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a b s t r a c t 

Epidemiological models of COVID-19 transmission assume that recovered individuals have a fully pro- 

tected immunity. To date, there is no definite answer about whether people who recover from COVID-19 

can be reinfected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the absence 

of a clear answer about the risk of reinfection, it is instructive to consider the possible scenarios. To study 

the epidemiological dynamics with the possibility of reinfection, I use a Susceptible-Exposed-Infectious- 

Resistant-Susceptible model with the time-varying transmission rate. I consider three different ways of 

modeling reinfection. The crucial feature of this study is that I explore both the difference between the 

reinfection and no-reinfection scenarios and how the mitigation measures affect this difference. The prin- 

cipal results are the following. First, the dynamics of the reinfection and no-reinfection scenarios are in- 

distinguishable before the infection peak. Second, the mitigation measures delay not only the infection 

peak, but also the moment when the difference between the reinfection and no-reinfection scenarios 

becomes prominent. These results are robust to various modeling assumptions. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The rapid spread of coronavirus disease 2019 (COVID-19) cre- 

tes significant challenges for economies and healthcare systems of 

any countries around the world. The situation evolves extremely 

uickly and, to date, there is a high degree of uncertainty about the 

uture outcomes of the pandemic. As of September 1, 2020, there 

ave been 25.9 million confirmed cases globally, including about 

60 thousand deaths, see [28] . 

One of the crucial questions that still has no definite answer 

s whether people who recover from COVID-19 can be reinfected 

ith the severe acute respiratory syndrome coronavirus 2 (SARS- 

oV-2). The case reports are scarce — there are a few of them 

bout positive testing after recovering from COVID-19 in China, 

apan, and South Korea — and it is not clear whether these pa- 

ients are truly reinfected or not. Shi et al. [24] discuss the immune 

esponses induced by COVID-19. Another study, Bao et al. [4] , us- 

ng the sample of four rhesus macaques, conclude that the primary 

ARS-CoV-2 infection could protect from subsequent reinfections. 

n turn, An et al. [1] , show that 38 out of 262 patients, i.e. 14.5

ercent, recovered from COVID-19, tested positive for SARS-CoV-2, 

sing polymerase chain reaction (PCR) tests, after being discharged 
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rom the hospital in Shenzhen. Those patients did not show ob- 

iously clinical symptoms and disease progression upon readmis- 

ion. A recent study by To et al. [25] shows the results of the 

hole genome sequencing that was performed directly on respi- 

atory specimens collected during two episodes of COVID-19 in a 

atient. Epidemiological, clinical, serological, and genomic analy- 

es confirmed that the patient had reinfection instead of persistent 

iral shedding from the first infection. Their paper suggests that 

ARS-CoV-2 may continue to circulate among the human popula- 

ions despite herd immunity due to natural infection or vaccina- 

ion. 

In the absence of a clear answer about the risk of reinfec- 

ion with the new coronavirus, it is instructive to be aware of 

he possible scenarios. This study aims at providing the attempt 

n this direction. I use a Susceptible-Exposed-Infectious-Resistant- 

usceptible (SEIRS) model that differs from a standard SEIR model, 

onsidered in Hethcote [11] and Chowell et al. [8] , and, in applica- 

ion to COVID-19, Kucharski et al. [14] , Lin et al. [18] , Prem et al.

20] , and Wang et al. [27] , among others, with an additional as- 

umption that recovered individuals can become susceptible to in- 

ection again. In methodologically related papers, Reynolds et al. 

22] and Etbaigha et al. [9] study the reinfection of swines with 

nfluenza A virus (IAV). The simulations considered in this paper 

re by no means the definitive quantitative forecasts. Instead, the 

urpose is to show the patterns of the disease dynamics if people 

https://doi.org/10.1016/j.chaos.2020.110296
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110296&domain=pdf
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an be reinfected with the new coronavirus. In fact, the risk of re- 

nfection would definitely affect the scope and duration of policies 

hat are currently in place. 

I consider three different ways of modeling reinfection. I begin 

ith the model where individuals have constant immunity waning 

ate and study the effects of the mitigation policies captured by 

he changes in the transmission rate and hence the reproduction 

umber. The basic reproduction number, R 0 , is a crucial parameter 

or evaluation the spread of the infection and the effects of mitiga- 

ion measures. Existing estimates for COVID-19 suggest that R 0 is 

etween 2 and 6. Using the data from Wuhan, China, Wu et al. 

