
libmolgrid: Graphics Processing Unit Accelerated Molecular
Gridding for Deep Learning Applications

Jocelyn Sunseri,
Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, United States;

David R. Koes
Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, United States;

Abstract

We describe libmolgrid, a general-purpose library for representing three-dimensional molecules

using multidimensional arrays of voxelized molecular data. libmolgrid provides functionality for

sampling batches of data suited to machine learning workflows, and it also supports temporal and

spatial recurrences over that data to facilitate work with convolutional and recurrent neural

networks. It was designed for seamless integration with popular deep learning frameworks and

features optimized performance by leveraging graphics processing units (GPUs). libmolgrid is a

free and open source project (GPLv2) that aims to democratize grid-based modeling in

computational chemistry.

Graphical Abstract

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article
or any adaptations for non-commercial purposes.

Corresponding Author: David R. Koes – Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, United States; dkoes@pitt.edu.

Notes
The authors declare no competing financial interest.

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.9b01145.
Additional API documentation and information required to reproduce results and figures (PDF)

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

Published in final edited form as:
J Chem Inf Model. 2020 March 23; 60(3): 1079–1084. doi:10.1021/acs.jcim.9b01145.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/10.1021/acs.jcim.9b01145

INTRODUCTION

Deep learning has emerged as an important area of research in computational chemistry. It

holds great promise for unprecedented improvements in predictive capabilities for such

problems as virtual screening,1 binding affinity prediction,2,3 pose prediction,4,5 and lead

optimization.6–9 The representation of input data can fundamentally limit or enhance the

performance and applicability of machine learning algorithms.10–12 Deep learning can

derive class-defining features directly from training examples. Common input

representations include molecular formats like SMILES and/ or InChi strings,12,13 molecular

graphs,10,11,14–17 and voxelized spatial grids18,19 representing the locations of atoms.

Compared with other representation schemes, spatial grids possess certain virtues including

minimal overt featurization by the user (theoretically permitting greater model

expressiveness) and full representation of three-dimensional spatial interactions in the input.

For regular cubic grids, this comes at the cost of coordinate frame dependence, which can be

ameliorated by data augmentation19 and can also be theoretically addressed with various

types of inherently equivariant network architectures20–24 or by using other types of

multidimensional grids.25,26 Spatial grids have been applied successfully to tasks relevant to

computational chemistry like virtual screening,18,19,27 pharmacophore generation,28

molecular property prediction,29,30 molecular classi-fication,29,31 protein binding site

prediction,32–34 molecular autoencoding,35 and generative modeling.36–38

Chemical data sets have many physical and statistical properties that prove problematic for

machine learning, and special care must be taken to manage them. Classes are typically

highly imbalanced with many more known inactive than active compounds for a given

protein target; regression tasks may span many orders of magnitude with nonuniform

representation of the underlying chemical space at particular ranges of the regressor, and

examples with matching class labels or regression target values may also be unequally

sampled from other underlying classes (e.g., there may be significantly more binding affinity

data available for specific proteins that have been the subject of greater investigation, such as

the estrogen receptors, or for protein classes like kinases). By offloading data processing

tasks required to manage these problems to an open source library specialized for chemical

data, computational chemists can systematically obtain better results in a transparent

manner.

Using multidimensional grids (e.g., voxels) to represent atomic locations (and potentially

distributions) is computationally efficient - their generation is embarrassingly parallel and

therefore readily amenable to modern GPU architectures - and preserves three-dimensional

spatial relationships present in the original input. Coordinate frame dependence can be

removed or circumvented. However, commonly available molecular parsing and conversion

libraries do not yet provide gridding functionality, nor do they implement the other tasks

required to obtain good performance on typical chemical data sets such as strategic

resampling and data augmentation. Thus, we abstracted the gridding and batch preparation

functionality from our past work, gnina,19 into a library that can be used for general

molecular modeling tasks but also interfaces naturally with popular Python deep learning

libraries. Implemented in C++/CUDA with Python bindings, libmolgrid is a free and open

Sunseri and Koes Page 2

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

source project (distributed under the GNU General Public License, version 2) intended to

accelerate advances in molecular modeling via multidimensional spatial arrays.

