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Brain-predicted age difference scores are calculated by subtracting chronological age from ‘brain’ 

age, which is estimated using neuroimaging data. Positive scores reflect accelerated ageing and are 

associated with increased mortality risk and poorer physical function. To date, however, the 

relationship between brain-predicted age difference scores and specific cognitive functions has not 

been systematically examined using appropriate statistical methods. First, applying machine 

learning to 1,359 T1-weighted MRI scans, we predicted the relationship between chronological 

age and voxel-wise grey matter data. This model was then applied to MRI data from three 

independent datasets, significantly predicting chronological age in each dataset: Dokuz Eylül 

University (n=175), the Cognitive Reserve/Reference Ability Neural Network study (n=380), and 

The Irish Longitudinal Study on Ageing (n=487). Each independent dataset had rich 

neuropsychological data. Brain-predicted age difference scores were significantly negatively 

correlated with performance on measures of general cognitive status (two datasets); processing 

speed, visual attention, and cognitive flexibility (three datasets); visual attention and cognitive 

flexibility (two datasets); and semantic verbal fluency (two datasets). As such, there is firm 

evidence of correlations between increased brain-predicted age differences and reduced cognitive 

function in some domains that are implicated in cognitive ageing.
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Introduction

Longitudinal neuropsychological testing in older adults can be used to detect cognitive 

decline. However, practice effects can obscure assessment of cognitive ability (Elman et al., 

2018), and test performance is affected by subject-level factors such as the individual’s level 

of comprehension, reading ability, self-efficacy, motivation, fatigue, and fluctuations in 

concentration (McCaffrey & Westervelt, 1995). In contrast, objective biomarkers are not 

subject to such biases or patients’ physical limitations (Jollans & Whelan, 2016). An 

objective biomarker of cognitive ageing would therefore be useful for the timely 

identification of cognitive decline outside of age-related norms.

Ageing is a process with significant heterogeneity across individuals (McCrory & Kenny, 

2018). Consequently, chronological age is not the most accurate marker of an individual’s 

rate of biological ageing (Sprott, 2010). Ageing biomarkers have been developed that 

provide additional information about an individual’s health status and life expectancy (Dean 

& Morgan, 1988). For example, DNA methylation data can estimate epigenetic ageing 

(‘epigenetic clocks’), reflecting the age of an individual’s tissues or blood cells (Fiorito et 

al., 2019). Subtracting chronological age from the biological age results in a biologically 

informative summary score – the predicted age difference – for each individual, which 

reflects the deviation from typical lifespan trajectories (Richard et al., 2018). This approach 

has also been applied in neuroimaging, where machine learning can be used to quantify the 

relationship between structural MRI data and chronological age, in order to estimate an 

individual’s ‘brain age’. Subtracting chronological age from the estimated ‘brain age’ results 

in a brain predicted-age difference score (brainPAD, also referred to as brain age gap, 
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brainAGE, Brain-Age Score; (Beheshti, Maikusa, & Matsuda, 2018; Franke, Ziegler, 

Klöppel, & Gaser, 2010; Schnack et al., 2016) which quantifies how a person’s brain health 

differs from what would be expected for their chronological age.

BrainPAD is a promising biomarker of general brain ageing as it already satisfies several 

criteria for ageing biomarkers (Butler et al., 2004). BrainPAD is predictive of mortality 

(Cole et al., 2018) and of age-sensitive physiological measures, including grip strength, lung 

function, walking speed and allostatic load (Cole et al., 2018). Moreover, brainPAD has been 

associated with cognitive impairment (Liem et al., 2017), is negatively correlated with fluid 

cognitive performance (Cole et al., 2018) and is significantly increased in Alzheimer's 

disease (AD) and mild cognitive impairment (MCI) (Franke & Gaser, 2012; Gaser et al., 

2013; Löwe, Gaser, & Franke, 2016). As such, brainPAD could serve as a cognitive ageing 

biomarker. However, this potential use of brainPAD is currently limited by a lack of 

knowledge regarding the exact relationship between brainPAD and specific cognitive 

functions in healthy individuals.

Studies relating specific cognitive functions and brainPAD have been assessed in solely 

clinical samples (e.g., Cole et al. (2015), traumatic brain injury), or in mixed samples of 

clinical groups and healthy controls (e.g., Beheshti et al. (2018); AD, MCI, and healthy 

controls) and not samples comprised only of healthy adults. As such, the reported 

associations between brainPAD and specific domains of cognitive function in such studies 

(Beheshti et al., 2018; Cole et al., 2015) may be skewed towards significance by the 

inclusion of the clinical samples with typically higher brainPADs. Consequently, these 

findings may not represent the brainPAD-cognition relationship in normal ageing. For 

example, Le and colleagues (2018) reported a significant negative correlation between 

brainPAD and response inhibition and selective attention in a sample of individuals 

comprised of healthy controls and patients with mood or anxiety disorders, substance use 

disorder and/or eating disorders. However, significantly increased brainPADs have been 

reported in mood disorders such as major depression (Koutsouleris et al., 2014) and in 

substance use disorders such as alcohol dependence (Guggenmos et al., 2017). As both 

major depression and alcohol dependence are associated with cognitive impairments 

(Chanraud et al., 2007; McIntyre et al., 2013), the significant brainPAD-cognitive function 

correlations reported across samples including such populations could be driven by the 

inclusion of such clinical groups.

