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Abstract

We describe libmolgrid, a general-purpose library for representing three-dimensional molecules 

using multidimensional arrays of voxelized molecular data. libmolgrid provides functionality for 

sampling batches of data suited to machine learning workflows, and it also supports temporal and 

spatial recurrences over that data to facilitate work with convolutional and recurrent neural 

networks. It was designed for seamless integration with popular deep learning frameworks and 

features optimized performance by leveraging graphics processing units (GPUs). libmolgrid is a 

free and open source project (GPLv2) that aims to democratize grid-based modeling in 

computational chemistry.
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INTRODUCTION

Deep learning has emerged as an important area of research in computational chemistry. It 

holds great promise for unprecedented improvements in predictive capabilities for such 

problems as virtual screening,1 binding affinity prediction,2,3 pose prediction,4,5 and lead 

optimization.6–9 The representation of input data can fundamentally limit or enhance the 

performance and applicability of machine learning algorithms.10–12 Deep learning can 

derive class-defining features directly from training examples. Common input 

representations include molecular formats like SMILES and/ or InChi strings,12,13 molecular 

graphs,10,11,14–17 and voxelized spatial grids18,19 representing the locations of atoms.

Compared with other representation schemes, spatial grids possess certain virtues including 

minimal overt featurization by the user (theoretically permitting greater model 

expressiveness) and full representation of three-dimensional spatial interactions in the input. 

For regular cubic grids, this comes at the cost of coordinate frame dependence, which can be 

ameliorated by data augmentation19 and can also be theoretically addressed with various 

types of inherently equivariant network architectures20–24 or by using other types of 

multidimensional grids.25,26 Spatial grids have been applied successfully to tasks relevant to 

computational chemistry like virtual screening,18,19,27 pharmacophore generation,28 

molecular property prediction,29,30 molecular classi-fication,29,31 protein binding site 

prediction,32–34 molecular autoencoding,35 and generative modeling.36–38

Chemical data sets have many physical and statistical properties that prove problematic for 

machine learning, and special care must be taken to manage them. Classes are typically 

highly imbalanced with many more known inactive than active compounds for a given 

protein target; regression tasks may span many orders of magnitude with nonuniform 

representation of the underlying chemical space at particular ranges of the regressor, and 

examples with matching class labels or regression target values may also be unequally 

sampled from other underlying classes (e.g., there may be significantly more binding affinity 

data available for specific proteins that have been the subject of greater investigation, such as 

the estrogen receptors, or for protein classes like kinases). By offloading data processing 

tasks required to manage these problems to an open source library specialized for chemical 

data, computational chemists can systematically obtain better results in a transparent 

manner.

Using multidimensional grids (e.g., voxels) to represent atomic locations (and potentially 

distributions) is computationally efficient - their generation is embarrassingly parallel and 

therefore readily amenable to modern GPU architectures - and preserves three-dimensional 

spatial relationships present in the original input. Coordinate frame dependence can be 

removed or circumvented. However, commonly available molecular parsing and conversion 

libraries do not yet provide gridding functionality, nor do they implement the other tasks 

required to obtain good performance on typical chemical data sets such as strategic 

resampling and data augmentation. Thus, we abstracted the gridding and batch preparation 

functionality from our past work, gnina,19 into a library that can be used for general 

molecular modeling tasks but also interfaces naturally with popular Python deep learning 

libraries. Implemented in C++/CUDA with Python bindings, libmolgrid is a free and open 
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source project (distributed under the GNU General Public License, version 2) intended to 

accelerate advances in molecular modeling via multidimensional spatial arrays.

IMPLEMENTATION

Key libmolgrid functionality is implemented in a modular fashion to ensure maximum 

versatility. Essential library features are abstracted into separate classes to facilitate use 

independently or in concert as required by a particular application.

Atom Typing.

Several atom typing schemes are supported, featuring flexibility in the ways types are 

assigned and represented. Atoms may be typed according to XS atom typing, atomic 

element, or a user-provided callback function (an example of this use-case is shown in Table 

S1). Types may be represented by a single integer or a vector encoding. For a typical user, 

typing (with either index or vector types) can be performed automatically via an 

ExampleProvider.

Examples.

Examples consist of typed coordinates that will be analyzed together, along with their labels. 

An Example may consist of multiple CoordinateSets (which may each utilize a different 

scheme for atom typing) and may be one of a sequence of Examples within a group. For 

example, a single Example may have a CoordinateSet for a receptor and another 

CoordinateSet for a ligand to be scored with that receptor, or perhaps multiple 

CoordinateSets corresponding to multiple poses of a particular ligand. Examples may be part 

of a group that will be processed in sequence, for example as input to a recurrent network; in 

that case distinct groups are identified with a shared integer value, and a sequence 

continuation flag indicates whether a given Example is a continuation of a previously 

observed sequence or is initiating a new one.

ExampleProvider.

