix of coefficients and S be the active set. Let x be simulated similarly 

as in Section 4.1, and denote z = xβ. Consider the following settings:

VI. yi = zi2/4 + 2 3 *  sgn  zi1 + ϵi where S = 1, 2, ⋯, 7  and β1:4, 1 = 1, β5:7, 2 = 1,
 and βi, j = 0 otherwise; 

VII. yi = zi1 * exp zi2 + ϵi where S = 1, 2, ⋯, 12  and β1:7, 1, β8:12, 2 N(0, 1),  and βi, j
= 0 otherwise;  

VIII. yi = zi1 * exp zi2 + ϵi  where S = 1, 2, ⋯, 12  and β1:7, 1, β8:12, 2 N(0, 1),  and βi, j
= 0 otherwise;

IX. yi = zi1 * 2 + zi2/3 2 + ϵi where S = 1, 2, ⋯, 12  and β1:8, 1 = 1, β9:12, 2 = 1 and βi, j
= 0 otherwise.

For the multiple index models, we compared both benchmarks (DT-SIR and M-Lasso) with 

Lasso-SIR. Lasso is not applicable for these cases and is thus not included. Similar to 

Section 4.1, we tabulated the results for the first type covariance matrix with ρ = 0.5 in Table 

2 and put the results for others in Tables 8–11 in the online supplementary file.

For the identity covariance matrix (ρ = 0), there was little difference between performances 

of Lasso-SIR and DT-SIR. However, Lasso-SIR was substantially better than DT-SIR in 

other cases. Under all settings, Lasso-SIR worked much better than the matrix Lasso. For the 

dense covariance matrix Σ2, Algorithm 5 tended to underestimate d, which is worthy of 

further investigation.

The results, reported in the supplementary material, for the other values of ρ are similar to 

what we observed when ρ = 0.5. The Lasso-SIR performs the best when compared to its 

competitors.

There are other sparse inverse regression method, such as the Sparse SIR, given in Li and 

Nachtsheim [2006]. In Lin et al. [2015], we have shown that the DT-SIR outperforms this 

method. We thus did not include the numerical comparison. For the reason of completeness, 

we have included the numerical results of comparing Lasso-SIR and Sparse SIR in Section 

D of the online supplementary file, showing that Lasso-SIR is better than Sparse-SIR.

4.3 Discrete responses

We consider the following simulation settings where for the response variable Y is discrete.

I. y = 1(xβ + ϵ > 0) where S = 1, 2, ⋯, 10 ;

II. y = 1(exp(xβ) + ϵ > 0) where S = 1, 2, ⋯, 7 ;

III. y = 1 (xβ)3/2 + ϵ  where S = 1, 2, ⋯, 20 ;

IV. Let z = xβ where S = 1, 2, ⋯, 12 , β is a p by 2 matrix with β1:7,1, β 8:12,2 ~ 

N(0,1) and βi,j = 0 otherwise. The response yi is
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yi =
1,  if zi1 + ϵi1 < 0,
2,  if zi1 + ϵi1 > 0 and zi2 + ϵi2 < 0,
3,  if zi1 + ϵi1 > 0 and zi2 + ϵi2 > 0,

where ϵi,j ~ N(0,1).

In settings X, XI, and XII, the response variable is dichotomous, and βi ~ N(0,1) when i ∈ S
and βi = 0 otherwise. Thus the number of slices H can only be 2. For Setting XIII where the 

response variable is trichotomous, the number of slices H is chosen as 3. The number of 

direction d is chosen as H − 1 in all these simulations.

Similar to the previous two sections, we calculated the average estimation errors for Lasso-

SIR (Algorithm 4), DT-SIR, M-Lasso, and generalized-Lasso based on 100 replications and 

reported the result in Table 3 for the first type covariance matrix with ρ = 0. 5 and the results 

for other cases in Tables 12–15 in online supplementary file. It is clearly seen that Lasso-SIR 

performed much better than DT-SIR and M-Lasso under all settings and the improvements 

were very significant. The generalized Lasso performed as good as Lasso-SIR for the 

dichotomous response; however, it performed substantially worse for Setting XIII.

5 Applications to Real Data

Arcene Data Set.

We first apply the methods to a two-class classification problem, which aims to distinguish 

between cancer patients and normal subjects from using their mass-spectrometric 

measurements. The data were obtained by the National Cancer Institute (NCI) and the 

Eastern Virginia Medical School (EVMS) using the SELDI technique, including samples 

from 44 patients with ovarian and prostate cancers and 56 normal controls. The dataset was 

downloaded from the UCI machine learning repository (Lichman [2013]), where a detailed 

description can be found. It has also been used in the NIPS 2003 feature selection challenge 

(Guyon et al. [2004]). For each subject, there are 10,000 features where 7,000 of them are 

real variables and 3,000 of them are random probes. There are 100 subjects in the validation 

set.

