Skip to main content
. Author manuscript; available in PMC: 2021 Jan 1.
Published in final edited form as: J Am Stat Assoc. 2019 Apr 17;115(530):692–706. doi: 10.1080/01621459.2018.1537919

Table 10:

Monte Carlo value estimates for offline simulations with γ = 0.9, P is the LASSO penalty, and Ω is the inverse Fisher information.

n T Linear VL Polynomial VL Gaussian VL GGQ Observed
25 24 0.123 (0.0750) 0.123 (0.0912) 0.140 (0.0930) 0.025 (0.0301) −0.005
36 0.139 (0.0780) 0.110 (0.1013) 0.138 (0.0813) 0.024 (0.0344) −0.004
48 0.135 (0.0690) 0.110 (0.1177) 0.143 (0.0718) 0.023 (0.0282) 0.000
50 24 0.118 (0.0705) 0.124 (0.0994) 0.137 (0.0802) 0.030 (0.0287) −0.006
36 0.117 (0.0827) 0.123 (0.0972) 0.121 (0.0804) 0.030 (0.0292) 0.003
48 0.128 (0.0807) 0.113 (0.1085) 0.137 (0.0921) 0.023 (0.0282) 0.000
100 24 0.131 (0.0563) 0.123 (0.1015) 0.167 (0.0472) 0.029 (0.0295) −0.001
36 0.132 (0.0735) 0.148 (0.0851) 0.161 (0.0670) 0.029 (0.0334) −0.002
48 0.149 (0.0612) 0.137 (0.1003) 0.156 (0.0687) 0.023 (0.0267) −0.001