To obtain strategically sampled batches of data for training, a user can employ an 

ExampleProvider. The desired sampling options are specified to the ExampleProvider 

constructor, which can then be populated with one or more files specifying examples. 

Properly sampled Examples are obtained via ExampleProvider::next or 

ExampleProvider::next_batch. Figure 1 shows graphically how an ExampleProvider might 

obtain a batch of 10 shuffled, class-balanced, receptor-stratified Examples from a larger data 

set, with accompanying code.

Currently, the simplest way to initialize a provider is to populate it with one or more files 

that specify metadata for Examples, with one Example per line. At a high level, that line will 

specify class and regression target values for the Example, any group identification 

associated with the Example (i.e., a shared integer label identifying Examples to be 

processed sequentially, as with temporal data provided as input to a recurrent network), and 

one or more strings identifying filenames of molecules corresponding to that Example. Each 

molecule file can have distinct typing rules applied. A typical use case is to have a receptor 
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and a ligand file, but a single receptor file could be provided, e.g., when learning properties 

of binding sites, or multiple files could be provided, e.g., when learning properties of 

ensembles. The default line layout is [(int)group][(float)label]*-[molfile]+. An example is 

shown in Figure 1. In the examples we provide with our project, these files have a .types 

suffix.

Table S2 shows all the available options at the time of construction. These options are 

described in more detail in the Supporting Information and online documentation.

Grids.

The fundamental object used to represent data in libmolgrid is a multidimensional array 

which the API generically refers to as a grid. Grids are typically used during training to 

represent voxelized input molecules or matrices of atom coordinates and types. They can be 

constructed in two flavors, Grids and ManagedGrids. ManagedGrids manage their own 

underlying memory, while Grids function as views over a preexisting memory buffer. Grids 

and ManagedGrids are convertible to NumPy arrays as well as Torch tensors. Additional 

exposition is available in Figure SS1.

Because of automatic conversions designed for PyTorch interoperability, a user intending to 

leverage basic batch sampling, grid generating, and transformation capabilities provided by 

libmolgrid in tandem with PyTorch for neural network training can simply use Torch tensors 

directly, with little to no need for explicit invocation of or interaction with libmolgrid grids. 

Memory allocated on a GPU via a Torch tensor will remain there, with grids generated in-

place. An example of this type of usage is shown in the first example in Table 1.

A Grid may also be constructed explicitly from a Torch tensor, a NumPy array, or, if 

necessary, from a pointer to a memory buffer. Examples of constructing a Grid from a Torch 

tensor are shown in the second usage section in Table 1. The third usage section shows 

provided functionality for copying NumPy array data to ManagedGrids, while the fourth 

usage section shows functionality for constructing Grid views over NumPy array data 

buffers. In the fourth example, note that in recent NumPy versions the default floating-point 

data type is float64, so the user should take care to match the data type between arrays and 

Grids.

GridMaker.

A GridMaker is used to generate a voxel grid from an Example, an ExampleVec, a 

CoordinateSet, or paired Grids of coordinates and types. GridMaker can operate directly on 

a user-provided Torch tensor or Grid, or it can return into a new NumPy array via 

GridMaker::make_ndarray or Torch tensor via GridMaker::make_tensor. GridMaker features 

GPU-optimized gridding that will be used if a compatible device is available. GridMaker 

options pertaining to the properties of the resulting grid are specified when the GridMaker is 

constructed, while the examples from which a grid will be generated and their instantiation 

properties (including any transformations) are specified by a particular invocation of 

GridMaker::forward. Specifically, Table S3 shows the possible constructor arguments, which 

are described in more detail in the Supporting Information. Figure 2 shows an example of 

basic GridMaker usage, default-constructing a GridMaker and using it to populate a grid 

Sunseri and Koes Page 4

J Chem Inf Model. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with densities for a batch of molecules. If desired, the values of random_translation and 

random_rotation can be set in the call to gmaker::forward, thereby applying random data 

augmentation to each example in the batch. If it is desirable to retain the applied 

transformation, then transformations can be created explicitly, as shown in Figure S2. The 

GridMaker class also defines a backward function that computes atomic gradients, which 

can be used for tasks ranging from visualizing what a network has learned to using a trained 

network to optimize the coordinates and types of input molecules.

Transformations.

Data augmentation in the form of random rotations and translations of input examples can 

be performed by passing the desired options to GridMaker::forward, as described in the 

previous section. Specific translations and rotations can also be applied to arbitrary Grids, 

CoordinateSets, or Examples by using the Transform class directly. Transforms can store 

specific rotations, described by a libmolgrid::Quaternion, an origin around which to rotate, 

described by a libmolgrid::float3, which is also interconvertible with a Python tuple, and a 

specific translation, expressed in terms of Cartesian coordinates and also described by a 

float3. These prove useful for sophisticated networks such as the spatial transformer.39 

Additional examples of Transform constructor invocation are shown in Table S4, and 

information about Transform::forward is shown in Figure S2.