29] estimate R 0 to be 2.68 (95% confidence interval (CI): 2.47–

.86). Using the data from mainland China, Zhao et al. [30] con- 

lude that the mean estimate of R 0 ranges from 2.24 (95% CI: 1.96–

.55) to 3.58 (95% CI: 2.89–4.39). Using the data for Italy, Remuzzi 

nd Remuzzi [21] propose R 0 to be in the range 2.76–3.25. Using 

he data for Japan, Kuniya [15] estimates R 0 to be 2.6 (95% CI: 2.4–

.8). Fauci et al. [10] propose R 0 to be 2.2. Sanche et al. [23] obtain

 higher median estimate, R 0 = 5 . 7 (95% CI: 3.8–8.9). Beyond that,

orolev [13] shows that estimates of R 0 are highly sensitive to the 

alues of epidemiologic parameters. In the simulations, I consider 

he range of values of the basic reproduction number. 

Crucially, in each model experiment I consider not only how 

ifferent are the reinfection and no-reinfection scenarios, but also 

ow the mitigation measures affect this difference. To check the 

obustness of my findings about the role of the mitigation mea- 

ures with and without reinfection, I turn to the alternative model- 

ng assumptions about reinfection. First, I assume that individuals, 

nce being reinfected, have a milder form of the disease. Second, 

nstead of a constant immunity waning rate, I assume that the in- 

ividuals that are resistant at some date (those who were infected 

n the past) become susceptible again. The conceptual framework 

hat I use can be easily incorporated into more complex models in 

uture studies. 

. Model 

Consider a SEIRS model with constant population N normalized 

o one. Each period of time, the population consists of four classes: 

usceptible (S), exposed (E), infected (I), and resistant (recovered) 

R): 

(t) + E(t) + I(t) + R (t) = N, ∀ t ≥ 0 (1)

Since N = 1 , variables S, E, I , and R correspond to the fractions

f the population. I assume that recovered individuals can become 

usceptible to infection again at rate ω. The compartmental model 

s formulated by the following set of ordinary differential equa- 

ions: 

dS(t) 

dt 
= −β(t) 

S(t) 

N 

I(t) + ωR (t) (2) 

dE(t) 

dt 
= β(t) 

S(t) 

N 

I(t) − σE(t) (3) 

dI(t) 

dt 
= σE(t) − γ I(t) (4) 

dR (t) 

dt 
= γ I(t) − ωR (t) (5) 

The transmission rate, β( t ), accounts for the rate at which in- 

ected individuals interact with others and transmit the disease 

nd is given by 

(t) = γ ˜ R (t) (6) 

here ˜ R (t) is the time-varying reproduction number. Absent mit- 

gation measures, ˜ R corresponds to the basic reproduction num- 

er, R . To simplify notation, here and thereafter I omit explicit 
0 

2 
ependence of ˜ R on time whenever it does not cause confusion. 

he transmission rate, β( t ), captures the impact of all mitigation 

easures such as quarantine, travel restrictions, or social distanc- 

ng. To study scenarios under different mitigation policies, I adapt a 

exible functional form for the time-varying reproduction number. 

ollowing [3] , I parameterize ˜ R (t) as follows: 

˜ 
 1 (t) = exp (−η1 t) ̃  R 1 (0) + (1 − exp (−η1 t)) R 

∗
1 (7) 

˜ 
 2 (t) = exp (−η2 t) ̃  R 2 (0) + (1 − exp (−η2 t)) R 

∗
2 (8) 

˜ 
 (t) = 

1 

2 

(
˜ R 1 (t) + 

˜ R 2 (t) 
)