IMPLEMENTATION

Key libmolgrid functionality is implemented in a modular fashion to ensure maximum

versatility. Essential library features are abstracted into separate classes to facilitate use

independently or in concert as required by a particular application.

Atom Typing.

Several atom typing schemes are supported, featuring flexibility in the ways types are

assigned and represented. Atoms may be typed according to XS atom typing, atomic

element, or a user-provided callback function (an example of this use-case is shown in Table

S1). Types may be represented by a single integer or a vector encoding. For a typical user,

typing (with either index or vector types) can be performed automatically via an

ExampleProvider.

Examples.

Examples consist of typed coordinates that will be analyzed together, along with their labels.

An Example may consist of multiple CoordinateSets (which may each utilize a different

scheme for atom typing) and may be one of a sequence of Examples within a group. For

example, a single Example may have a CoordinateSet for a receptor and another

CoordinateSet for a ligand to be scored with that receptor, or perhaps multiple

CoordinateSets corresponding to multiple poses of a particular ligand. Examples may be part

of a group that will be processed in sequence, for example as input to a recurrent network; in

that case distinct groups are identified with a shared integer value, and a sequence

continuation flag indicates whether a given Example is a continuation of a previously

observed sequence or is initiating a new one.

ExampleProvider.

To obtain strategically sampled batches of data for training, a user can employ an

ExampleProvider. The desired sampling options are specified to the ExampleProvider

constructor, which can then be populated with one or more files specifying examples.

Properly sampled Examples are obtained via ExampleProvider::next or

ExampleProvider::next_batch. Figure 1 shows graphically how an ExampleProvider might

obtain a batch of 10 shuffled, class-balanced, receptor-stratified Examples from a larger data

set, with accompanying code.

Currently, the simplest way to initialize a provider is to populate it with one or more files

that specify metadata for Examples, with one Example per line. At a high level, that line will

specify class and regression target values for the Example, any group identification

associated with the Example (i.e., a shared integer label identifying Examples to be

processed sequentially, as with temporal data provided as input to a recurrent network), and

one or more strings identifying filenames of molecules corresponding to that Example. Each

molecule file can have distinct typing rules applied. A typical use case is to have a receptor

Sunseri and Koes Page 3

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and a ligand file, but a single receptor file could be provided, e.g., when learning properties

of binding sites, or multiple files could be provided, e.g., when learning properties of

ensembles. The default line layout is [(int)group][(float)label]*-[molfile]+. An example is

shown in Figure 1. In the examples we provide with our project, these files have a .types

suffix.

Table S2 shows all the available options at the time of construction. These options are

described in more detail in the Supporting Information and online documentation.

Grids.

The fundamental object used to represent data in libmolgrid is a multidimensional array

which the API generically refers to as a grid. Grids are typically used during training to

represent voxelized input molecules or matrices of atom coordinates and types. They can be

constructed in two flavors, Grids and ManagedGrids. ManagedGrids manage their own

underlying memory, while Grids function as views over a preexisting memory buffer. Grids

and ManagedGrids are convertible to NumPy arrays as well as Torch tensors. Additional

exposition is available in Figure SS1.

Because of automatic conversions designed for PyTorch interoperability, a user intending to

leverage basic batch sampling, grid generating, and transformation capabilities provided by

libmolgrid in tandem with PyTorch for neural network training can simply use Torch tensors

directly, with little to no need for explicit invocation of or interaction with libmolgrid grids.

Memory allocated on a GPU via a Torch tensor will remain there, with grids generated in-

place. An example of this type of usage is shown in the first example in Table 1.

A Grid may also be constructed explicitly from a Torch tensor, a NumPy array, or, if

necessary, from a pointer to a memory buffer. Examples of constructing a Grid from a Torch

tensor are shown in the second usage section in Table 1. The third usage section shows

provided functionality for copying NumPy array data to ManagedGrids, while the fourth

usage section shows functionality for constructing Grid views over NumPy array data

buffers. In the fourth example, note that in recent NumPy versions the default floating-point

data type is float64, so the user should take care to match the data type between arrays and

Grids.