RESULTS

We demonstrate model training with input tensors populated by libmolgrid and neural 

networks implemented using Caffe, PyTorch, and Keras with a Tensorflow backend (code 

available at https://gnina.github.io/libmolgrid/tutorials.html). Training loss performance is 

similar across all three frameworks, as shown in Figure S3. libmolgrid is fully functional 

with any of these popular libraries. Its overall speed and memory footprint vary significantly 

with the user’s chosen library, however. As shown in Figure 3(a) and (b), the performance 

when using a GPU for gridding and neural network training is much faster when using Caffe 

and PyTorch than it is when using Tensorflow via Keras, with modest improvements in 

performance for Caffe and PyTorch when using the newer Titan V GPU rather than the older 

GTX Titan X. This is due to libmolgrid’s ability to directly access underlying data buffers 

when interoperating with Caffe and PyTorch, thus avoiding unnecessary data migration 

between the CPU and GPU; this is not currently possible with Tensorflow, and so passes 

through the network involve grids being generated on the GPU by libmolgrid, copied into a 

NumPy array on the CPU, and then copied back onto the GPU by Tensorflow when training 

begins. This results in a significant performance penalty, with memory transfers 

fundamentally limiting performance; future versions of libmolgrid will seek to mitigate this 

issue with Tensorflow 2.0. The discrepancy in memory utilization shown in Figure 3(c) is 

somewhat less dramatic, but similarly, memory utilization when doing neural network 

training with Tensorflow is less efficient than using the other two libraries.

As an example of a more specialized task that uses the backward gradients computed by 

GridMaker, we demonstrate training a CNN to convert voxelized atomic densities to 

Cartesian coordinates. Each training example consists of a single atom provided to the 
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network as a voxelized grid for which the network will output Cartesian coordinates. The 

loss function is a simple mean squared error grid loss for coordinates that fall within the 

grid, and a hingelike loss for coordinates outside. As shown in Figure 4(a), the model 

initially has difficulty learning because the atomic gradients only receive information from 

the parts of the grid that overlap an atom, but eventually converges to an accuracy 

significantly better than the grid resolution of 0.5 Å. Example predictions are shown in 

Figure 4(b). This task could be applicable to a generative modeling workflow and also 

demonstrates libmolgrid’s versatility as a molecular modeling tool.

CONCLUSION

Machine learning is a major research area within computational chemistry and drug 

discovery, and grid-based representation methods have been applied to many fundamental 

problems with great success. No standard library exists for automatically generating voxel 

grids or spatial array representations more generally from molecular data or for performing 

the basic tasks such as data augmentation that typically must be done to achieve high 

predictive capability on chemical data sets using these methods. This means that researchers 

hoping to pursue methodological advances using grid-based methods must reproduce the 

work of other groups and waste time with redundant programming. libmolgrid empowers 

researchers to pursue advances in grid-based machine learning for molecular data by 

providing an efficient, concise, and natural C++/CUDA and Python API for data resampling, 

grid generation, and data augmentation. It also supports spatial and temporal recurrences 

over input, allowing for size extensiveness even while using cubic grids (by performing a 

subgrid decomposition), and processing of simulation data such as molecular dynamics 

trajectories while preserving temporal ordering of frames, if desired. With adoption, it will 

also help standardize performance, enhance reproducibility, and facilitate experimentation 

among computational chemists interested in machine learning methods. libmolgrid support 

for Caffe and PyTorch is complete, while we plan to enhance Tensorflow support by taking 

advantage of the Tensorflow 2.0 programming model and avoiding the unnecessary data 

transfers that currently limit combined libmolgrid-Tensorflow performance. Other future 

enhancements will include the ability to generate other types of grids, for example, spherical 

ones. Documentation, tutorials, and installation instructions are available at http://

gnina.github.io/libmolgrid, while the source code along with active support can be found at 

https://github.com/gnina/libmolgrid.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An illustration of molgrid::ExampleProvider usage, sampling a batch of 10 randomized, 

balanced, and receptor-stratified examples from a data set.
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Figure 2. 
An illustration of molgrid::GridMaker usage, generating a 4-dimensional grid from a batch 

of molecules, with data layout examples×channels×length×width×height.
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Figure 3. 
Performance information for using libmolgrid with each major supported neural network 

library. All error bars are 98% confidence intervals computed via bootstrap sampling of five 

independent runs. (a) Walltime for training the simple model shown training above using a 

GTX Titan X. (b) Walltime for training the same simple model using a Titan V. (c) 

Maximum GPU memory utilization while training.
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Figure 4. 
Cartesian coordinates from grid densities. (a) Loss per iteration for both the grid loss and 

out-of-box loss for training with naively initialized coordinates, showing libmolgrid’s utility 

for converting between voxelized grids and Cartesian coordinates. (b) Sampled coordinate 

predictions compared with the true coordinates, demonstrating a root mean squared accuracy 

of 0.09 Å.
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