The relationship between specific cognitive functions and BrainPAD has also been 

somewhat obscured by statistical considerations. Recent work has empirically demonstrated 

that chronological age must be controlled for when testing relationships between brainPAD 

and cognitive functions (Le et al., 2018; Smith, Vidaurre, Alfaro-Almagro, Nichols, & 

Miller, 2019). Failure to correct for chronological age can result in false positive findings 

because some cognitive variables are correlated with chronological age – but not brain 

ageing – and brainPAD is typically correlated with chronological age (Le et al., 2018). In 

light of this recent work, it is difficult to interpret studies that did not control for 

chronological age when investigating the brainPAD-cognition relationship in healthy 

controls (Franke, Gaser, Manor, & Novak, 2013; Löwe et al., 2016). A second statistical 

issue is a failure to correct for multiple comparisons. Researchers testing the brainPAD-
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cognition relationship have tended to carry out multiple statistical tests of the correlation 

between brainPAD and various cognitive measures. The performance of multiple statistical 

tests can increase the Type I error and result in false positive findings (Ranganathan, 

Pramesh, & Buyse, 2016). However, some papers did not control for multiple comparisons 

when investigating the brainPAD-cognition relationship (Beheshti et al., 2018; Cole, 

Underwood, et al., 2017). Other studies have investigated the relationship between brainPAD 

and specific domains of cognitive function while controlling for chronological age and 

multiple comparisons, but there are conflicting results for most cognitive domains. For 

example, a significant correlation between verbal fluency and brainPAD was reported by 

Franke and colleagues (2013) whereas Richard and colleagues (2018) found no association 

between verbal fluency and brainPAD. We have summarized the brainPAD-cognition 

findings in Table 1.

The first step in generating a brainPAD score is creating a feature set of neuroimaging data 

which is correlated with chronological age. Neuroimaging data have high dimensionality, 

which can result in overfitting and overoptimistic predictions (Whelan & Garavan, 2014). 

Brain age prediction models thus rely on feature engineering techniques such as principal 

components analysis (PCA; Franke et al., 2010; Gutierrez Becker, Klein, & Wachinger, 

2018) or even dot products of different features (e.g. vectors of GM and white matter (WM) 

voxels as in Cole et al., 2015; Cole, Ritchie, et al., 2018; Cole, Underwood, et al., 2017) in 

order to reduce the dimensionality (Mwangi, Tian, & Soares, 2014). These techniques map 

the original variables onto a feature space (in effect, ‘new’ variables) typically using linear 

transformations in the case of dot products (Snyder, Mika, Burke, & Müller, 2013), although 

non-linear transformation may also be used for kernel methods (Honeine & Richard, 2009; 

Kwok & Tsang, 2004). While these models create generalizable and accurate predictions, 

this may come at the cost of reduced interpretability of the contributions of the features 

(Bunea et al., 2011; Mateos-Pérez et al., 2018), which is important for assessing the 

neurobiological validity of the model (Woo, Chang, Lindquist, & Wager, 2017) and to 

identify specific brain areas for further investigation (Scheinost et al., 2019). Due to the 

importance of interpretability in neuroimaging, unlike with other data (e.g. credit card 

transactions for fraud detection), the application of machine learning to MRI does not 

necessarily involve the goal of achieving the highest accuracy (Mateos-Pérez et al., 2018). 

While methods do exist for projecting the ‘new’ variables back from the feature space to the 

input space (Honeine & Richard, 2009; Kwok & Tsang, 2004; Snyder et al., 2013) thus 

enabling interpretability of models employing dot products, PCA or kernel methods, these 

methods are not always implemented and/or reported in brain-age papers (Cole et al., 2015, 

2018; Cole, Poudel, et al., 2017; Gaser et al., 2013; Gutierrez Becker et al., 2018; Nenadić, 

Dietzek, Langbein, Sauer, & Gaser, 2017). In contrast, penalized regression methods (e.g., 

the Elastic Net; Zou & Hastie, 2005) do not require the back-projection of coefficients from 

feature space to input space and therefore have good interpretability, particularly when less 

complex feature sets are used (Luo et al., 2019). GM data is particularly well-suited for age 

prediction as GM volume linearly declines with age (but cf. Fjell et al., 2013) whereas WM 

volume has a less straightforward relationship with age, as it doesn’t decline significantly 

until middle age (Farokhian, Yang, Beheshti, Matsuda, & Wu, 2017; Ge et al., 2002). The 

Elastic Net is a machine learning model well-suited to the high dimensionality and 
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multicollinearity inherent in neuroimaging data as shown by the finding that it produced the 

most consistent predictions as compared to various other models over datasets with varying 

sample-, feature set-, and effect-sizes (Jollans et al., 2019).

A final challenge in the development of neuroimaging biomarkers, or neuromarkers, is 

ensuring the generalisability of the neuromarker to new data. For practical reasons, cross-

validation, where a dataset is split into a training set and a test set (Varoquaux et al., 2017), 

is often used as an estimate of model accuracy for new data (Jollans & Whelan, 2018; 

Scheinost et al., 2019). However, cross-validation accuracy estimates are often optimistically 

biased and can vary considerably (Varoquaux et al., 2017), particularly when preprocessing 

and feature selection are carried out on the entire dataset before splitting it into training and 

test sets (Dwyer, Falkai, & Koutsouleris, 2018; Woo et al., 2017). As such, the gold-standard 

for assessing the external validity and generalisability of a neuromarker is by testing how the 

model performs on a completely independent held-out dataset (Jollans & Whelan, 2018). 

While various brainPAD studies have externally validated their models (Beheshti et al., 

2018; Cole et al., 2015, 2018; Cole, Underwood, et al., 2017; Franke et al., 2010; Gutierrez 

Becker et al., 2018; Lancaster, Lorenz, Leech, & Cole, 2018; Liem et al., 2017; Madan & 

Kensinger, 2018; Varikuti et al., 2018), only a few studies have reported model performance 

in terms of accuracy (i.e., correlation or mean absolute error between brain-predicted age 

and chronological age) on the external validation dataset (Cole et al., 2015; Lancaster et al., 

2018; Liem et al., 2017; Madan & Kensinger, 2018). This does not necessarily cast doubt on 

the validity of the models whose accuracy is reported in terms of internal cross-validation 

performance. However, not reporting the external validation performance limits the 

interpretation of the accuracy and generalisability of various brainPAD models as typically 

performance will be lower in the external validation dataset.

In order to clarify the unclear relationship between brainPAD and specific domains of 

cognitive function, we aimed to 1) establish an interpretable model of brainPAD using the 

Elastic Net with GM voxel-wise data, 2) externally validate this model in three independent 

datasets, and 3) to establish the domains of cognitive function that are reliably correlated 

with brainPAD across different datasets.