GridMaker.

A GridMaker is used to generate a voxel grid from an Example, an ExampleVec, a

CoordinateSet, or paired Grids of coordinates and types. GridMaker can operate directly on

a user-provided Torch tensor or Grid, or it can return into a new NumPy array via

GridMaker::make_ndarray or Torch tensor via GridMaker::make_tensor. GridMaker features

GPU-optimized gridding that will be used if a compatible device is available. GridMaker

options pertaining to the properties of the resulting grid are specified when the GridMaker is

constructed, while the examples from which a grid will be generated and their instantiation

properties (including any transformations) are specified by a particular invocation of

GridMaker::forward. Specifically, Table S3 shows the possible constructor arguments, which

are described in more detail in the Supporting Information. Figure 2 shows an example of

basic GridMaker usage, default-constructing a GridMaker and using it to populate a grid

Sunseri and Koes Page 4

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with densities for a batch of molecules. If desired, the values of random_translation and

random_rotation can be set in the call to gmaker::forward, thereby applying random data

augmentation to each example in the batch. If it is desirable to retain the applied

transformation, then transformations can be created explicitly, as shown in Figure S2. The

GridMaker class also defines a backward function that computes atomic gradients, which

can be used for tasks ranging from visualizing what a network has learned to using a trained

network to optimize the coordinates and types of input molecules.

Transformations.

Data augmentation in the form of random rotations and translations of input examples can

be performed by passing the desired options to GridMaker::forward, as described in the

previous section. Specific translations and rotations can also be applied to arbitrary Grids,

CoordinateSets, or Examples by using the Transform class directly. Transforms can store

specific rotations, described by a libmolgrid::Quaternion, an origin around which to rotate,

described by a libmolgrid::float3, which is also interconvertible with a Python tuple, and a

specific translation, expressed in terms of Cartesian coordinates and also described by a

float3. These prove useful for sophisticated networks such as the spatial transformer.39

Additional examples of Transform constructor invocation are shown in Table S4, and

information about Transform::forward is shown in Figure S2.

RESULTS

We demonstrate model training with input tensors populated by libmolgrid and neural

networks implemented using Caffe, PyTorch, and Keras with a Tensorflow backend (code

available at https://gnina.github.io/libmolgrid/tutorials.html). Training loss performance is

similar across all three frameworks, as shown in Figure S3. libmolgrid is fully functional

with any of these popular libraries. Its overall speed and memory footprint vary significantly

with the user’s chosen library, however. As shown in Figure 3(a) and (b), the performance

when using a GPU for gridding and neural network training is much faster when using Caffe

and PyTorch than it is when using Tensorflow via Keras, with modest improvements in

performance for Caffe and PyTorch when using the newer Titan V GPU rather than the older

GTX Titan X. This is due to libmolgrid’s ability to directly access underlying data buffers

when interoperating with Caffe and PyTorch, thus avoiding unnecessary data migration

between the CPU and GPU; this is not currently possible with Tensorflow, and so passes

through the network involve grids being generated on the GPU by libmolgrid, copied into a

NumPy array on the CPU, and then copied back onto the GPU by Tensorflow when training

begins. This results in a significant performance penalty, with memory transfers

fundamentally limiting performance; future versions of libmolgrid will seek to mitigate this

issue with Tensorflow 2.0. The discrepancy in memory utilization shown in Figure 3(c) is

somewhat less dramatic, but similarly, memory utilization when doing neural network

training with Tensorflow is less efficient than using the other two libraries.