(9) 

here ˜ R 1 (0) and 

˜ R 2 (0) ( R ∗1 and R ∗2 ) are the initial (long-run) values

or ˜ R 1 and 

˜ R 2 . Parameter η1 determines the rate at which 

˜ R 1 con- 

erges to R ∗
1 
. In turn, parameter η2 governs the rate at which 

˜ R 2 
onverges to R ∗

2 
. By appropriately choosing the parameter values, I 

an capture different scenarios of the mitigation policies. In partic- 

lar, in the simulations in Section 3 , I vary the speed of imposing

he mitigation measures and also consider the scenario when ex- 

remely severe mitigation measures at the beginning of the pan- 

emic are followed by their gradual relaxation. From (7) –(9) , the 

ynamics of ˜ R 1 , ˜ R 2 , and 

˜ R is described by the following equations: 

d ̃  R 1 (t) 

dt 
= −η1 ( ̃  R 1 (t) − R 

∗
1 ) (10) 

d ̃  R 2 (t) 

dt 
= −η2 ( ̃  R 2 (t) − R 

∗
2 ) (11) 

d ̃  R (t) 

dt 
= −1 

2 

η1 

(
˜ R 1 (t) − R 

∗
1 

)
− 1 

2 

η2 

(
˜ R 2 (t) − R 

∗
2 

)
(12) 

Parameters ( σ , γ , ω) represent the characteristics of COVID-19 

nd assumed to be constant. For parameters σ and γ , I take the 

stimates from the literature. The parameter σ stands for the mean 

ncubation period of the disease, and its estimates vary from 1/5.2 

o 1/3, see [18] and [27] . Following [16] and [27] , I adopt a mean

atent period of 5.2 days (infection rate, σ = 1 / 5 . 2 ). Next, I adopt

 mean infectious period of 18 days (recovery rate, γ = 1 / 18 ) in

ine with [7] and [27] . Parameter ω, the immunity waning rate, is 

f the main interest for this paper, and since, to date, there are 

o credible estimates of it, I consider the range of different val- 

es, ω ∈ {0, 1/365, 1/183, 1/120, 1/60}. To et al. [25] show that the

econd episode of asymptomatic infection occurred 142 days after 

he first symptomatic episode in an apparently immunocompetent 

atient. This period is consistent with considered range of ω. The 

ase ω = 0 corresponds to no reinfection. The value of ω is driven 

y immunity waning after the infection or the rate of virus muta- 

ion. Next, the initial values for actively infected and exposed pop- 

lation are taken for the United States and set to I(0) = 1 / 10 0 0 ,

.e. 0.1 percent of the population, and E(0) = 43 . 75 × I(0) respec- 

ively. I use March 16–17, 2020 as the initial date (March 17, 2020 

as a day at which the last U.S. state reported its first case, see 

19] ). I take I(0) = 1 / 10 0 0 from [5] . Official data reports around

500 cases in the United States on March 16, and they assume 

hat this represents 1.5 percent of all cases. This rate of under- 

eporting is derived by Hortaçsu et al. [12] for March 9, 2020. 

(0) = 43 . 75 × I(0) corresponds to the estimates for the United 

tates by Peirlinck et al. [19] . 

Throughout the simulations, I fully acknowledge that only a 

raction of the model-generated cases are reported in reality. Li 

t al. [17] study the critical importance of undocumented COVID- 

9 cases for understanding the overall prevalence and pandemic 

otential of this disease. Lin et al. [18] emphasize that the report- 

ng rate is time-varying. 
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. Model simulations 

In this section, I use the assumptions about the time paths for 
˜ 
 from [3] . This allows me to clearly compare the outcomes under 

einfection with his conclusions from the simulations without re- 

nfection. In the first model experiment, I assume that ˜ R is fixed 

ver time. This reflects the scenarios when mitigation efforts do 

ot change over time. 

In the first model experiment, I consider a range 

f values of the basic reproduction number ˜ R = R 0 ∈ 

 1 . 6 , 1 . 8 , 2 . 0 , 2 . 2 , 2 . 5 , 2 . 8 , 3 . 0 } . The upper bound of this range

aptures the estimates from the literature discussed in Section 1 . 

ower values of R 0 correspond to lower levels of the disease 

ransmission. The mitigation measures — quarantine, travel re- 

trictions, or social distancing — can reduce the basic reproduction 

umber. Anderson et al. [2] provide a thorough discussion of 

his question. Critically, in my simulations, I vary both ω and 

 0 . By comparing the simulated series under different values 

f ω and R 0 , I follow two goals. First, given R 0 , I compare the

utcomes of the reinfection and no-reinfection scenarios. Second, 

iven ω, I demonstrate the effects of the mitigation measures 

expressed through the lower values of R 0 ) under the reinfection 

nd no-reinfection scenarios. 