After standardizing X, we estimated the number of directions d as 1 using Algorithm 5. We 

then applied Algorithm 3 and the sparse PCA to calculate the direction of β and the 

corresponding components, followed by a logistic regression model. We applied the fitted 

model to the validation set and calculated the probability of each subject being a cancer 

patient. We also fitted a Lasso logistic regression model to the training set and applied it to 

the validation set to calculate the corresponding probabilities.

In Figure 1, we plot the Receiver Operating Characteristic (ROC) curves for various 

methods. Lasso-SIR, represented by the red curve, was slightly better than Lasso 

(insignificant) and the sparse PCA, represented by the green and blue curves respectively. 

The areas under these three curves are 0.754, 0.742, and 0.671, respectively.
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HapMap.

In this section, we analyzed a data set with a continuous response. We consider the gene 

expression data from 45 Japanese and 45 Chinese from the international “HapMap” project 

(Thorisson et al. [2005],Thorgeirsson et al. [2010]). The total number of probes is 47,293. 

According toThorgeirsson et al. [2010], the gene CHRNA6 is the subject of many nicotine 

addiction studies. Similar toFan et al. [2015], we treat the mRNA expression of CHRNA6 as 

the response Y and expressions of other genes as the covariates. Consequently, the number 

of dimension p is 47,292, much greater than the number of subjects n=90.

We first applied Lasso-SIR to the data set with d being chosen as 1 according to Algorithm 

5. The number of selected variables was 13. Based on the estimated coefficients β and X, we 

calculated the first component and the scatter plot between the response Y and this 

component, showing a moderate linear relationship between them. We then fitted a linear 

regression between them. The R-sq of this model is 0.5596 and the mean squared error of 

the fitted model 0.045.

We also applied Lasso to estimate the direction β. The tuning parameter λ is chosen as 

0.1215 such that the number of selected variables is also 13. When fitting a regression model 

between Y and the component based on the estimated β, the R-sq is 0.5782 and the mean 

squared error is 0.044. There is no significant difference between these two approaches. This 

confirms the message that Lasso-SIR performs as good as Lasso when the linearity 

assumption is appropriate.

We have also calculated a direction and the corresponding components based on the sparse 

PCA [Zou et al., 2006]. We then fitted a regression model. The R-sq is only 0.1013 and the 

mean squared error is 0.093, significantly worse than the above two approaches.

Classify Wine Cultivars.

We investigate the popular wine data set which has been used to compare various 

classification methods. This is a three-class classification problem. The data, available from 

the UCI machine learning repository (Lichman [2013]), consists of 178 wines grown in the 

same region in Italy under three different cultivars. For each wine, the chemical analysis was 

conducted and the quantities of 13 constituents are obtained, which are Alcohol, Malic acid, 

Ash, Alkalinity of ash, Magnesium, Total Phenols, Flavanoids, Non-flavanoid Phenols, 

Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, and Proline. One of 

the goals is to use these 13 features to classify the cultivar.

The number of directions d is chosen as 2 according to Algorithm 5. We tested PCA, DT-

SIR, M-Lasso, and Lasso-SIR, for obtaining these two directions. In Figure 2, we plotted the 

projection of the data onto the space spanned by two components. The colors of the points 

correspond to three different cultivars. It is clearly seen that Lasso-SIR provided the best 

separation of the three cultivars. When using one vertical and one horizontal line to classify 

three groups, only one subject would be wrongly classified.
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6 Discussion

Researchers have made some attempts to extend Lasso to non-linear regression models in 

recent years (e.g.,Plan and Vershynin [2016], Neykov et al. [2016b]). However, these 

approaches are not efficient enough for SDR problems. In comparison, Lasso-SIR 

introduced in this article is an efficient high-dimensional variant of SIR [Li, 1991] for 

obtaining a sparse solution to the estimation of the SDR subspace for multiple index models. 

We showed that Lasso-SIR is rate optimal if nλ = pα for some α > 1/2, where λ is the 

smallest nonzero eigenvalue of var(E[x |y]). This technical assumption on n, λ, and p is 

slightly disappointing from the ultra-high dimensional perspective. We believe that this 

technical assumption arises from an intrinsic limitation in estimating the central subspace, 

i.e., some further sparsity assumptions on either Σ or var(E[x |y]) or both are needed to show 

the consistency of any estimation method. We will address such extensions in our future 

researches.

Cautious reader may find that the concept of “pseudo-response variablee is not essential for 

developing the theory of the Lasso-SIR algorithm. However, by re-formulating the SIR 

method as a linear regression problem using the pseudo-response variable, we can formally 

consider the model selection consistency, regularization path and many others for multiple 

index models. In other words, the Lasso-SIR does not only provide an efficient high 

dimensional variant of SIR, but also extends the rich theory developed for Lasso linear 

regression in the past decades to the semi-parametric index models.