As an example of a more specialized task that uses the backward gradients computed by

GridMaker, we demonstrate training a CNN to convert voxelized atomic densities to

Cartesian coordinates. Each training example consists of a single atom provided to the

Sunseri and Koes Page 5

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gnina.github.io/libmolgrid/tutorials.html

network as a voxelized grid for which the network will output Cartesian coordinates. The

loss function is a simple mean squared error grid loss for coordinates that fall within the

grid, and a hingelike loss for coordinates outside. As shown in Figure 4(a), the model

initially has difficulty learning because the atomic gradients only receive information from

the parts of the grid that overlap an atom, but eventually converges to an accuracy

significantly better than the grid resolution of 0.5 Å. Example predictions are shown in

Figure 4(b). This task could be applicable to a generative modeling workflow and also

demonstrates libmolgrid’s versatility as a molecular modeling tool.

CONCLUSION

Machine learning is a major research area within computational chemistry and drug

discovery, and grid-based representation methods have been applied to many fundamental

problems with great success. No standard library exists for automatically generating voxel

grids or spatial array representations more generally from molecular data or for performing

the basic tasks such as data augmentation that typically must be done to achieve high

predictive capability on chemical data sets using these methods. This means that researchers

hoping to pursue methodological advances using grid-based methods must reproduce the

work of other groups and waste time with redundant programming. libmolgrid empowers

researchers to pursue advances in grid-based machine learning for molecular data by

providing an efficient, concise, and natural C++/CUDA and Python API for data resampling,

grid generation, and data augmentation. It also supports spatial and temporal recurrences

over input, allowing for size extensiveness even while using cubic grids (by performing a

subgrid decomposition), and processing of simulation data such as molecular dynamics

trajectories while preserving temporal ordering of frames, if desired. With adoption, it will

also help standardize performance, enhance reproducibility, and facilitate experimentation

among computational chemists interested in machine learning methods. libmolgrid support

for Caffe and PyTorch is complete, while we plan to enhance Tensorflow support by taking

advantage of the Tensorflow 2.0 programming model and avoiding the unnecessary data

transfers that currently limit combined libmolgrid-Tensorflow performance. Other future

enhancements will include the ability to generate other types of grids, for example, spherical

ones. Documentation, tutorials, and installation instructions are available at http://

gnina.github.io/libmolgrid, while the source code along with active support can be found at

https://github.com/gnina/libmolgrid.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work was supported by Grant R01GM108340 from the National Institute of General Medical Sciences.

■ REFERENCES

(1). Jorissen RN; Gilson MK Virtual Screening of Molecular Databases Using a Support Vector
Machine. J. Chem. Inf. Model 2005, 45, 549–561. [PubMed: 15921445]

Sunseri and Koes Page 6

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gnina.github.io/libmolgrid
http://gnina.github.io/libmolgrid
https://github.com/gnina/libmolgrid

(2). Ballester PJ; Mitchell JBO A machine learning approach to predicting protein-ligand binding
affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169. [PubMed:
20236947]

(3). Zilian D; Sotriffer CA SFCscore RF: a random forest-based scoring function for improved affinity
prediction of protein–ligand complexes. J. Chem. Inf. Model 2013, 53, 1923–1933. [PubMed:
23705795]

(4). Ashtawy HM; Mahapatra NR Machine-learning scoring functions for identifying native poses of
ligands docked to known and novel proteins. BMC Bioinf. 2015, 16, 1–17.

(5). Chupakhin V; Marcou G; Baskin I; Varnek A; Rognan D Predicting ligand binding modes from
neural networks trained on protein-ligand interaction fingerprints. J. Chem. Inf. Model 2013, 53,
763–772. [PubMed: 23480697]

(6). Ekins S; Freundlich JS; Hobrath JV; White EL; Reynolds RC Combining computational methods
for hit to lead optimization in Mycobacterium tuberculosis drug discovery. Pharm. Res 2014, 31,
414–435. [PubMed: 24132686]

(7). Yasuo N; Watanabe K; Hara H; Rikimaru K; Sekijima M Predicting Strategies for Lead
Optimization via Learning to Rank. IPSJ. Transactions on Bioinformatics 2018, 11, 41–47.