Fig. 1 shows the time paths for the simulated fraction of the 

ctively infected population with (solid lines) and without (dashed 

ines) reinfection under different values of R 0 . This model exper- 

ment implies that lower R 0 leads to delaying the infection peak 

oth with and without reinfection. Second, under the reinfection 

cenario, the size of the peak is greater than without reinfection. 

he difference in the peak values is decreasing in R 0 . Third, with 

einfection, the fraction of the actively infected population exhibits 

symmetric dynamics around the peak. Crucially, before the peak, 

he time paths with and without reinfection are indistinguishable. 

owever, after the peak, the reinfection series is unambiguously 

bove the no-reinfection series. Therefore, by reducing the trans- 

ission rate with the mitigation measures, we delay the infec- 

ion peak, and hence delay the moment when the difference be- 

ween the reinfection and no-reinfection scenarios becomes size- 

ble. Finally, notice that, with reinfection, there can be multiple- 

ave disease outbreaks. In a related study, [6] discuss the role 

f homologous reinfection in driving multiple-wave influenza out- 

reaks. Next, Fig. 1 e contains the phase diagram where I plot the 

raction of the susceptible population against the fraction of the 

ctively infected population. The solution of the model under both 

einfection and no-reinfection scenarios starts in the bottom right 

orner where I (0) is close to zero and S (0) is close to one. This

hase diagram also illustrates that before the peak two scenarios 

with and without reinfection — are almost indistinguishable. 

In the second model experiment, I assume that ˜ R gradually de- 

reases at different speed. To capture the scenarious under differ- 

nt speed of implementation, following [3] , I set ˜ R 1 (0) = 

˜ R 2 (0) = 

 , R ∗
1 

= R ∗
2 

= 1 . 6 , and vary parameters η1 and η2 with η1 = η2 ≡
. There are five scenarios: very fast ( η = 1 / 5 ), fast ( η = 1 / 10 ),

oderate ( η = 1 / 20 ), slow ( η = 1 / 50 ), and very slow ( η = 1 / 100 ).

igher values of η govern higher rate of convergence of ˜ R to the 

ong-run value of 1.6. Fig. 2 shows the time paths for ˜ R and the 

imulated fraction of the actively infected population with (solid 

ines) and without (dashed lines) reinfection. This model experi- 

ent implies that the speed of implementation affects the tim- 

ng of the peak and its size. Faster implementation of mitigation 

easures leads to delaying the infection peak both with and with- 

ut reinfection. Next, similarly to the simulation from Fig. 1 , under 

he reinfection scenario, the fraction of the actively infected popu- 

ation exhibits asymmetric dynamics around the peak. Relative to 

he no-reinfection scenario, reinfection affects the epidemic dura- 

ion, the size of the infection peak, and the timing of the infection 
3 
eak. Furthermore, to provide additional evidence to the dynam- 

cs of the solution, in Fig. 2 b I show the phase diagram where plot

he fraction of the susceptible population against the fraction of 

he actively infected population. 

In the third model experiment, I assume that ˜ R significantly 

rops at the beginning, as a result of extremely severe mitigation 

easures, and then gradually goes up, as the mitigation measures 

re relaxed. Following [3] , I set ˜ R 1 (0) = 10 , ˜ R 2 (0) = −4 , R ∗1 = −10 ,

 

∗
2 

= 4 , η1 = 1 / 35 , and η2 = 1 / 100 . Given the initial and long-run

alues of the reproduction number and η1 > η2 , ˜ R 1 (t) is rapidly 

ecreasing function while ˜ R 2 (t) is slowly increasing function. As a 

esult, the time path for ˜ R (t) has a U-shaped form, see Fig. 3 a. The

ther two panels of Fig. 3 show the simulated fraction of the ac- 

ively infected population with and without reinfection. Under the 

emporary and extremely severe mitigation measures, in the first 

our months, as shown in Fig. 3 b, the fraction of the actively in-

ected population substantially goes down. Moreover, the dynam- 

cs is identical for the scenarios with and without the possibility of 

einfection. Turning to the first 15 months of the pandemic, shown 

n Fig. 3 c, we see that gradual relaxation that follows the initial 

xtremely severe mitigation measures, leads to a subsequent peak. 

herefore, relaxation of the mitigation measures, driven by the op- 

imistic dynamics in the first months, eventually leads to the epi- 

emic. Motivated by the observation that early mitigation mea- 

ures delay the peak but not its size, because the population does 

ot acquire herd immunity, Toda [26] studies the optimal mitiga- 

ion policy. He shows that it is optimal to initiate the mitigation 

easures once the number of cases reaches some threshold frac- 

ion of the population. 