The R-package, LassoSIR, is available on CRAN (https://cran.r-project.org/

package=LassoSIR).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Appendix:: Sketch of Proofs of Theorems 1, 2 and 3

We assume the condition A1) A2) and A3) hold throughout of the rest of the paper. In 

particular, the sliced stability condition A3) requires that H > d is a large enough but finite 

integer. We denote the SIR estimate of Λ = var(E[x |y]) by ΛH = 1
H XHXH

τ  (see e.g., (2)) and 

its eigenvector of unit length associated to the j-th eigenvalue λj by ηj. To avoid unnecessary 

confusion, we assume that slog(p)
nλ  and p

nλ  are sufficiently small. We call an event Ω happens 

with high probability if ℙ Ωc ≤ C1exp −C2log(p)  for some absolute constants C1 and C2.

Lin et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/package=LassoSIR
https://cran.r-project.org/package=LassoSIR


A.1 Assistant Lemmas

A.1.1 Concentration Inequalities

Lemma 1. Let d1, …, dp be positive constants. We have the following statements:

a. For p i.i.d. standard normal random variables x1, …, xp, there exist constants C1 

and C2 such that for any sufficiently small a, we have

ℙ 1
p ∑

i
di xi2 − 1 > a ≤ C1 exp − p2a2

C2∑jdj
4 . (10)

b. For 2p i.i.d. standard normal random variables x1;… ,xp, y1, ⋯ , and yp, there 
exist constants C1 and C2 such that for any sufficiently small a , we have

ℙ 1
p ∑

i
dixiyi > a ≤ C1 exp − p2a2

C2∑jdj
4 . (11)

Proof. ii) is a direct corollary of i). We put the proof of i) in the supplementary materials.

A.1.2 Sine-Theta Theorem

Lemma 2 (Sine-Theta Theorem). Let A and A + E be symmetric matrices satisfying

A = F0, F1
A0 0
0 A1

F0
τ

F1
τ ,  A + E = G0,G1

Λ0 0
0 Λ1

G0
τ

G1
τ

where [F0, F1] and [G0, G1] are orthogonal matrices. If the eigenvalues of A0 are contained 
in an interval (a,b), and the eigenvalues of Λ1 are excluded from the interval (a − δ, b + δ) 

for some δ > 0, then

F0F0
τ − G0G0

τ ≤
min F1

τEG0 , F0
τEG1

δ ,

and

1
2 F0F0

τ − G0G0
τ

F ≤
min F1

τEG0 F, F0
τEG1 F

δ .

A.1.3 Restricted Eigenvalue Properties

We briefly review the restricted eigenvalue (RE) property, which was first introduced in 

Raskutti et al. [2010]. Given a set S ⊂ [p] = {1, …, p}, for any positive number α, define the 

set C(S, α) as
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C(S, α) = θ ∈ ℝp θSc 1 ≤ α θS 1 .

We say that a sample matrix XXτ/n satisfies the restricted eigenvalue condition over S with 

parameter (α, κ) ϵ [1, ∞) × (0, ∞) if

1
nθ

τXXτθ ≥ κ2 θ 2
2
,  ∀θ ∈ C(S, α) . (12)

If (12) holds uniformly for all the subsets S with cardinality s, we say that XXτ/n satisfies 

the restricted eigenvalue condition of order s with parameter (α,κ). Similarly, we say that the 

covariance matrix Σ satisfies the RE condition over S with parameter (α, κ) if ∥Σ½θ∥2 ≥ 

κ∥θ∥ for all θ ∈ C(S, α). Additionally, if this condition holds uniformly for all the subsets S 

with cardinality s, we say that Σ satisfies the restricted eigenvalue condition of order s with 

parameter (α, κ). The following Corollary is borrowed from Raskutti et al. [2010].

Corollary 2. Suppose that Σ satisfies the RE condition of order s with parameter (α,κ). Let 
X be the p × n matrix formed by n i.i.d samples from N(0, Σ). For some universal positive 
constants a1, a2 and a3; if the sample size satisfies

n > a3
(1 + α)2maxi ∈ [p]Σii

κ2 Slog(p),

then the matrix 1
nXX

τ satisfies the RE condition of order s with parameter α, κ
8  with 

probability at least 1 − a1 exp (−a2n).

It is clear that λmin(Σ) ≥ Cmin implies that Σ satisfies the RE condition of any order s with 

parameter 3, Cmin . Thus, we have the following proposition.

Proposition 1. For some universal constants a1, a2 and a3, if the sample size satisfies that n 

> a1s log(p), then the matrix 1
nXX

τ satisfies the RE condition for any order s with parameter 

3, Cmin/8  with probability at least 1 – a2 exp (−a3n).

A.1.4 The sliced approximation Lemma

Let x ∈ ℝp be a sub-Gaussian random variable. For any unit vector β ∈ ℝp, let x(β) = 〈x, β〉 
and m(β) = m, β = E[x(β) |y]. In order to get the deviation properties of the statistics 

varH(x(β)), Lin et al. [2015] has introduced the sliced stable condition, i.e., the condition A3 

in this paper. For the exact definition and more discussion, we refer to Lin et al. [2015].