(8). Zhou Z; Kearnes S; Li L; Zare RN; Riley P Optimization of molecules via deep reinforcement
learning. Sci. Rep 2019, 9, 1–10. [PubMed: 30626917]

(9). Jiménez-Luna J; Pérez-Benito L; Martínez-Rosell G; Sciabola S; Torella R; Tresadern G; De
Fabritiis G DeltaDelta neural networks for lead optimization of small molecule potency.
Chemical Science 2019, 10, 10911. [PubMed: 32190246]

(10). Lusci A; Pollastri G; Baldi P Deep architectures and deep learning in chemoinformatics: the
prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model 2013, 53, 1563–
1575. [PubMed: 23795551]

(11). Duvenaud DK; Maclaurin D; Iparraguirre J; Bombarell R; Hirzel T; Aspuru-Guzik A; Adams RP
Convolutional networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems 2015, 2224–2232.

(12). Gómez-Bombarelli R; Wei JN; Duvenaud D; Hernández-Lobato JM; Sánchez-Lengeling B;
Sheberla D; Aguilera-Iparraguirre J; Hirzel TD; Adams RP; Aspuru-Guzik A Automatic
chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci 2018,
4, 268–276. [PubMed: 29532027]

(13). Winter R; Montanari F; Noé F; Clevert D-A Learning continuous and data-driven molecular
descriptors by translating equivalent chemical representations. Chemical Science 2019, 10, 1692–
1701. [PubMed: 30842833]

(14). Urban G; Subrahmanya N; Baldi P Inner and outer recursive neural networks for
chemoinformatics applications. J. Chem. Inf. Model 2018, 58, 207–211. [PubMed: 29320180]

(15). Kearnes S; McCloskey K; Berndl M; Pande V; Riley P Molecular graph convolutions: moving
beyond fingerprints. J. Comput.-Aided Mol. Des 2016, 30, 595–608. [PubMed: 27558503]

(16). Pham T; Tran T; Venkatesh S Graph Memory Networks for Molecular Activity Prediction; 2018
24th International Conference on Pattern Recognition (ICPR) 2018; pp 639–644.

(17). Feinberg EN; Sur D; Wu Z; Husic BE; Mai H; Li Y; Sun S; Yang J; Ramsundar B; Pande VS
Potentialnet for molecular property prediction. ACS Cent. Sci 2018, 4, 1520–1530. [PubMed:
30555904]

(18). Wallach I; Dzamba M; Heifets A AtomNet: A Deep Convolutional Neural Network for
Bioactivity Prediction in Structure-based Drug Discovery. arXiv preprint arXiv:1510.02855 2015.

(19). Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR Protein–Ligand scoring with Convolutional
neural networks. J. Chem. Inf. Model 2017, 57, 942–957. [PubMed: 28368587]

(20). Cohen T; Welling M Group Equivariant Convolutional Networks; International Conference on
Machine Learning 2016; pp 2990–2999.

(21). Zaheer M; Kottur S; Ravanbakhsh S; Poczos B; Salakhutdinov RR; Smola AJ In Advances in
Neural Information Processing Systems 30; Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus
R, Vishwanathan S, Garnett R, Eds.; Curran Associates, Inc.: 2017; pp 3391–3401.

Sunseri and Koes Page 7

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(22). Weiler M; Hamprecht FA; Storath M Learning Steerable Filters for Rotation Equivariant CNNs;
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018; pp 849–
858.

(23). Cohen TS; Weiler M; Kicanaoglu B; Welling M Gauge equivariant convolutional networks and
the icosahedral CNN. arXiv preprint arXiv:1902.04615 2019.

(24). Brown RC; Lunter G An equivariant Bayesian convolutional network predicts recombination
hotspots and accurately resolves binding motifs. Bioinformatics 2019, 35, 2177–2184. [PubMed:
30481258]

(25). Boomsma W; Frellsen J Spherical convolutions and their application in molecular modelling.
Advances in Neural Information Processing Systems 2017, 3433–3443.

(26). Cohen TS; Geiger M; Köhler J; Welling M Spherical CNNs. arXiv preprint arXiv:1801.10130
2018.