. Alternative reinfection assumptions 

.1. Milder disease after reinfection 

I consider two alternative ways of modeling reinfection. First, 

 assume that individuals, once being reinfected, have a milder 

orm of the disease. This is in line with [1] who discuss the clin-

cal characteristics of the recovered COVID-19 patients with rede- 

ectable positive RNA test. When readmitted to the hospital, these 

atients showed no obvious clinical symptoms or disease progres- 

ion. In the model, I assume that the individuals who become 

usceptible after being recovered, have lower transmission rate 

nd higher recovery rate. At each point in time, the population, 

ormalized to one, consists of seven classes: primary-susceptible 

 S p ), secondary-susceptible ( S s ), primary-exposed ( E p ), secondary- 

xposed ( E s ), primary-infected ( I p ), secondary-infected ( I s ), and re-

istant (recovered) ( R ): 

 p (t) + S s (t) + E p (t) + E s (t) + I p (t) + I s (t) + R (t) = N, ∀ t ≥ 0

(13) 

Individuals belong to S p , E p , or I p if they were not infected be-

ore. Individuals belong to S s , E s , or I s after being recovered. The 

ompartmental model is formulated as follows: 

dS p (t) 

dt 
= −( βp I p (t) + βs I s (t) ) 

S p (t) 

N 

(14) 

dS s (t) 

dt 
= −( βp I p (t) + βs I s (t) ) 

S s (t) 

N 

+ ωR (t) (15) 

dE p (t) 

dt 
= ( βp I p (t) + βs I s (t) ) 

S p (t) 

N 

− σp E p (t) (16) 

dE s (t) 

dt 
= ( βp I p (t) + βs I s (t) ) 

S s (t) 

N 

− σs E s (t) (17) 

dI p (t) = σp E p (t) − γp I p (t) (18) 

dt 
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Fig. 1. Panels (a)–(d) show the fraction of the actively infected population over time under the reinfection (solid) and no-reinfection (dashed) scenarios and with different 

values of the basic reproduction number, R 0 . Panels (a)–(d) differ in the size of the immunity waning ratio, ω. Panel (e) contains the phase diagram that shows the evolution 

of the fraction of the actively infected population against the fraction of the susceptible population with and without reinfection. 

4 
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Fig. 2. Panel (a) shows the time paths for the time-varying reproduction number, ˜ R . Panel (b) contains the phase diagram that shows the evolution of the fraction of 

the actively infected population against the fraction of the susceptible population with and without reinfection. Panels (c)–(e) show the fraction of the actively infected 

population over time under the reinfection (solid) and no-reinfection (dashed) scenarios and with different speed of the change in ˜ R . Panels (c)–(e) differ in the size of the 

immunity waning ratio, ω. 

5 
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Fig. 3. Panel (a) shows the time path for the time-varying reproduction number, ˜ R . Panel (b) shows the fraction of the actively infected population over time under the 

temporary and extremely severe mitigation measures in the first 4 months. Panel (c) shows the fraction of the actively infected population over time under the temporary 

and extremely severe mitigation measures in the first 15 months. In panels (b) and (c), black solid line ( ω = 0 ) corresponds to the no-reinfection scenario. The grey lines 

( ω > 0) correspond to the reinfection scenarios. The lines coincide in panel (b). 