Lemma 3. Let x ∈ ℝp be a sub-Gaussian random variable. Assume that E[x |y] is sliced table 

with respect to y. For any unit vector β ∈ ℝp, let x(β) = 〈x, β〉 and m(β) = m, β = E[x(β) |y], 
we have the following:
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a. If var(m(β)) = 0, there exist positive constants C1,C2 and C3 such that for any b 
and sufficiently large H, we have

ℙ varH(x(β)) > b ≤ C1exp −C2
nb
H2 + C3log(H) .

b. If var(m(β)) ≠ 0, there exist positive constants C1,C2 and C3 such that, for any ν 
> 1, we have

varH(x(β)) − var(m(β)) ≥ 1
2νvar(m(β))

with probability at most

C1exp −C2
nvar(m(β))

H2ν2 + C3log(H) .

where we choose H such that Hϑ > C4ν for some sufficiently large constant C4.

The following proposition is a direct corollary.

Proposition 2. There exist positive constants C1,C2 and C3, such that

βτΛHβ − βτvar(E[x y])β 2 ≥ 1
2νβτvar(E[x y])β (13)

with probability at most C1 exp −C2
nλ

H2ν2 + C3log(H) .

Proof. It follows from Lemma 3 and the fact that for any β ∈ col(var(E[x |y])), var(m(β))) ≥ λ. 

◽

A.1.5 Properties of ηj ‘s.

Proposition 3. Recall that ηj is the eigenvector associated to the j-th eigenvalue of 

ΛH, j = 1, …, H. If nλ = pa for some a > 1/2, there exist positive constants C1 and C2 such 

that

i) for j = 1, …, d, one has

PΛηj 2 ≥ C1
λ
λ j

(14)

ii) for j = d + 1, …, H, one has

PΛηj 2 ≤ C2
p log(p)

nλ
λ
λ j

(15)
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hold with high probability.

Remark: This result might be of independent interest. In order to justify that the sparsity 

assumption for the high dimensional setting is necessary, Lin et al. [2015] have shown that 

for single index models, E ∠ η1, η1 = 0 if and only if lim p
n = 0. Proposition 3 states that the 

projection of λjηj, j = 1, …, d, onto the true direction is non-zero if nλ > pa where a > 1/2.

Proof. Let x = z + w be the orthogonal decomposition with respect to col(var(E[x |y])) and its 

orthogonal complement. We define two p × H matrices ZH = (z1,,…, zH,.) and WH = (w1,,…, 

wH,) whose definition are similar to the definition of XH. We then have the following 

decomposition

XH = ZH + WH . (16)

By definition, we know that ZH
τ WH = 0 and y ⫫ w. Let Σ1 be the covariance matrix of w, 

then WH = 1
cΣ1

1/2EH where EH is a p × H matrix with i.i.d. standard normal entries.

For sufficiently large ν1 and a, Lemma 3 implies that

Ω1 = ω 1 − κ
2ν1

λ ≤ λmin
1
HZH

τ ZH ≤ λmax
1
HZH

τ ZH ≤ 1 + 1
2ν1

κλ (17)

happens with high probability and Lemma 1 implies

Ω2 = ω| 1
HWH

τ WH − tr Σ1
n IH F ≤ a p log(p)

n (18)

happens with high probability.

For any ω ∈ Ω = Ω1 ∩ Ω2, we can choose a p × p orthogonal matrix T and an H × H 
orthogonal matrix S such that

1
HTZH(ω)S =

B1 0
0 0
0 0

 and  1
HTWH(ω)S =

0 0
B2 B3
0 B4

(19)

where B1 is a d × d matrix, B2 is a d × d matrix, B3 is a d × (H − d) matrix and B4 is a (p − 

2d) × (H − d) matrix. By definition of the event ω, we have

1 − κ
2ν1

λ ≤ λmin B1
τB1 ≤ λmax B1

τB1 ≤ 1 + 1
2ν1

κλ

B2
τB2 B2

τB3

B3
τB2 B3

τB3 + B4
τB4

−
tr ∑1

n IH
F

≤ a p log(p)
n .

(20)

Proposition 3 follows from the linear algebraic lemma below:

Lin et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lemma 4. Assume that nλ = pa for some a > ½. To avoid unnecessary confusion, we also 

assume that p log(p)
nλ  is sufficiently small. Let M =

B1 0
B2 B3
0 B4

 be a p × H matrix, where B1 is a 

d × d matrix, B2 is a d × d matrix, B3 is a d × (H − d) matrix and B4 is a (p − 2d) × (H − d) 

matrix satisfying (20). Let ηj be the eigenvector associated with the j-th eigenvalue λj of 

MMτ, j = 1, …, H. Then the length of the projection of ηj onto its first d-coordinates is at 

least C λ
λj

 for j = 1, …, d and is most C p log(p)
nλ

λ
λj

 for j = d +1, …, H.

Proof. Let us consider the eigen-decompositions of

Q1 ≜ MτM =
E1 E2
E3 E4

D1 0
0 D2

E1
τ E3

τ

E2
τ E4

τ

where D1 (resp. D2) is a d × d (resp. (H − d) × (H − d)) diagonal matrices satisfying that 

λmin(D1) ≥ λmax(D2). (20) implies that

1 − κ
2ν1

λ +
tr ∑1

n − a p log(p)
n ≤ λmin D1

≤ λmax D1 ≤ 1 + 1
2ν1

κλ +
tr ∑1

n + a p log(p)
n .