Methods

Study Design

The present study used data from open-access repositories to form a training set in which a 

machine learning model was trained. Data from three separate datasets (Dokuz Eylül 

University (DEU); Cognitive Reserve/Reference Ability Neural Network (CR/RANN) and 

The Irish Longitudinal Study on Ageing (TILDA)) were then used to form three external 

validation sets in which the machine learning model was validated and the relationship 

between brainPAD and cognitive function was investigated. In all cases, the data was 

collected prior to conception and design of the present study. The target population were 

healthy adults.
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Participants

Training Set: The data were comprised of MRI scans from 1,359 healthy adults (mean age 

40.04 years, SD = 17.78 years, range = 18.00 – 88.36 years; 855 females) drawn from 

various open-access data repositories (see Table S.1 in Supplementary Info). Inclusion 

criteria for the training cohort were: over 18 years old, age and gender data available, and 

not diagnosed with any neurological, psychiatric or major medical conditions.

Test Set 1 –DEU: The first test set was comprised of 175 community-dwelling adults (mean 

age = 68.95 years, SD = 8.59 years; range = 47.56 – 93.51 years; 104 females) recruited as 

part of a study conducted at Dokuz Eylül University, Izmir, Turkey. Exclusion criteria 

included history of neurological or psychiatric diseases, use of psychotropic drugs including 

cholinesterase inhibitors, traumatic brain injury, history of stroke, drug and/or alcohol 

addiction and uncontrolled systemic diseases.

Test Set 2 – CR/RANN: The second test set was comprised of 380 community-dwelling 

adults (mean age = 52.41 years, SD = 17.09 years; range = 19 – 80 years; 210 females) who 

participated in the Cognitive Reserve/Reference Ability Neural Network study (CR/RANN; 

(Stern, Gazes, Razlighi, Steffener, & Habeck, 2018; Stern et al., 2014). These participants 

were screened for MRI contraindications, hearing and visual impairments, medical or 

psychiatric conditions, and dementia and MCI. Further inclusion criteria were a score of 

over 135 on the Mattis Dementia Rating Scale (Jurica, Leitten, & Mattis, 2001), a reading 

level at least equivalent to the US 4th grade, and minimal complaints of functional 

impairment.

Test Set 3 –TILDA: The third test set was comprised of an MRI subset of a nationally 

representative longitudinal cohort study of community-dwelling adults in Ireland (B. J. 

Whelan & Savva, 2013). From an initial subset of 502 participants, participants were 

excluded due to missing a portion of the cerebellum (n = 2), a history of Parkinson’s disease, 

stroke, or transient ischemic attack (n = 11) and no cognitive data (n= 2). The final test set 

was comprised of MRI data from 487 participants (mean age = 68.6 years, SD = 7.21 years; 

range = 50 – 88 years; 260 females).

MRI data acquisition

Training Set: A range of T1-weighted MRI scans from different scanners and using 

different protocols were used as the training set (see Table S.1 in Supplementary Info).

Test Set 1 – DEU: DEU participants underwent a 10 minute T1 scan in a 1.5 T Philips 

Achieva scanner as part of a larger 20-min MRI battery. Two separate protocols were used 

for scans included here. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) T1 

protocol was followed for 126 scans using the turbo field echo sequence with the following 

parameters: number of slices = 166, FOV = 240mm3, matrix size = 256×256, slice thickness 

= 1 mm, slice gap = 0 mm, TR = 9 ms, TE = 4 ms. For 49 scans, a local protocol using a 

gradient echo sequence was followed with the following parameters: FOV = 230mm3, 

matrix size = 400×512, slice thickness = 1 mm, slice gap = 0 mm, TR = 25 ms, TE = 6 ms.
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Test Set 2 – CR/RANN: CR/RANN participants underwent a 5 minute T1 MPRAGE scan 

in a 3T Philips Achieva scanner as part of a larger 2-hr imaging battery. The following 

parameters were used: FOV = 256×256×180 mm, matrix size = 256×256, slice thickness = 1 

mm, slice gap = 0 mm, TR = 6.5 ms, TE = 3 ms.

Test Set 3 – TILDA: TILDA participants underwent a 5 minute 24 seconds T1 MPRAGE 

scan in a 3T Philips Achieva scanner as part of a larger 45-min MRI battery. The following 

parameters were used: FOV = 240×240×162mm3, matrix size = 288×288, slice thickness = 

0.9 mm, slice gap = 0 mm, TR = 6.7 ms, TE = 3.1 ms.

MRI pre-processing—All images were preprocessed using SPM12 (University College 

London, London, UK). Prior to processing, all scans were automatically approximately 

reoriented (see Supplemental Information; MRI pre-processing) to a canonical SPM 

template. All scans were then visually inspected for good orientation and gross artefacts 

before preprocessing. In the test set, badly oriented scans were manually reoriented before 

preprocessing. In both training and test sets, each individual dataset was preprocessed in a 

separate batch. Bias correction was applied to image which were then segmented into GM, 

WM, and CSF. Segmented GM images were non-linearly registered to a custom template, 

using SPM’s DARTEL. Images were then affine registered to MNI space (1 mm3) and 

resampled with modulation to preserve the total amount of signal from each voxel. Images 

were smoothed with a 4 mm full-width at half maximum Gaussian kernel. Finally, images 

were visually inspected for accurate segmentation. The code used to auto-reorient and 

preprocess the MRI data is available at https://github.com/rorytboyle/brainPAD.

Machine learning

Data preparation: GM images were resized to 2 mm3 voxels and individual voxel values 

were extracted from each image. A threshold was applied such that a voxel was retained if it 

had GM density > 0.2 in that voxel across all 1,359 training set images. After thresholding, 

the training data consisted of 1,359 images, each with 54,869 voxels.

Machine learning model: The goal of the training phase was to construct a generalizable 

model that could predict chronological age from GM data. In order to increase 

generalizability, a data resampling ensemble approach was used. That is, 500 participants, 

with a 50:50 gender ratio, were randomly sampled without replacement from the training 

data to form a nested training set. This process was repeated 25 times, creating 25 nested 

training sets. Each nested training set (500 participants x 54,869 voxels), was used as the 

input to a regularized linear regression model (Elastic Net), with 10-fold cross-validation 

(CV), to predict the chronological age of each participant (see Supplementary Info for 

further information on the machine learning model). The performance of the model was 

quantified using the mean of each of the 25 nested models’ Pearson’s correlation between 

chronological age and predicted age (r), total variance explained (R2), mean absolute error 

(MAE), and the weighted MAE. The weighted MAE is equal to the MAE divided by the age 

range of the sample tested and is a more suitable metric for comparing the MAE of 

brainPAD models across studies as it accounts for the impact of a sample’s age range on 
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prediction accuracy (Cole, Franke, & Cherbuin, 2019). A lower weighted MAE reflects 

greater accuracy.

Application to independent test sets: First, the average coefficient value for each voxel 

across all folds in all 25 training models was calculated, resulting in a vector of length 

54,869. For each independent test set, the mean coefficient values were multiplied by the 

voxels’ GM density values and the product was summed to create a brain-age prediction for 

each participant. To correct for the proportional bias in the model, the prediction was added 

to the intercept of the training set, and the result was then divided by the slope of the training 

set. This correction does not affect the relationship between brainPAD and outcome 

measures but scales the data correctly so that brainPAD scores can be interpreted in units of 

years proportional to a person’s chronological age. Similar corrections have been applied in 

other brainPAD models (Cole et al., 2018). BrainPAD was calculated by subtracting 

chronological age from the corrected predicted age, hence, a positive brainPAD value 

indicates a brain-predicted age that exceeds the participant’s chronological age, suggesting 

accelerated brain ageing. The code used to make brain-age predictions and calculated 

brainPAD scores for independent test sets is available at https://github.com/rorytboyle/

brainPAD.

Cognitive function measures—Each of the three datasets contained a wide range of 

cognitive measures. However, as the three datasets were completely independent of one 

another, and all data collection was completed prior to conception and design of the present 

study, different cognitive measures were used across the datasets. For the purposes of the 

present study, a cognitive measure was selected for analysis if it assayed a cognitive domain 

that was assessed in at least one other dataset. For example, the AMNART and NART 

assessed premorbid intelligence in CR/RANN and TILDA respectively so both measures 

were selected for analysis and considered as ‘comparable’ measures. The cognitive domains 

assessed by each measure were decided with reference to the literature as outlined in the 

Supplementary Information. Across all three datasets, 17 common cognitive domains were 

identified (see Table 2 for list of cognitive domains and cognitive measures used and 

Supplementary Information for detailed descriptions of each cognitive measure).

Statistical Analysis

The statistical analysis was conducted using the following procedure:

1. Correlate. Within each independent test set, partial Spearman’s rank order 

correlations were conducted between brainPAD scores and cognitive measures, 

controlling for chronological age and sex. Sex was adjusted for to account for a 

significant sex difference in brainPADs (p < 0. 0001), see Supplementary Results 

for further detail.

2. Replicate. For findings replicated in multiple datasets, the probability of 

obtaining p-values by chance was calculated by random-label permutation (see 

Supplementary Methods for further detail). Briefly, this involved randomly 

shuffling brainPAD scores, conducting Spearman’s partial correlations between 

randomly shuffled brainPAD scores and the cognitive dependent variables, 
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controlling for age and sex. This process was repeated one million times. The 

number of times in which all random p-values were more extreme (i.e. smaller) 

than the actual p-values was summed and divided by one million to obtain the 

probability of the finding replicating across multiple datasets by chance. 

Replicated findings were deemed significant if this probability was less than .05.

3. Correct for multiple comparisons. All other correlations were then corrected for 

multiple comparisons, while allowing for correlations among dependent 

cognitive variables, using a maximum statistic approach (see Supplementary 

Methods for further detail). Briefly, in each test set, brainPAD scores were 

randomly shuffled and then Spearman’s partial correlations were conducted 

between the randomly shuffled brainPAD scores and the cognitive dependent 

variables, controlling for age and sex. This process was repeated one million 

times and the maximum rho value was stored each time. Correlations between 

actual brainPAD scores and cognitive variables were deemed significant if they 

exceeded the 95th percentile of the maximum rho values.

Results

Brain age prediction

Training set—The model accurately predicted chronological age (r = 0.85, R2 = 67.24%, 

MAE = 7.28 years, weighted MAE = 0.10, p < 0.0001). As with other brain PAD models 

(e.g., Cole et al., 2018), a proportional bias was observed in this model where chronological 

age correlated with prediction error (r = - 0.4452, p = 1.1036e-10).

Independent test sets

Sex differences in brainPAD—Mean brainPAD differed significantly by sex in all 

datasets, Welch’s t(1009.55) = - 5.79, p < .0001. Males (M = -1.81, SD = 9.92) had 

significantly lower brainPADs than females (M = 1.81, SD = 10.23; see Fig 1). Within 

individual test sets, males had significantly lower brainPADs, compared to females, in in 

CR/RANN (p < .0001) and TILDA (p < .0001) but not in DEU (p = 0.148; see Fig 2).

Brain regions involved in brain age prediction—The voxel-wise method used here 

to predict brain age resulted in individual coefficient values for each voxel. Voxels with 

positive coefficient values contributed to older brain age predictions and voxels with 

negative coefficient values contributed to younger brain age predictions. Figure 3 shows all 

voxels with binarised negative and positive coefficient values, respectively. However, as it is 

difficult to visualize a 3D object containing a large number of small voxels, a .nii file of the 

regression coefficients can be downloaded here: https://osf.io/5n6t8/. Overlaying this .nii file 

in a viewer such as mricroGL will allow for a more accurate view of the regression 

coefficients. Moreover, an .xlsx file containing the absolute value of each regression 

coefficient, the sign direction of that coefficient (i.e. positive/negative), the coefficient rank 

in terms of absolute values, as well as the MNI coordinates and anatomical labels of the 

coefficients, is available here: https://osf.io/dkz67/.
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BrainPAD and Cognitive Function—Across multiple datasets, higher brainPAD scores 

were significantly correlated with reduced performance on measures of general cognitive 

status, semantic verbal fluency, processing speed, cognitive flexibility, and visual attention 

(see Figure 4 and Table 4).

Discussion

A penalized regression approach was able to produce accurate brain-age predictions from T1 

MRI data in three independent datasets. In non-demented adults, brain predicted-age 

difference (brainPAD), calculated by subtracting these brain-age predictions from 

chronological age, was negatively correlated with general cognitive status, semantic verbal 

fluency, processing speed, visual attention, and cognitive flexibility; and visual attention and 

cognitive flexibility in multiple datasets. BrainPAD was significantly correlated with 

phonemic verbal fluency, premorbid intelligence, verbal episodic memory (learning score), 

and visuospatial ability in single datasets after controlling for multiple comparisons; 

however, these correlations were not replicated in another dataset so we do not have strong 

evidence here in support of these relationships. BrainPAD was not significantly correlated 

with processing speed, cognitive flexibility, response inhibition and selective attention, 

sustained attention, verbal episodic memory (immediate recall or delayed recall), or working 

memory in any dataset.

BrainPAD and Cognition

General Cognitive Status—BrainPAD was negatively correlated with general cognitive 

status, as measured using the MMSE and DRS, in DEU and CR/RANN, and the replication 

of this result across both datasets was statistically significant. However, brainPAD was not 

significantly correlated with the MMSE in TILDA. Nonetheless, given the statistically 

significant replication across two of the three datasets, there is reliable evidence in support 

of the correlation between brainPAD and general cognitive status in healthy older adults. 

Previous studies have reported that brainPAD is related to general cognitive status, albeit in 

samples including individuals with MCI, AD, or dementia (Beheshti et al., 2018; Kaufmann 

et al., 2019), and without adjusting for the effect of age or controlling for multiple 

comparisons (Beheshti et al., 2018; Cole, Underwood, et al., 2017; but see Table 1 Footnote 

4 for information about adjusting for age in Cole, Underwood et al., 2017). In contrast to our 

findings, Gaser et al. (2013) reported that brainPAD was correlated with the CDR and 

ADAS but not the MMSE in an MCI sample. However, Gaser et al. (2013) did not account 

for the effect of age. While Löwe et al. (2016) reported that brainPAD was negatively 

correlated with the MMSE across mixed samples of APOE e4 carriers and non-carriers 

(including healthy controls, MCI, and AD), it was not significantly correlated with the 

MMSE within healthy control and MCI subgroups. Sample sizes within these subgroups 

were relatively small, ranging from 14 to 81 participants. Consequently, the correlations 

between brainPAD and the MMSE in these participants may not have been adequately 

powered to reach significance. Our study is the first to report a relationship between 

brainPAD and measures of general cognitive status in healthy adults while controlling for 

the effects of age and correcting for multiple comparisons. This is also the first study to 

investigate the relationship between brainPAD and DRS score. Our findings provide strong 
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support for the existence of a significant negative relationship between brainPAD and 

general cognitive status. As such, this finding provides some preliminary support in favour 

of brainPAD as an objective measure of general cognitive function given that brainPAD is 

not subject to the various biases and effects (e.g. low reliability, practice effects) that limit 

the MMSE (Galasko, Abramson, Corey-Bloom, & Thal, 1993; Pfeffer, Kurosaki, Chance, 

Filos, & Bates, 1984; Tombaugh & McIntyre, 1992) and the DRS (Emery, Gillie, & Smith, 

1996; Green, Woodard, & Green, 1995).

Semantic Verbal Fluency

BrainPAD was significantly negatively correlated with semantic verbal fluency, as measured 

using the Animals task, in both DEU and CR/RANN but not in TILDA. Regardless, the 

replication of this result across both DEU and CR/RANN was statistically significant. This 

finding contradicts non-significant correlations between brainPAD and composite measures 

of semantic and phonemic verbal fluency (Cole, Underwood, et al., 2017; Richard et al., 

2018), although the former study used age-adjusted t-scores to control for the age-cognition 

relationship rather than adding age as a covariate to the brainPAD-fluency measure (cf. Le et 

al., 2018). As semantic verbal fluency is associated with age (Clark et al., 2009; Santos 

Nogueira, Azevedo Reis, & Vieira, 2016), the failure to adjust for age may have obscured a 

significant effect. Alternatively, these previously reported non-significant correlations could 

be explained by the use of composite measures of both phonemic and semantic fluency as 

we did not find strong evidence for a relationship between phonemic verbal fluency and 

brainPAD (although it was significant in DEU, this correlation was not replicated in CR/

RANN). Therefore, it is possible that a non-significant relationship between phonemic 

fluency and brainPAD in the Cole et al. (2017) and Richard et al. (2018) study may have 

diluted a possible significant relationship between semantic fluency and brainPAD. In a 

study controlling for age, brainPAD was found to significantly negatively correlate with 

semantic verbal fluency (Franke et al., 2013). Although the Animals task has been described 

as an optimal test of neuropsychological function (Ardila, Ostrosky‐Solís, & Bernal, 2006), 

scores on this task are affected by various factors, including scoring and administration 

procedures (Woods, Wyma, Herron, & Yund, 2016) and practice effects (Cooper et al., 2001; 

Harrison, Buxton, Husain, & Wise, 2000; Wilson, Watson, Baddeley, Emslie, & Evans, 

2000). As such, brainPAD, as an objective marker of general brain health and global 

cognitive function, could be a viable alternative to the Animals task. In sum, our results 

provide further evidence in support of a correlation between brainPAD and semantic verbal 

fluency.

Processing speed, visual attention, and cognitive flexibility

Across all three datasets, brainPAD was negatively correlated with processing speed, visual 

attention, and cognitive flexibility as measured by trail-making tests (TMT B or CTT 2). The 

TMT B is a relatively sensitive measure of cognitive decline: completion times were shown 

to be significantly different between healthy controls, MCI, and AD (Ashendorf et al., 

2008). Likewise, the CTT 2 is sensitive to cognitive decline, with differences between AD 

and healthy controls (Lin et al., 2014), and between healthy controls, MCI, and AD (Guo et 

al., 2010). Therefore, it is no surprise that processing speed, visual attention, and cognitive 

flexibility were also negatively correlated with an index of accelerated brain ageing. Indeed, 
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previous studies have reported similar results for trail-making versus brainPAD; however, 

these studies did not correct for multiple comparisons (Cole, Underwood, et al., 2017) or 

used clinical samples (TBI; Cole et al., 2015). Our data therefore augment these findings by 

replicating this result across three independent datasets. This evidence could suggest that 

brainPAD may be a potential objective measure of cognitive decline as it is not subject to the 

same factors which bias trail-making performance, including to practice effects (Bartels, 

Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010), rater effects (Feeney et al., 2016) and 

participant literacy (Vaucher et al., 2014).

Visual attention and cognitive flexibility

BrainPAD was also negatively correlated with visual attention and cognitive flexibility 

(TMT B minus A), in DEU and CR/RANN, but not in TILDA (CTT 2 minus 1). Replication 

of this finding (albeit with relatively small rho values) in DEU and CR/RANN suggests a 

modest association between visual attention and cognitive flexibility. The relationship 

between brainPAD and TMT B minus A was only investigated in one previous study, in a 

TBI sample, (Cole et al., 2015) where a significant positive correlation was reported. 

Although the TMT B minus A can distinguish between stable and progressive MCI on a 

group level (Zanetti et al., 2006), and is associated with reduced mobility, increased 

mortality risk (Vazzana et al., 2010) and slower walking speed (Ble et al., 2005), as a derived 

measure of the TMT, the TMT B minus A index is similarly affected by the various factors 

that can limit interpretation of the TMT B scores. Therefore, given the correlation shown 

here between TMT B minus A and brainPAD, brainPAD may be a potential objective 

measure of general cognitive function.

It is notable that several significant brainPAD-cognition relationships were observed in the 

DEU and CR/RANN datasets, but not in TILDA. We tentatively offer some suggestions for 

this pattern of results. Confounding factors obscuring the brainPAD-general cognitive status 

relationship may have been uniquely present in TILDA. Whereas the DEU and CR/RANN 

cohorts were part of neuroimaging research studies, which have typically strict inclusion 

criteria, the TILDA MRI sample were a subset of a large nationally representative 

longitudinal study encompassing health, economic and social research (B. J. Whelan & 

Savva, 2013). TILDA therefore had few inclusion criteria: being at least 50 years old, having 

a residential address, and absence of dementia at baseline (Kearney et al., 2011; Savva, 

Maty, Setti, & Feeney, 2013). TILDA’s MRI sample were screened for MRI 

contraindications and were on average healthier than the full sample, but it is likely that the 

TILDA sample included participants who might normally be excluded from neuroimaging 

research studies (e.g., those using psychotropic or cardiovascular medication). Moreover, the 

range of some cognitive measures in TILDA was also smaller than DEU and CR/RANN in 

some cases (see Supplemental Information: Table S.5): notably for general cognitive status, 

and visual attention and cognitive flexibility, where the brainPAD-cognition correlations 

were not replicated within TILDA. Restricted range of scores on these measures in TILDA 

may have contributed to smaller correlation coefficients (Bland & Altman, 2011; Mendoza 

& Mumford, 1987). Additionally, the age range within TILDA was smaller than both DEU 

and CR/RANN which may have reduced the statistical power of the brainPAD-cognition 

correlations within TILDA as range restriction on covariates has also been shown to reduce 
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power (Miciak, Taylor, Stuebing, Fletcher, & Vaughn, 2016) and decrease the magnitude of 

correlation coefficients (Sackett & Yang, 2000).

The smaller age range within TILDA (38 years) as compared to DEU (45.95 years) and CR/

RANN (70 years) might also have contributed to the weaker correlation between 

chronological age and brain-predicted age in TILDA, as range restriction will reduce the size 

of correlation coefficients (Goodwin & Leech, 2006). Moreover, a negative mean brainPAD 

was reported in TILDA (-6.97 years) whereas both DEU and CR/RANN had positive mean 

brainPADs, +6.6 and +6.39 years respectively. Various factors, including intelligence, 

educational attainment, and environmental factors, have been proposed to affect brain ageing 

(Irimia, Torgerson, Goh, & Van Horn, 2015). TILDA had significantly higher levels of 

education versus both CR/RANN and DEU (see Supplementary Results). Steffener and 

colleagues (2016) reported that brainPAD was significantly related to education, with higher 

education associated with younger brains (or smaller/more negative brainPADs). This 

association with education could be one reason why much lower mean brainPADs were 

observed for the TILDA dataset. As the cohorts are each from different countries, there 

could be various other environmental factors that could further explain this relationship.

Model evaluation

We evaluated our model based on its predictive accuracy in three independent test sets, as 

proposed by Madan and Kensinger (2018). While internal cross-validation is a valuable and 

widely used technique that can attenuate overfitting (Arlot & Celisse, 2010); the use of 

cross-validation in certain situations and when it is not implemented correctly, can result in 

overestimated prediction accuracy and overfitting (Saeb, Lonini, Jayaraman, Mohr, & 

Kording, 2016; Skocik, Collins, Callahan-Flintoft, Bowman, & Wyble, 2016; Varoquaux et 

al., 2017). For brainPAD to be considered for clinical use, it must perform accurately with 

MRIs acquired in different scanners and under different protocols. However, in most 

instances of cross-validation, while the test set is split and held completely independent from 

the training set, factors common to both sets, such as scanner and protocol, could influence 

model performance. As such, the gold-standard evaluation for brainPAD should be accurate 

performance on independent external datasets.

The significant correlations between chronological age and brain-predicted age in all three 

external datasets shows that our model is accurate and generalizable (0.65, 0.78, and 0.87 for 

external datasets). Although the magnitude of these correlations is lower than correlations 

reported elsewhere, ranging from 0.91 to 0.94 (Cole et al., 2015; Cole, Poudel, et al., 2017; 

Franke et al., 2010; Lancaster et al., 2018; Liem et al., 2017), it exceeds other externally 

validated brain-predicted age studies, ranging from 0.65 to 0.85 (Beheshti et al., 2018; 

Madan & Kensinger, 2018; Varikuti et al., 2018).

With respect to mean absolute error (MAE), our model did not perform as well as other 

externally validated studies, ranging from 4.28 to 7.5 years (Beheshti et al., 2018; Cole et al., 

2018; Franke et al., 2010; Lancaster et al., 2018; Madan & Kensinger, 2018). As a result, it 

could be possible that we may have lost some precision by not integrating WM information 

as input in the model, as was done by Cole et al. (2018), for example. Another potential 

reason is that other studies centered the age predictions using the mean of the ages from the 
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test set. Although this correction is typically not explicitly described in method sections, 

Madan and Kensinger (2018) note that this is a standard correction in brain age prediction. 

Moreover, some studies also match the variance in predicted age in the test set with the 

variance of the training data (Madan & Kensinger, 2018). Both corrections are principled 

and acceptable methods of correcting for the regression to the mean artefact in brain age 

predictions but they result in biased age predictions in the test set. These corrections also 

limit the use of brainPAD to make single subject predictions, as both the test set mean and 

variance are used in the prediction. Our method used only training set information and 

therefore produced slightly less accurate but less biased predictions. Finally, our model may 

also appear to be less precise in terms of MAE as an artefact of the greater age range of our 

sample in comparison to most brainPAD studies. An alternative metric, the weighted MAE 

(calculated by dividing the MAE by the age range of the sample), may enable better 

comparisons across studies with different age ranges (Cole et al., 2019). While our weighted 

MAE is higher than some studies, ranging from 0.072 to 0.087 (Lancaster et al., 2018; Liem 

et al., 2017), the lowest weighted MAE in our sample (0.14 in CR/RANN) outperformed this 

metric when calculated for other studies, 0.178 (Beheshti et al., 2018), and 0.18 (Varikuti et 

al., 2018) and is comparable to 0.139 (Franke et al., 2010, 'Test 4' external test set). As such, 

the predictive accuracy of our model is comparable to the rest of the literature and is 

arguably less biased as only training set information is used.

Sex differences in brainPAD

There were significantly higher mean brainPADs in females in two of the three datasets in 

this study (TILDA and CR/RANN). There is mixed evidence in relation to sex differences in 

other brain age prediction studies, with some studies reporting significantly higher mean 

brainPADs in males (Cole et al., 2018; Franke et al., 2013; Luders, Cherbuin, & Gaser, 

2016), some reporting no significant sex differences (Azor et al., 2019; Cruz-Almeida et al., 

2019; Franke, Ristow, Gaser, & Alzheimer’s Disease Neuroimaging Initiative, 2014; Han et 

al., 2019), and another study, with a notably large sample size of 19,000, reporting higher 

mean brainPADs in females (Smith et al., 2019). Even studies using the same training sets 

have contrasting results in terms of sex effects. For example, one training set reported 

significantly higher male brainPADs in two studies (Franke et al., 2013; Luders et al., 2016) 

but no sex differences in another study (Franke et al., 2014): however, this divergence could 

be due to the likely mean centering of both brainPADs in both sexes in the latter study (i.e., 

male and female groups had mean brainPADs of 0 years). This was also the case in another 

training set used in multiple studies, with one study reporting significantly higher male 

brainPADs (Cole et al., 2018) but another reporting no significant differences (Azor et al., 

2019). As such, it is likely that sex differences in brainPAD reflect the characteristics of the 

test sample. This is apparent in the present study with two out of the three datasets showing 

higher mean female brainPAD but one dataset showing no significant differences. We 

therefore recommend that future brain age studies report sex differences.

Model interpretation

Model interpretability—The interpretability of machine learning models is an important 

and widely discussed problem (Doshi-Velez & Kim, 2017), and although it is poorly defined 

(Lipton, 2018) it has been described as “the ability to explain or to present in understandable 
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terms to a human” (Doshi-Velez & Kim, 2017, p. 2) and elsewhere as the ability to 

“understand the contribution of individual features in the model” (Lou, Caruana, & Gehrke, 

2012, p. 1). Additionally, Lipton (2018) argued that for a model to be considered truly 

interpretable, it should possess the following three properties: algorithmic transparency (i.e. 

it should be possible to understand the mechanism by which the model works), 

decomposability (each part of the model, such as the model input and parameters, should 

have an intuitive explanation), and simulatability (a person should be able to consider the 

entire model at once). We contend that our model possesses these three properties as well as 

conforming to the definitions proposed above. First, our model possesses algorithmic 

transparency in that the Elastic Net is a penalized linear regression. Second, our model 

possesses decomposability. The inputs to the model were GM voxel density values and the 

parameters, or beta coefficient values, weighted the contribution of each individual value to 

the model output, which is brain predicted age. Third, our model possesses simulatability as 

the entire model can be considered as follows: summing the multiplication of GM voxel 

density values by the average contribution of these voxels to the prediction of chronological 

age in the training set (i.e., the beta coefficient values) resulted in a prediction of a new 

individual’s brain age.

Biological interpretability—Our statistical model of brain age contains many adjacent 

voxels that have opposite signs. The negative weights represent those areas with less volume 

(associated with older age). The positive weights show areas that have more volume 

associated with older age, which may seem counterintuitive: we propose that this is because 

GM in these areas represents a shift away from the cortex or periventricular regions (i.e., 

younger participants would have WM or CSF in those regions). An example of a similar 

result can be seen in an Alzheimer’s disease classification study (Dubois et al., 2014), which 

also used penalized regression.

Limitations

While we argue that the current model has good biological interpretability, this could be 

further improved by forcing sparsity to limit the number of voxels making significant 

contributions to brain age predictions. Modified Elastic Net algorithms, such as Enet-BETA 

(Liu & Li, 2017), can obtain sparser models which would reduce the number of predictive 

voxels, thereby further improving interpretability. However, as the Elastic Net’s prediction 

accuracy can increase with feature set size (Jollans et al., 2019), further limiting the feature 

set size could reduce model accuracy. As such, it might be difficult to achieve the right 

balance between interpretability and accuracy. An alternative approach could be to 

incorporate a penalty such as Total Variation within the Elastic Net in order to take into 

account the spatial structure of MRI data and produce weight maps that show the predictive 

voxels clustered in regions rather than dispersed across the brain (Dubois et al., 2014). These 

algorithms have been shown to produce models with greater biological interpretability (i.e. 

spatially organized weight maps) and comparable predictive accuracy to regular Elastic Net 

models for classification problems (Dubois et al., 2014). However, the technical 

implementation of such algorithms can be difficult and computationally expensive, although 

solutions such as early stopping and feature screening, have been proposed (Dohmatob, 

Eickenberg, Thirion, & Varoquaux, 2015).
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Another possible limitation of the current model is that it uses only voxel-wise GM density 

data and thus our model may have lower accuracy due to this restricted feature set. Other 

brain age models have used feature sets including combinations of cortical and subcortical 

GM regional volumes (Steffener et al., 2016); combinations of GM voxel density values, 

cortical thickness, and regional volume data (Gutierrez Becker et al., 2018); combinations of 

cortical thickness, cortical surface area, subcortical volume, and functional connectivity 

information (Liem et al., 2017); and combinations of GM and WM voxel-wise density 

information (Cole et al., 2015, 2018; Cole, Underwood, et al., 2017). Notably, diffusion 

tensor imaging metrics and cortical thickness have been related to the cognitive domains 

assessed here, including semantic verbal fluency (Eastman et al., 2013; Rodríguez-Aranda et 

al., 2016) and processing speed, visual attention, and cognitive flexibility (Ciulli et al., 2016; 

Dickerson et al., 2008). More complex feature sets, which combined different feature types 

and imaging modalities, resulted in higher predictive accuracy versus single feature sets 

(Liem et al., 2017). As such, it is possible that a more accurate model using a more complex 

feature set would strengthen the brainPAD-cognition correlations reported here. However, 

such feature sets typically require dimension reduction such as PCA (Gutierrez Becker et al., 

2018) or even dot products to combine GM and WM data (Cole et al., 2015, 2018; Cole, 

Underwood, et al., 2017). These steps can reduce the interpretability of the relationship 

between the original feature and brain age (Mateos-Pérez et al., 2018), although methods 

exist for making such feature sets interpretable (Honeine & Richard, 2009; Kwok & Tsang, 

2004; Snyder et al., 2013). However, our aim was to produce an interpretable model with a 

relatively straightforward method, an aim which required a simple feature set. While this 

approach may have limited our model’s accuracy as larger and more complex feature sets 

often produce more accurate predictions (Scheinost et al., 2019), our model’s accuracy is 

still comparable to other models reported to-date in the literature.

The major limitation of our study is that for the majority of the cognitive domains 

investigated here, we used different cognitive measures to assess the putatively same 

cognitive processes. For example, although we considered the CTT 2 as a direct ‘culture-

free’ analogue of the TMT B, as it is widely described (Elkin-Frankston, Lebowitz, Kapust, 

Hollis, & O’Connor, 2007; Messinis, Malegiannaki, Christodoulou, Panagiotopoulos, & 

Papathanasopoulos, 2011), the CTT 2 has different stimuli (shapes and colors vs numbers 

and letters) and takes longer because it has more stimuli (Mitrushina, Boone, Razani, & 

D’Elia, 2005). Consequently, some have argued, based on findings of significant difference 

in mean scores on CTT 2 and TMT B, that the tests are not direct equivalents (Dugbartey, 

Townes, & Mahurin, 2000; Strauss, Sherman, & Spreen, 2006). However, mean scores for 

both measures are calculated as time to completion and thus a difference in means between 

both measures reflects a difference primarily in test length. A more appropriate measure of 

test equivalence would be correlations between mean scores, and various studies report 

significant correlations between both measures (Dugbartey et al., 2000; Elkin-Frankston et 

al., 2007; Lee, Cheung, Chan, & Chan, 2000; Messinis et al., 2011). Similar arguments 

might be made for the other tests (e.g. the MMSE and DRS) that we used to assess the same 

cognitive constructs (e.g. general cognitive status). While it would be preferable to use the 

identical measures across datasets, our study used existing data and was designed after data 

collection. As a result, this approach was not possible here. Nonetheless, the measures used 
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here were broadly comparable in that they are apparent measures of the same underlying 

cognitive constructs and it is these constructs which we are most interested in, more so than 

the actual measures.

Conclusions

The brain age model presented here is accurate and generalizable as it significantly predicts 

chronological age in 3 independent datasets. Furthermore, this model is interpretable and 

biologically plausible as older brain age is driven by decreased GM density in voxels that 

have been previously shown to be vulnerable to GM atrophy and volume loss. Finally, 

brainPAD scores, calculated using this model, are associated with reduced cognitive 

performance within the domains of general cognitive status; semantic verbal fluency; 

processing speed, visual attention, and cognitive flexibility; and visual attention and 

cognitive flexibility. The replication of these correlations in multiple datasets demonstrates 

that the relationship between brainPAD and these domains of cognitive function is robust to 

cultural- and site/scanner effects. As such, given that brainPAD is also not limited by task 

effects which can hinder neuropsychological assessment, these findings provide support for 

the use of brainPAD as an objective measure of general cognitive function with applications 

as a general measure of brain health and cognitive performance in the clinic and as a 

summary outcome measure for intervention studies in research settings.
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Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Violin plot comparing distributions of brainPADs between sexes across all datasets
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Fig 2. 
Violin plots comparing distributions of brainPADs between sexes within datasets
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Fig 3. 
Binarised regression coefficients (positive coefficients shown in pink, negative coefficients 

shown in yellow) overlaid on 5 coronal slices. A: No threshold applied; B: thresholded at 

25th percentile of absolute value of regression coefficients; C: thresholded at 50th percentile 

of absolute value of regression coefficients; D: thresholded at 75th percentile of absolute 

value of regression coefficients; E: thresholded at 95th percentile of absolute value of 

regression coefficients.
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Fig. 4. 
Scatterplots of replicated correlations between the residuals of brainPAD and cognitive 

measures after regressing brainPAD on age and sex, and each cognitive measure on age and 

sex. A: General cognitive status; B: Semantic verbal fluency; C: Processing speed, visual 

attention, and cognitive flexibility; D: Visual attention and cognitive flexibility. For 

scatterplots of non-replicated correlations, see Supplementary Info, Figure S.4.
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Table 3

Results of application of trained model parameters to 3 independent test sets.

Test Set Pearson’s r Mean brainPAD SD brainPAD MAE Weighted MAE

Test Set 1 – DEU 0.78* +6.60 6.44 7.60 0.17

Test Set 2 – CR/RANN 0.87* +6.39 8.57 8.56 0.14

Test Set 3 - TILDA 0.65* −6.97 7.52 8.42 0.22

Note: * = p < 10–37. Pearson’s r between brain age and chronological age. Weighted MAE = MAE divided by age range.
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