(27). Skalic M; Martínez-Rosell G; Jiménez J; De Fabritiis G; Valencia A PlayMolecule BindScope:
Large scale CNN-based virtual screening on the web. Bioinformatics 2019, 35, 1237. [PubMed:
30169549]

(28). Skalic M; Varela-Rial A; Jiménez J; Martínez-Rosell G; De Fabritiis G LigVoxel: Inpainting
binding pockets using 3D-convolutional neural networks. Bioinformatics 2019, 35, 243.
[PubMed: 29982392]

(29). Kajita S; Ohba N; Jinnouchi R; Asahi R A universal 3D voxel descriptor for solid-state material
informatics with deep convolutional neural networks. Sci. Rep 2017, 7, 16991. [PubMed:
29209036]

(30). Jiménez Luna J; Skalic M; Martinez-Rosell G; De Fabritiis G K DEEP: Protein-ligand absolute
binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model 2018, 58,
287. [PubMed: 29309725]

(31). Amidi A; Amidi S; Vlachakis D; Megalooikonomou V; Paragios N; Zacharaki EI EnzyNet:
enzyme classification using 3D convolutional neural networks on spatial representation. PeerJ
2018, 6, e4750. [PubMed: 29740518]

(32). Hendlich M; Rippmann F; Barnickel G LIGSITE: automatic and efficient detection of potential
small molecule-binding sites in proteins. J. Mol. Graphics Modell 1997, 15, 359–363.

(33). Jiménez J; Doerr S; Martínez-Rosell G; Rose A; De Fabritiis G DeepSite: protein-binding site
predictor using 3D-convolutional neural networks. Bioinformatics 2017, 33, 3036–3042.
[PubMed: 28575181]

(34). Jiang M; Li Z; Bian Y; Wei Z A novel protein descriptor for the prediction of drug binding sites.
BMC Bioinf. 2019, 20, 1–13.

(35). Kuzminykh D; Polykovskiy D; Kadurin A; Zhebrak A; Baskov I; Nikolenko S; Shayakhmetov R;
Zhavoronkov A 3D molecular representations based on the wave transform for convolutional
neural networks. Mol. Pharmaceutics 2018, 15, 4378–4385.

(36). Brock A; Lim T; Ritchie JM; Weston N Generative and Discriminative Voxel Modeling with
Convolutional Neural Networks. arXiv preprint arXiv:1608.04236 2016.

(37). Brock A; Donahue J; Simonyan K Large Scale GAN Training for High Fidelity Natural Image
Synthesis. arXiv preprint arXiv:1809.11096 2018.

(38). Thomas N; Smidt T; Kearnes S; Yang L; Li L; Kohlhoff K; Riley P Tensor Field Networks:
Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds. arXiv preprint
arXiv:1802.08219 2018.

(39). Jaderberg M; Simonyan K; Zisserman A; et al. Spatial transformer networks. Advances in Neural
Information Processing Systems 2015, 2017–2025.

Sunseri and Koes Page 8

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
An illustration of molgrid::ExampleProvider usage, sampling a batch of 10 randomized,

balanced, and receptor-stratified examples from a data set.

Sunseri and Koes Page 9

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
An illustration of molgrid::GridMaker usage, generating a 4-dimensional grid from a batch

of molecules, with data layout examples×channels×length×width×height.

Sunseri and Koes Page 10

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Performance information for using libmolgrid with each major supported neural network

library. All error bars are 98% confidence intervals computed via bootstrap sampling of five

independent runs. (a) Walltime for training the simple model shown training above using a

GTX Titan X. (b) Walltime for training the same simple model using a Titan V. (c)

Maximum GPU memory utilization while training.

Sunseri and Koes Page 11

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Cartesian coordinates from grid densities. (a) Loss per iteration for both the grid loss and

out-of-box loss for training with naively initialized coordinates, showing libmolgrid’s utility

for converting between voxelized grids and Cartesian coordinates. (b) Sampled coordinate

predictions compared with the true coordinates, demonstrating a root mean squared accuracy

of 0.09 Å.

Sunseri and Koes Page 12

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sunseri and Koes Page 13

Ta
b

le
 1

.