On the other hand, we could consider the eigen-decomposition of

Q2 ≜
B1

τB1 +
tr Σ1

n Id 0

0
tr Σ1

n IH − d
=

F1 0
0 F2

D1′ 0
0 D2′

F1
τ 0

0 F2
τ

where D1′  (resp. D2′ ) is a d × d (resp. (H − d) × (H − d)) diagonal matrices satisfying that 

λmin D1′ ≥ λmax D2′ . (20) implies that

tr Σ1
n − a plog(p)

n ≤ λmin D2′ λmax D2′ ≤
tr Σ1

n + a plog(p)
n .

Thus the eigen-gap is of order λ − a plog(p)
n  (which is of order λ, since nλ = pa for some α > 

1/2). From (20), we know that Q1 − Q2 F ≤ C plog(p)
n . The Sine-Theta theorem (see e.g., 

Lemma 2) implies that

E1
E3

E1
τ E3

τ −
Id 0
0 0 F

≤ C plog(p)
nλ , (21)
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i.e., E3E3
τ

F ≤ C plog(p)
nλ . Similar argument gives us that E2E2

τ
F ≤ C plog(p)

nλ .

Let η be the (unit) eigenvector associated to the non-zero eigenvalue λ of MMτ. Let us write 

ητ = η1
τ, η2

τ, η3
τ  where η1, η2 ∈ ℝd and η3 ∈ ℝp − 2d. Let α = α1

τ, α2
τ  where 

α1 = B1
τη1 + B2

τη2 ∈ ℝd and α2 = B3
τη2 + B4

τη3 ∈ ℝH − d. It is easy to verify that α/ λ is the 

(unit) eigenvector associated to the eigenvalue λ of MτM and

η1 =
B1

λ
α1
λ

, η2 =
B2

λ
α1
λ

+
B3

λ
α2
λ

, and η3 =
B4

λ
α2
λ

.

If λ is among the first d eigenvalues of MτM, then α1/ λ 2 is bounded below by some 

positive constant. Thus η1 2 ≥ C λ
λ

. If λ is among the last H − d eigenvalues of MτM, then 

α1/ λ 2 = O plog(p)
nλ . Thus η1 2 ≤ O κ λ

λ
plog(p)

nλ . ◽

A.2 Sketch of Proof of Theorem 1

We only sketch some key points of the proof here and leave the details in the online 

supplementary files. Recall that for single index model y = f β0
τx, ϵ  where β0 is a unit 

vector, we have denoted by η the eigenvector of ΛH associated to the largest eigenvalue λ. 

Let β  be the minimizer of

ℒβ = 1
2n  y − Xτβ + μ β 1,

where y ∈ ℝn such that η = 1
nX y. Let η0 = Σβ0, η = Pη0η  and β = Σ−1η ∝ β0. Since we are 

interested in the distance between the directions of β  and β0, we consider the difference 

δ = β − β. A slight modification of the argument in Bickel et al. [2009] implies that, if we 

choose μ = C log(p)
nλ

 for sufficiently large constant C, we have δ
2

≤ C1
s log(p)

nλ
 with high 

probability. The detailed arguments are put in the online supplementary file. The Proposition 

3, Condition A1) and β = Σ−1η, imply that C1
λ
λ

≤   β
2

≤ C2 holds with high probability 

for some constants C1 and C2. Thus, we have

Pβ − Pβ0 F = Pβ − Pβ F ≤ 4 β − β 2
β 2

= 4 δ
2
/ β

2
≤ C slog(p)

nλ (22)

holds with high probability. ◽
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A.3 Proof of Theorem 2

Recall that ηj‘s are the (unit) eigenvectors associated to the j-th eigenvalues of ΛH, j = 1, …, 

d. We introduce the following notations,

ηj = PΛηj, βj = Σ−1ηj  and γj =  βj/ βj 2 . (23)

Applying the argument in Theorem 1 on these eigenvectors, we have

β j −  β j 2 ≤ C slog(p)
nλj

 and  Pβj − Pβj F ≤ C slog(p)
nλ (24)

for some constant C hold with high probability. Since we assume that d is fixed, if we can 

prove that

I) the lengths of βj, j = 1, …, d, are bounded below by C λ
λj

II) the angles between any two vectors of βj, j = 1, …, d, are bounded below by some 

constant, hold with probability, then the Gram-Schmit process implies that 

PB − PB F ≤ C slog(p)
nλ  holds with high probability from (24). It is easy to verify that I) 

follows from the Proposition 3, the Condition A1) and the definition of βj = Σ−1ηj , j = 1, 

…, d. II) is a direct corollary of the following two statements.

Statement A. The angles between any two vectors in ηj‘s, j = 1, …, d are nearly π/2. 