Fig. 4. Panel (a) shows the fraction of the total (primary and secondary) actively infected population over time. Panel (b) shows the fraction of the actively primary-infected 

population over time. Panel (c) shows the fraction of the actively secondary-infected population over time. Panels (a)–(c) consider various combinations of the immunity 

waning rate, ω, and the primary-transmission rate, βp . 
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dI s (t) 

dt 
= σs E s (t) − γs I s (t) (19) 

dR (t) 

dt 
= γp I p (t) + γs I s (t) − ωR (t) (20) 

Note that susceptible individuals, both those who have never 

een infected and those who have recovered and are currently 

usceptible again, become exposed after contacting with both 

rimary- and secondary-infected individuals. In the absence of 

he parameter estimates for COVID-19, I assume that βs = βp / 2 , 

s = 2 γp , and σs = σp . Following the previous simulations, I set 

p = 1 / 5 . 2 and γp = 1 / 18 . The initial values are I p (0) = 1 / 10 0 0 ,

 p (0) = 43 . 75 × I p (0) , as in Section 2 , and S s (0) = E s (0) = I s (0) =
 (0) = 0 . 

Fig. 4 shows the simulated time paths for the fraction of the 

ctively infected population — total (primary and secondary), pri- 

ary, and secondary. In these simulations, I consider several sce- 

arios. They are characterized by four combinations of the immu- 

ity waning rate and primary-transmission rate, βp . The immu- 

ity waning rate takes two values, ω = 1 / 365 and ω = 1 / 60 . Thus,

 use the lower and upper bounds of the range considered in the 

revious simulations. The primary-transmission rate also takes two 

alues, βp = 1 / 6 and βp = 1 / 12 . The case βp = 1 / 6 corresponds to

 0 = 3 . 0 in the baseline SEIRS model from Section 2 , while the case

p = 1 / 12 corresponds to R 0 = 1 . 5 . We can see from Fig. 4 that the
6 
ynamics of the total fraction of the actively infected population is 

lmost entirely driven by the primary-infected people. There is a 

imited role of reinfection in the general epidemic dynamics. 

.2. One-time reinfection 

Second, instead of a constant immunity waning rate, I assume 

hat the individuals, that are resistant at date t ∗ (those who were 

nfected in the past), become susceptible again. In particular, I con- 

ider a standard SEIR model, i.e. one described by Eqs. (1) –(5) 

ith ω = 0 . Before date t ∗, the dynamics of the model coincides

ith the no-reinfection case. At date t ∗, resistant individuals join 

he pool of susceptible population. Formally this is described by 

(t ∗) = S(t ∗ − dt) + R (t ∗ − dt) as dt → 0. Therefore, at date t ∗ the

raction of resistant population goes down to zero, while the frac- 

ion of susceptible population discretely goes up. To illustrate the 

atterns that arise under this modeling approach of reinfection, I 

hoose two time thresholds, t ∗ = 120 and t ∗ = 30 . 

Fig. 5 shows the time paths for the fraction of the actively in- 

ected population. For each scenario, I consider a range of the ba- 

ic reproduction number values. First, my model simulations imply 

hat if the infection peak occurs before t ∗, as in Fig. 5 a, then rein-

ection leads to a double peak. Second, if the infection peak occurs 

hortly after t ∗, as in Fig. 5 b, then reinfection results in a higher

ingle peak. Notice that the simulated series are consistent with 

he conclusion from Section 3 that the mitigation measures (lower 
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Fig. 5. Fraction of the actively infected population over time under the reinfection (solid) and no-reinfection (dashed) scenarios and with different values of the basic 

reproduction number, R 0 . Panels (a) and (b) differ in the time of reinfection. 
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 0 ) delay not only the infection peak, but also the moment when 

he difference between the reinfection and no-reinfection scenarios 

ecomes prominent. 

. Conclusion 

To date, the immune response, including duration of immunity, 

o SARS-CoV-2 infection is not yet understood. Unless it is clearly 

nown that patients with COVID-19 are unlikely to be reinfected, 

t is instructive to consider the possible scenarios. In this paper, I 

tudy how the possibility of reinfection shapes the epidemiological 

ynamics at the population level. To explore the difference in the 

ynamics of the disease under the reinfection and no-reinfection 

cenarios and, furthermore, the effects of the mitigation measures, 

 use a SEIRS model and consider three different ways of model- 

ng reinfection. A key finding is that the mitigation measures delay 

ot only the infection peak, but also the moment when the differ- 

nce between the reinfection and no-reinfection scenarios becomes 

rominent. This result is robust to various modeling assumptions. 

he framework is simple and therefore can serve as a baseline for 

ore complex models. 
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