E
xa

m
pl

es
 o

f
G

ri
da

nd
 M

an
ag

ed
G

ri
d

U
sa

ge

U

sa
ge

 1
: m

ol
gr

id
 fu

nc
tio

ns
 ta

ki
ng

 G
ri

d
ob

je
ct

s
ca

n
be

 p
as

se
d

To
rc

h
te

ns
or

s
di

re
ct

ly
,

w

ith
 c

on
ve

rs
io

ns
 m

an
ag

ed
 in

te
rn

al
ly

te
ns

or
 =

 to
rc

h.
ze

ro
s(

te
ns

or
_s

ha
pe

, d
ty

pe
=

to
rc

h.
fl

oa
t3

2,
 d

ev
ic

e=
'c

ud
a'

)
m

ol
gr

id
.g

m
ak

er
.f

or
w

ar
d(

ba
tc

h,
 te

ns
or

)

U

sa
ge

 2
: c

on
st

ru
ct

 G
ri

d
as

 a
 v

ie
w

 o
ve

r a
 T

or
ch

 te
ns

or
 w

ith
 p

ro
vi

de
d

he
lp

er
 fu

nc
tio

n
te

ns
or

 =
 to

rc
h.

ze
ro

s(
(2

,2
),

 d
ty

pe
=

to
rc

h.
fl

oa
t3

2,
 d

ev
ic

e=
'c

ud
a'

)
gr

id
=

m
ol

gr
id

.te
ns

or
_a

s_
gr

id
(t

en
so

r)
 #

 d
im

en
si

on
s

an
d

da
ta

 lo
ca

tio
n

ar
e

in
fe

rr
ed

al

te
rn

at
iv

el
y,

 c
on

st
ru

ct
 G

ri
d

vi
ew

 o
ve

r T
or

ch
 te

ns
or

 d
ir

ec
tly

gr
id

 =
 m

ol
gr

id
.G

ri
d2

fC
U

D
A

(t
en

so
r)

U

sa
ge

 3
: c

op
y

M
an

ag
ed

G
ri

d
da

ta
 to

 N
um

Py
 a

rr
ay

fi

rs
t,

co
ns

tr
uc

t a
 M

an
ag

ed
G

ri
d

m
gr

id
 =

 m
ol

gr
id

.M
G

ri
dl

f(
ba

tc
h_

si
ze

)

co
py

 to
 G

PU
 a

nd
 d

o
w

or
k

on
 it

 th
er

e
m

gr
id

.g
pu

()

(d
o

w
or

k)

co
py

 M
an

ag
ed

G
ri

d
da

ta
 to

 a
 N

um
Py

 a
rr

ay
 w

ith
 h

el
pe

r f
un

ct
io

n;

th
is

 c
op

ie
s

da
ta

 b
ac

k
to

 th
e

C
PU

 if
 n

ec
es

sa
ry

ar
ra

y1
 =

 m
gr

id
. t

on
um

py
O

al

te
rn

at
iv

el
y,

 c
on

st
ru

ct
 N

um
Py

 a
rr

ay
 w

ith
 a

 c
op

y
of

 M
an

ag
ed

G
ri

d
C

PU
 d

at
a;

m

us
t s

yn
c

to
 C

PU
 fi

rs
t

m
gr

id
.c

pu
()

ar
ra

y2
 =

 n
p.

ar
ra

y(
m

gr
id

)

U

sa
ge

 4
: c

on
st

ru
ct

 G
ri

d
fr

om
 N

um
Py

 a
rr

ay
ar

ra
y3

 =
 n

p.
ze

ro
s(

(2
,2

),
 d

ty
pe

=
np

.f
lo

at
32

)

m
us

t m
at

ch
 s

ou
rc

e
an

d
de

st
in

at
io

n
dt

yp
es

te
ns

or
 =

 m
ol

gr
id

.G
ri

d2
f(

ar
ra

y3
)

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

	Abstract
	Graphical Abstract
	INTRODUCTION
	IMPLEMENTATION
	Atom Typing.
	Examples.
	ExampleProvider.
	Grids.
	GridMaker.
	Transformations.

	RESULTS
	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.