Since nλ = pa for some a > 1/2, we only need to prove that

cos ∠ ηj,  ηj ≤ C p log(p)
nλ (25)

holds with high probability for any i ≠ j. Recall that we have the following decomposition 

XH = ZH + WH. It is easy to see that col ZH = col(var(E[x |y])) and ncov(w)−1/2WH is 

identically distributed to a matrix, ε1, with all the entries are i.i.d. standard normal random 

variables. Let us choose an orthogonal matrix T such that 1
HTZH = Aτ, 0 τ

 and 

1
HTWH = 0, Bτ τ

 where A is a d × H matrix and B is a (p − d)× H matrix. Thus, Tηj is the 

eigenvector of 1
HTXHXH

τ T τ associated with the j-th eigenvalue λj, j = 1, …, d. If we have a) 

λmin(AAτ) ≥ λ, b) P  col  TZH Tηj
2

≥ C λ
λj

 and c) BτB − μIH F ≤ C p log(p)
n  for some 

scalar μ > 0, then the statement I is reduced to the following linear algebra lemma.

Lemma 5. Let A be a d × H matrix (d < H) with λmin(AAτ) = λ. Let B be a (p − d) × H 

matrix such that BτB − μIH F
2

≤ C plog(p)
n . Let ξ j be the j-th (unit) eigenvector of CCτ 
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associated with the j-th eigenvalue λj where Cτ = (Aτ, Bτ) and ξj be the projection of ξ j onto 

its first d-coordinates. If ξj
2

≥ C λ
λj

, then for any i ≠ j,

cos ∠  ξi,  ξj ≤ C plog(p)
nλ . (26)

Thus, ξi ′s are nearly orthogonal if nλ = pa for some a > ½.

Proof. Let αj = Cτξ j, then ξ j = 1
λj

Cαj and ξ j = 1
λj

Aαj. It is easy to see that αj 2 = λj and 

Cαj 2 ≥ λj. Since αj/ λj is also the (unit) eigenvector of

CτC = AτA + μI + BτB − μI ,

for any i ≠ j, we have

0 = αj
τCτCαi = αj

τAτAαj + μαj
ταi + αj

τ BτB − μI αI
= λjλIξj

τξI + αj
τ BτB − μI αI .

Since BτB −  tr (Σ)IH F ≤ C plog(p)
n  and ξ j

2
≥ C λ

λj
, ∀i ≠ j, we have

ξjτξi
ξi 2 ξj 2

≤ C ξj
τξi

λj
1/2λi

1/2

λ = C 1
λ

αj
τ

λj
1/2 BτB − μI

αi
λi

1/2 ≤ C plog(p)
nλ .

Note that a) follows from the Lemma 2, b) follows from Proposition 3 and c) follows from 

the Lemma 1. Thus statement A holds.

Statement B. The angles between any two vectors in βj ′s are bounded away from 0. 

Since βj = Σ−1ηj, we only need to prove that there exists a positive constant ζ < 1 such that

 ηi
τΣ−1Σ−1ηi

Σ−1 ηi 2 Σ−1ηj 2
≤ ζ . (27)

Let η1/ η1 2, …,  ηd/ ηd 2 = TM, where T is a p × d orthogonal matrix. Since ηj/ ηj ′2s

are nearly mutually orthogonal, we know that MτM is nearly an identity matrix. Thus, by 

some continuity argument, the statement is reduced to the following linear algebra lemma.

Lemma 6. Let A be a p × p positive definite matrix such that Cmin ≤ λmin(A) ≤ λmax (A) ≤ 

Cmax for some positive constants Cmin and Cmax. There exists constant 0 < ζ < 1 such that 
for any p × d orthogonal matrix B, we have
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B* , i
τ AτAB* , j

AB* , i 2 AB* , j 2
≤ ζ ∀i ≠ j . (28)

Proof. When d is finite, without loss of generality, we can assume that B is a p × 2 matrix. 

Note that the expression on the left side is invariant under orthogonal transformation of B. 

We can simply assume that B is a matrix with the last p – 2-rows consisting of all zeros. The 

result follows immediately based on basic calculation. ◽

A.4 Proof of Theorem 3

Recall that ηi is the eigenvector associated with the i-th eigenvalue λi of ΛH, ηi = PΛηi and 

βi = Σ−1ηi, i = 1, …, H (see e.g., (23)). The argument in Theorem 1 implies that, for any 1 ≤ 

i ≤ H,

β i −  β i 2 ≤ C slog(p)
nλ

. (29)

The Proposition 1 implies that

 β i 2 ≥ C1
λ
λi

, 1 ≤ i ≤ d and   β i 2 ≤ C2
λ
λi

p log(p)
nλ , d + 1 ≤ i ≤ H . (30)

The above two statements give us the desried result in Theorem 3. ◽
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Figure 1: 
ROC curve of various methods for Arcene Data set.
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Figure 2: 
We plotted the second component versus the first component for all the wines, which are 

labeled with different colors, representing different cultivars (1–red, 2–green, 3–blue). The 

four methods for calculating the directions are PCA, DT-SIR, M-Lasso, and Lasso-SIR from 

top-left to bottom-right. It is clearly seen that Lasso-SIR offered the best separation among 

these three groups.
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Table 1:

Estimation error for the first type covariance matrix with ρ = 0.5.

p Lasso-SIR DT-SIR Lasso M-Lasso Lasso-SIR(Known d) d

I

100 0.12 ( 0.02 ) 0.47 ( 0.11 ) 0.11 ( 0.02 ) 0.19 ( 0.08 ) 0.12 ( 0.02 ) 1

1000 0.18 ( 0.02 ) 0.65 ( 0.14 ) 0.15 ( 0.02 ) 0.26 ( 0.02 ) 0.18 ( 0.02 ) 1

2000 0.2 ( 0.02 ) 0.74 ( 0.15 ) 0.16 ( 0.02 ) 0.3 ( 0.03 ) 0.2 ( 0.02 ) 1

4000 0.23 ( 0.09 ) 0.9 ( 0.17 ) 0.18 ( 0.01 ) 0.39 ( 0.09 ) 0.23 ( 0.03 ) 1

II

100 0.07 ( 0.01 ) 0.6 ( 0.1 ) 0.23 ( 0.03 ) 0.27 ( 0.31 ) 0.07 ( 0.01 ) 1

1000 0.12 ( 0.02 ) 0.78 ( 0.11 ) 0.31 ( 0.04 ) 0.17 ( 0.02 ) 0.12 ( 0.02 ) 1

2000 0.15 ( 0.02 ) 0.86 ( 0.13 ) 0.34 ( 0.05 ) 0.2 ( 0.03 ) 0.15 ( 0.02 ) 1

4000 0.2 ( 0.04 ) 0.99 ( 0.15 ) 0.37 ( 0.05 ) 0.28 ( 0.06 ) 0.19 ( 0.03 ) 1

III

100 0.21 ( 0.03 ) 0.55 ( 0.12 ) 1.25 ( 0.19 ) 0.26 ( 0.11 ) 0.21 ( 0.03 ) 1

1000 0.28 ( 0.04 ) 0.74 ( 0.14 ) 1.32 ( 0.18 ) 0.51 ( 0.04 ) 0.27 ( 0.04 ) 1

2000 0.35 ( 0.17 ) 0.87 ( 0.17 ) 1.34 ( 0.14 ) 0.66 ( 0.14 ) 0.31 ( 0.05 ) 1.1

4000 0.46 ( 0.28 ) 1 ( 0.25 ) 1.33 ( 0.16 ) 0.83 ( 0.22 ) 0.39 ( 0.1 ) 1.1

IV

100 0.46 ( 0.05 ) 0.92 ( 0.09 ) 0.78 ( 0.12 ) 0.58 ( 0.06 ) 0.45 ( 0.04 ) 1

1000 0.62 ( 0.22 ) 1.07 ( 0.18 ) 0.87 ( 0.11 ) 0.78 ( 0.22 ) 0.59 ( 0.04 ) 1.1

2000 0.71 ( 0.34 ) 1.22 ( 0.26 ) 0.89 ( 0.12 ) 0.94 ( 0.31 ) 0.59 ( 0.04 ) 1.3

4000 0.71 ( 0.26 ) 1.3 ( 0.18 ) 0.91 ( 0.13 ) 1 ( 0.22 ) 0.63 ( 0.04 ) 1.2

V

100 0.12 ( 0.02 ) 0.37 ( 0.1 ) 0.42 ( 0.18 ) 0.15 ( 0.02 ) 0.12 ( 0.02 ) 1

1000 0.2 ( 0.03 ) 0.55 ( 0.15 ) 0.55 ( 0.22 ) 0.41 ( 0.05 ) 0.2 ( 0.05 ) 1

2000 0.38 ( 0.34 ) 0.8 ( 0.29 ) 0.6 ( 0.24 ) 0.67 ( 0.27 ) 0.29 ( 0.18 ) 1.2

4000 0.78 ( 0.51 ) 1.22 ( 0.31 ) 0.77 ( 0.25 ) 1.06 ( 0.41 ) 0.48 ( 0.31 ) 1.5
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Table 2:

Estimation error for the first type covariance matrix with ρ = 0.5.

p Lasso-SIR DT-SIR M-Lasso Lasso-SIR (Known d) d

VI

100 0.26 ( 0.06 ) 0.57 ( 0.15 ) 0.31 ( 0.05 ) 0.26 ( 0.05 ) 2

1000 0.33 ( 0.07 ) 0.74 ( 0.17 ) 0.62 ( 0.04 ) 0.33 ( 0.07 ) 2

2000 0.36 ( 0.11 ) 0.92 ( 0.18 ) 0.73 ( 0.07 ) 0.38 ( 0.08 ) 2

4000 0.44 ( 0.14 ) 1.12 ( 0.25 ) 0.87 ( 0.1 ) 0.42 ( 0.09 ) 2

VII

100 0.32 ( 0.04 ) 0.67 ( 0.11 ) 0.42 ( 0.04 ) 0.32 ( 0.04 ) 2

1000 0.6 ( 0.28 ) 0.93 ( 0.22 ) 1.02 ( 0.2 ) 0.66 ( 0.3 ) 2.1

2000 0.95 ( 0.44 ) 1.18 ( 0.27) 1.35 ( 0.32 ) 0.83 ( 0.35 ) 2.3

4000 1.17 ( 0.38 ) 1.43 ( 0.31 ) 1.47 ( 0.33 ) 1.08 ( 0.33 ) 2.1

VIII

100 0.29 ( 0.09 ) 0.61 ( 0.11 ) 0.34 ( 0.08 ) 0.25 ( 0.03 ) 2

1000 0.37 ( 0.08 ) 0.82 ( 0.14 ) 0.69 ( 0.13 ) 0.35 ( 0.07 ) 2

2000 0.54 ( 0.35 ) 1 ( 0.25 ) 0.92 ( 0.28 ) 0.47 ( 0.22 ) 2.2

4000 0.88 ( 0.45 ) 1.37 ( 0.26 ) 1.27 ( 0.31 ) 0.71 ( 0.37 ) 2.5

IX

100 0.43 ( 0.06 ) 0.74 ( 0.12 ) 0.48 ( 0.05 ) 0.43 ( 0.07 ) 2

1000 0.47 ( 0.09 ) 0.91 ( 0.15 ) 0.91 ( 0.05 ) 0.48 ( 0.09 ) 2

2000 0.58 ( 0.23 ) 1.11 ( 0.23 ) 1.12 ( 0.16 ) 0.5 ( 0.1 ) 2.1

4000 0.57 ( 0.18 ) 1.25 ( 0.22 ) 1.23 ( 0.1 ) 0.56 ( 0.11 ) 2
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Table 3:

Estimation error for the first type covariance matrix with ρ = 0.5.

p Lasso-SIR DT-SIR M-Lasso Lasso

X

100 0.22 ( 0.03 ) 0.66 ( 0.05 ) 0.26 ( 0.03 ) 0.2 ( 0.03 )

1000 0.26 ( 0.04 ) 1.21 ( 0.03 ) 0.52 ( 0.03 ) 0.28 ( 0.03 )

2000 0.27 ( 0.03 ) 1.33 ( 0.02 ) 0.59 ( 0.02 ) 0.29 ( 0.04 )

4000 0.28 ( 0.04 ) 1.39 ( 0.02 ) 0.65 ( 0.03 ) 0.3 ( 0.04 )

XI

100 0.32 ( 0.07 ) 0.83 ( 0.07 ) 0.6 ( 0.17 ) 0.33 ( 0.07 )

1000 0.43 ( 0.1 ) 1.32 ( 0.02 ) 1.07 ( 0.05 ) 0.45 ( 0.09 )

2000 0.45 ( 0.09 ) 1.38 ( 0.01 ) 1.15 ( 0.04 ) 0.46 ( 0.09 )

4000 0.49 ( 0.12 ) 1.41 ( 0.01 ) 1.2 ( 0.05 ) 0.51 ( 0.12 )

XII

100 0.24 ( 0.03 ) 0.63 ( 0.05 ) 0.52 ( 0.35 ) 0.22 ( 0.03 )

1000 0.33 ( 0.03 ) 1.18 ( 0.04 ) 0.53 ( 0.03 ) 0.32 ( 0.03 )

2000 0.37 ( 0.05 ) 1.3 ( 0.04 ) 0.62 ( 0.03 ) 0.35 ( 0.03 )

4000 0.4 ( 0.04 ) 1.38 ( 0.03 ) 0.68 ( 0.03 ) 0.39 ( 0.04 )

XIII

100 0.38 ( 0.06 ) 1.09 ( 0.06 ) 0.61 ( 0.05 ) 1.07 ( 0.02 )

1000 0.39 ( 0.07 ) 1.79 ( 0.02 ) 1.12 ( 0.05 ) 1.08 ( 0.02 )

2000 0.38 ( 0.07 ) 1.91 ( 0.02 ) 1.24 ( 0.04 ) 1.09 ( 0.03 )

4000 0.42 ( 0.07 ) 1.98 ( 0.01 ) 1.32 ( 0.03 ) 1.1 ( 0.03 )

J Am Stat Assoc. Author manuscript; available in PMC 2020 September 18.


	Abstract
	Introduction
	The main idea.

	Sparse SIR for High Dimensional Data
	Notations.
	A brief review of Sliced Inverse Regression (SIR).
	Diagonal Thresholding-SIR.
	Matrix Lasso.
	The Lasso-SIR algorithm.

	Consistency of Lasso-SIR
	Simulation Studies
	Single index models
	Multiple index models
	Discrete responses

	Applications to Real Data
	Arcene Data Set.
	HapMap.
	Classify Wine Cultivars.

	Discussion
	Sketch of Proofs of Theorems 1, 2 and 3
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:
	Table 3:

