
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Transfusion Medicine Reviews 34 (2020) 209–220

Contents lists available at ScienceDirect

Transfusion Medicine Reviews
j ourna l homepage:

ht tps: / /www. journa ls .e lsev ie r .com/ t ransfus ion-med ic ine- rev iews/
The Immune Nature of Platelets Revisited
Amal Maouia a, Johan Rebetz a, Rick Kapur b, John W. Semple a,c,⁎
a Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
b Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
c Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden

a b s t r a c ta r t i c l e i n f o
⁎ Corresponding author at: Division of Hematology an
University, BMC C14, Klinikgatan 26, 221 84, Lund, Swede

E-mail address: john_w.semple@med.lu.se (J.W. Semp

https://doi.org/10.1016/j.tmrv.2020.09.005
0887-7963/© 2020 Elsevier Inc. All rights reserved.
Available online 19 September 2020
Keywords:
Platelets
Bacteria
Viruses
TLR
CD40L
Cytokines
Chemokines
Antigen processing and presentation
Immune response
Microvesicles
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints themwith a variety
of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors
(TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune
system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that
attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly
influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are
also the source of most of the microvesicles in the circulation and these miniscule elements further enhance
the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that
platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign
and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses.
This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place
them as integral players in immune reactions.
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Introduction

Platelets are anucleate cell fragments derived from MK in the bone
marrow (BM) and are key players in hemostasis [1]. They are the second
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most abundant cell in the circulation (150–400 × 109/L, [2] and thus,
well situated to rapidly respond to vascular damage and
attract leukocytes to sites of injury [3]. It has also become clear that
platelets elicit several non-hemostatic immune functions [4-6]. For
example, platelets are capable of direct pathogen binding by expressing
pathogen-associated molecular pattern (PAMP) receptors and thus
mediate anti-infective immunity [7,8]; they can kill pathogens by both
encapsulation and anti-microbial peptides [9-11].

Platelets also contribute to innate immunity to affect adaptive
immune responses and they do so by expressing a wide range of func-
tional immune receptors [12]. These receptors enable interactions
with immune cells at the vascular endothelium and in the red pulp of
the spleen [13]. For example, platelets contain the largest pool of circu-
lating Fc gamma receptor IIA (FcγRIIA) [14,15] and this allows them
to interact with immune complexes and ultimately form platelet-
leukocyte aggregates that can immobilize pathogens [16].

Evidence suggests that platelets also directly influence adaptive
immune processes. For example, platelets express functional CD40L
(CD154) [17] and they contain a diverse spectrum of RNA species
[18-22] packaged into platelet microvesicles (PMV) which are abun-
dant in blood and transfused blood products [23,24]. PMV extend the
platelet’s immunomodulation capabilities and their presence is
implicated in several autoimmune diseases. Perhaps more intriguing
is that platelets and their parent cells, the MK, can act as antigen pre-
senting cells and are able to stimulate T-cells against foreign and self-
antigens [4,5,11].

How platelets possess all their different immune functions is
unknown. One theory suggests an evolutionary link between platelets
and invertebrate hemocytes, which not only protect arthropods from
pathogens but also clot hemolymph at sites of exoskeletal breach [25];
perhaps a divergence occurred during platelet evolution where they
retained some of the immune properties of the hemocyte [25]. On the
other hand, increasing evidence suggests platelets may acquire their
immune properties from MK [25]. For example, emperipolesis is a rare
phenomenon where an intact cell is found within the cytoplasm of
Table 1
Platelet Toll-like receptors and their ligands

Receptor Ligand Functions

TOLL LIKE RECEPTORS (TLRs)
TLR2 (with TLR1 or TLR6) Many non-TLR molecules and

PAMPs

Lipoprotein/lipopeptides,
peptidoglycan, lipoteichoic
acid, etc

Mice
- CD62P and integrin αII
neutrophil-mediated ph

- (CD62P/PSGL-1, CD40L
Human

- Heterodimer formation
lipoproteins or lipopept
cytokine secretion and

TLR4 LPS, HSP60, commensal
bacteria

Most abundantly expressed
TLR on PLTs

CD14-dependent response to
bacterial LPS

Mice
- Complex formation wit
- Heterodimer formation w
CCL9 cytokines, via MyD

Human
- TRAF-6 stimulation and
and JNK

- Increased TLR4 express
TLR7 Synthetic compounds (the

immune response modifiers)

Endosomal receptor

Interaction with Imiquimod,
homology to TLR8

Mice
- Host immune response
formation of neutrophi

Human
- Upon binding to agonis
homotypic interaction

- Activation of NF-kappa
TLR9 CpG-DNA Mice

- Receptor for CpG bacter
- Binding of carboxy (alk
aggregation

Human
- Acts via MyD88 and TR
inflammatory response
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another cell. Cunin et al elegantly demonstrated that neutrophils can
enter the MK cytoplasm in membrane-bound vesicles and once inside
the MK, they transfer parts of their membrane to the MK and then to
platelets [26,27] This process results in circulating platelets bearing
membranes from non-MK donor cells and this perhaps adds to the
platelet’s immune function [26,27]

It is now evident that platelets play a pivotal role connecting inflam-
mation, immunity, and vascular integrity and modulate immunological
processes. This review will summarize the two major non-hemostatic
roles that platelets play; their anti-infective nature and their ability to
immunomodulate the innate and adaptive immune systems.

The Anti-Infective Nature of Platelets

Platelet Pattern Recognition Receptors (PRR)
Platelets from several species express PRRs such as Toll-like re-

ceptors (TLRs) and C-type lectin receptors (CLR) [28,29] which detect
pathogen-associated molecular patterns (PAMPs) from pathogens
[30,31] (Table 1). For example, platelet TLR4 binds to bacterial lipopoly-
saccharides (LPS) and in vivo, induces production of tumor necrosis
factor (TNF)-α, soluble CD40L (sCD40L) and interleukin (IL)-1β, how-
ever, different LPSmoieties appear to cause differential cytokine release
[32-41]. TLR4 has also been shown to augment platelet-neutrophil
aggregates, neutrophil extracellular trap (NET) formation (NETosis)
and bacterial trapping in sepsis [42]. Intriguingly, platelet TLR4 can
both inhibit and augment neutrophil responses. Co-culture of plate-
lets with neutrophils and TLR4 agonists increased neutrophil CD62L
expression, phagocytosis and IL-8 secretion but reduced CD62L
shedding and elastase secretion [43]. It is now clear that platelet
TLR4 is critical for orchestrating neutrophil responses against invading path-
ogens and the source of LPS determines their ultimate effect on leukocytes.

Detection of PAMPs is an efficient host defense feature of platelets to
ensure a rapid response to infections [44]. Platelet TLR2 recognizes
bacterial lipopeptides together with TLR1 and TLR6 [45] and TLR2
stimulation induces the formation of platelet-neutrophil aggregates
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and phagocytosis of bacteria [46,47]. On the other hand, platelet TLR7
senses ssRNA and can enhance the uptake of viruses such as Influenza
that leads to neutrophil NETosis [48,49]. In addition, platelet TLRs
binds damage-associated molecular patterns (DAMPs) such as carboxy
(alkylpyrrole) protein adducts (CAPs) and these are elevated in several
pathological conditions e.g. diabetes and atherosclerosis; CAP-binding
to platelets induces platelet activation and aggregation [50]. Table 1
summarizes the platelet TLRs and their various effects on immunity.

Platelets and Their Interactions with Viruses
Thrombocytopenia is associated with many infections and severe

forms of thrombocytopenia during sepsis are usually a poor prognostic
marker suggesting platelets are key players in septic patients [51-54].
How thrombocytopenia occurs is still a matter of debate; it is mediated
by consumption, sequestration or bone marrow production faults. With
respect to viral infections, platelets have the ability to engulf viruses
through a wide array of expressed molecules (Figure 1). For example,
Banerjee et al have shown that platelets use dynamin and vesicle-
associated membrane protein-3 (VAMP) to take up and traffic HIV-1
intracellularly [11]. It appears that HIV trafficked through endosomes
causing platelet activation and platelet/leukocyte aggregate formation
in vitro; in vivo, infection lead to platelet-leukocyte aggregates and mild
thrombocytopenia [11]. These data are consistent with the notion that
platelets can sample the circulation and act as infectious sentinels.

CLEC-2 is a CLR expressed on platelets [55,56] and was identified
to promote platelet aggregation [57]. Another CLR, dendritic cell (DC)-
specific intercellular adhesion molecule 3-grabbing non-integrin (DC-
Sign) also interacts with several pathogens. For example, platelet CLEC2
binds HIV via DC-SIGN and this interaction facilitates viral dissemination
[58] whereas it is also responsible for mediating immunothrombosis
during bacterial infections [59,60]. These receptors allow platelets to
bind to several other viruses such as Dengue virus (DENV), Ebola, and
Hepatitis C [58,61,62]. Platelet DC-Sign not only binds DENV but once
engulfed, the virus undergoes replication and platelets act as a source
Figure 1. Platelets, via several cell surface and internalized receptormolecules, can readily bind t
directly interact via a plethora of surface receptors. CMV binds to platelets via TLR2, EMCV inter
interact with platelets via GPIIb/IIIa. EBV–platelet interaction occurs via CR2. HIV and DV bind t
and CCL5. Platelets express the Coxsackie virus-specific receptor, CAR, and HCV interacts with p
2; CCL, chemokine (C–Cmotif) ligand; CMV, cytomegalovirus; CR, complement receptor; CXCR4
virus; DC-SIGN, DC-specific intercellular adhesion molecule-3-grapping non-integrin; DV, De
immunodeficient virus; IgG, immunoglobulin G; TLR, toll-like receptor. Adapted from [210].
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of nascent viral production [63,64]. In addition, DENV infected individuals
become thrombocytopenic and this may be related to bone marrow
suppression. Vogt et al utilized three models of DENV infection and
replication; a human MK cell line, primary human MKs and in vivo, a
humanized MK mouse model. They found that DENV infection and
replication was supported in all three models suggesting that MK
harbor the virus, which results in lower platelet production [65].
Altogether, these data suggest that blocking platelet/virus interactions
could be a novel therapeutic option for acute viral infections.

One of the most interesting aspects of how platelets attack viruses is
their ability to neutralize virionswith intracellularly stored IgGmolecules.
Schrottmaier et al. demonstrated that platelets from anti-virus sero-
positive donors harbor IgG molecules specific for the virus (e.g. Influenza
A and Cytomegalovirus) and they can release the IgG to neutralize them
[66]. It suggests that platelet-derived IgG represents a novel mechanism
to potentiate anti-viral humoral immunity [66]. In addition, platelets can
be activated through their FcγRIIA by immune complexes (IC) formed
in immune hosts by different bacteria and virus [67]. This leads to granule
release, temporary sequestration of platelets primarily in the lung and
brain vasculature and this appears to be dependent on integrinαIIbβ3 en-
gagement [67-69]

MKs can also be involved in anti-viral immunity and this may be
how platelets acquire their art of dealing with viruses. Campbell et al.
examined anti-viral genes in MK during DENV and influenza infections
[70]. They found that interferon-induced transmembrane protein 3
(IFITM3), an anti-viral immunegene,was significantly elevated in plate-
lets from infected patients and lower IFITM3 expression correlated with
increased mortality [70]. Interestingly, infecting MKs with DENV selec-
tively also increased IFITM3 and overexpression of IFITM3 in cultured
MKs enhanced the MK’s resistance to DENV infection [70]. Thus, MKs
possess significant anti-viral activity and this may be at least one reason
for their daughter’s potent armaments [71].

In 2019, the novel coronavirus called severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) emerged and the infection has
o and uptakemany different viruses. Platelet receptors for viruses: platelets and viruses can
acts via TLR7, rotavirus utilizes GPIa/IIa to bind to platelets and Hantavirus and adenovirus
o lectin receptors such as CLEC-2 and DC-SIGN. HIV further interacts with CXCR4 and CCL3
latelets via GPVI. CAR, Coxsackie-adenovirus receptor; CLEC-2, C-type lectin domain family
, C–X–C chemokine receptor type 4; EBV, Epstein–Barr virus; EMCV, encephalomyocarditi
ngue virus; FcγRII, Fc receptor γ II; GP, glycoprotein; HCV, hepatitis virus C; HIV, human
s

Image of Figure 1
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caused a global pandemic of potentially severe pulmonary disease
termed COVID-19 [72]. Interestingly, asymptomatic or mild COVID-19
cases are either not thrombocytopenic or have mild thrombocytopenia,
however, those patientswith severe disease can presentwith significant
thrombocytopenia and this is a grave prognosis [73]. Platelets have been
suggested to play a role in the COVID-19 although it is still unclear
whether they effectively interact with SARS-CoV-2 [74]. For example,
Hottz et al. studied participation of platelets in COVID-19 pathogenesis
and demonstrated increased platelet activation and platelet-monocyte
aggregation in critically ill COVID-19 patients [75]. Platelet-monocyte
interaction was associated with tissue factor (TF) expression by the
monocytes [75]. Thus, COVID-19 is associated with platelet hyper-
reactivity, which may contribute to immunothrombosis. On the other
hand, Manne et al. showed that platelets and MK are RNA- and
protein-negative for angiotensin converting enzyme-2 (ACE-2) [76],
the putative SARS-CoV-2 receptor [77]. In contrast, however, Zaid et al
challenged this concept by showing that platelets do indeed express
ACE-2 mRNA [78]. Whether ACE-2 is expressed by platelets or not will
require further examination, however, even without ACE-2, platelets
can still potentially interact with SARS-CoV-2 via their expression of
TLR7 and 9. This would require cell entry by another receptor i.e. CRLs
[79]. Platelets could also possibly activate through FcγRIIA engagement
of ICs formed in patients with cross-reacting antibodies to SARS-CoV-2
[69]. Thus, it is quite possible that platelets play a significant role in
the pathophysiology of COVID-19.

Platelet-Derived β-Defensins, Thrombocidins, and Other Antimicrobial
Molecules

β-Defensins are cationic antimicrobial peptides found in platelets
and they directly inhibit bacterial growth via membrane disruption
and promote NETosis [80]. Platelets can surround Staphylococcus aureus,
clustering the bacteria to inhibit growth and then release β-defensins
to induce NETosis [80]. These data suggest that platelet-derived
β-defensins display classic antimicrobial activity and signal NETosis to
capture bacterial. Thrombocidins were originally purified from platelet
granules and were characterized to be truncated variants of the CXC
chemokine, neutrophil-activating peptide-2 (NAP-2) [81]. They effec-
tively kill several bacterial strains including Bacillus subtilis, Escherichia
coli and Lactococcus lactis and are fungicidal for Cryptococcus neoformans
[81]. Although little work has been performed on these molecules, it
emphasizes that the platelet chemokine ordnance may be critical to its
anti-infectious activities.

Platelets contain the cytokine IL-β and they can release it or package it
into PMV in response to bacterial LPS or viral infection [82-84]. Secretion
of IL-1β by platelets leads to increased phagocytosis of bacteria and
further IL-1β production by macrophages [85]. In addition, platelet ex-
pression of GPIb readily dictates the fate of bacterial immune responses
via C3b-opsonization [86,87]. Normally, C3b-opsonized bacteria are
destroyed by macrophages in the spleen, however, if platelets bind to
the bacteria via GPIb, the platelet-bacteria complexes are shunted to
splenic DCs and this induces an adaptive immune response [86,87]. It is
now clear that platelets have the ability to interact with a large variety
of pathogens via the expression of several anti-infective molecules.
These molecules enable platelets to directly kill pathogens and to engulf
and harbor them for interactions with immune cells. Because of this, it
is no wonder that platelets have been termed circulating infectious
sentinels.

The Immunoregulatory Nature of Platelets

Transfusion-Related Immunomodulation (TRIM)
Transfusion of platelets has long been implicated in mediating TRIM

[88,89] and does so independently of leukocytes [90]. Platelets are
decorated with plasma-adsorbed denatured Class I molecules encoded
by the major histocompatibility complex (MHC) [91,92]. These trun-
cated molecules are unable to evoke functional allogeneic CD8+
212
cytotoxic T-cells (CTLs) in vitro [93] and allogenic platelet transfusions
significantly enhance donor-matched skin graft survival, a process
exclusively mediated by CTL [90]. It is possible that the adsorbed defec-
tive MHC-I molecules induce CTL anergy via faulty engagement with
their T-cell receptor [90]. These results were corroborated with blood
bank stored human platelets where several platelet-derived molecules
including sCD40L, soluble OX40 ligand (sOX40L), sMHC-I and sFASL
increased upon storage and caused significant immunomodulatory
effects in vitro [94-97]. In addition, platelet transfusions could rescue
reduced platelet counts in a murine model of CTL-mediated immune
thrombocytopenia (ITP) [98]. It appears that allogenic platelets spe-
cifically modulate CD8+ T regulatory (Treg) cells that correlated
with increased platelet counts [98]. Related to this, Ki et al showed
that stored platelet concentrates (PC) affect myeloid DC in several
different infection models. PC caused differential regulation of the
co-stimulatory molecules, CD80, CD83, and CD86 and production of
several cytokines depending on the infection model [99]. These
changes are a reason of how platelets can indirectly affect T-cell re-
sponses via altered antigen processing/presentation mechanisms
[4]. In conclusion, although platelet transfusions are beneficial, they
can modulate the immune system in several ways that can lead to
adverse events [100-102].

The Platelet CD40L/CD40 Axis
Like the immune system, platelets sense danger; they are the first

cells to detect endothelial injury because of their incredible mass in the
circulation. Stable adhesion to collagen leads to platelet aggregation
and promotes release of an array of platelet agonists leading to further
activation and release of CD62P, CD63, cytokines and CD40L [103-105].
CD40L was first described on T-cells and is a critical co-stimulatory
signal development and function of the immune system [106]. Identifi-
cation of platelet CD40L was an early observation suggesting platelets
express factors not only involved in hemostasis, but also immunity and
the sheer number of blood platelets makes them the predominant
source of CD40L in the circulation [17,103]. Platelet CD40L induces endo-
thelial cells (EC) to secrete chemokines (IL-8 and MCP-1) and express
adhesion molecules (E-selectin, VCAM and ICAM-1) and this causes re-
cruitment of leukocytes and formation of platelet-leukocyte aggregates
in areas of vascular inflammation [17,107-110]. For example, platelet
CD40L induces production of IL-6 and IL-12 from DCs as well as increas-
ing their expression of CD80, CD86 and ICAM-1 [7]. It has also been
demonstrated that platelet-CD40L can enhance DC maturation and
their ability to directly kill Staphylococcus aureuswhich leads to efficient
adaptive immunity against the bacterium [111]. Furthermore, platelet
CD40L can induce isotype switching in B-cells and augments CD8+
T-cell responses; hence, functioning as a bridge to the adaptive
immune system [7]. Platelet CD40L is also cleaved from the platelet’s
surface to generate sCD40L or it is packaged into platelet microvesicles
(PMV) that are released into the circulation for dissemination and distal
control of immunity [112,113]. In a cohort of patients with SLE, for
example, circulating CD40L positively correlated with a higher per-
centage of platelets bound to IgA+ and/or IgG+ B lymphocytes and
severe disease [114].

Platelets also express CD40 and integrin αIIbβ3, receptors for CD40L
and can respond to CD40L thus creating feedback loops, making them
key players in inflammatory processes [108,112,115]. For example,
CD40L bearing T-cells can activate platelets to secrete CCL5 (RANTES)
and cause T-cell adhesion on human intestinal microvascular EC
(HIMECs) in patients with inflammatory bowel disease (IBD) [109,116].
Furthermore, platelet CD40 recruits leukocytes to induce inflammation
at sites of vascular injury suggesting that they play pivotal roles in neo-
intima formation after damage [117]. Understanding the role of platelet
CD40L/CD40 and the effects on different immune cells and disease condi-
tions should continue to lead to important discoveries in platelet-
immune interactions. Figure 2 summarizes the various effects of platelet
CD40L and CD40 interactions with leukocytes.



gure 2. Pleiotropic effects by which platelet membrane CD40/CD40L might modulate interactions between immune cells. Platelets can interact with numerous immune cells
ch as B-cells, T-cells, macrophages, neutrophils, EC, natural killer cells and DC. Communications with these cells can induce a spectrum of immune-related events. Th, T-helper; Treg
gulatory cell; NK, Natural Killer cell; DC, Dendritic cell.
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Platelet-Derived Chemokines
Adding to their repository of immunomodulatory molecules, plate-

lets store many chemokines and cytokines within their granules [118]
(Table 2). They also express several chemokine/cytokine receptors
making them capable of detecting signals from virtually all chemokine/
cytokine groups produced at sites of inflammation [119,120].

The platelet chemokine CXCL4 or Platelet factor 4 (PF4) is highly
expressed in platelets and influences several inflammatory processes
[121]. Together with CCL5, platelet CXCL4 enhances the arrest of mono-
cytes on EC under flow conditions [122] and promotes monocyte
survival, chemotaxis and differentiation [123-126]. CXCL4 appears to
play a central role in platelet immunity andhas been shown to be critical
in protection against, for example, influenza infection [127]. Of interest,
Middleton et al observed significantly elevated levels of PF4 (and
RANTES) that trigger NETosis in patients with severe COVID-19 [128].
These data suggest that platelet PF4 and NETs may contribute to a
thrombo-inflammatory cascade and hypercoagulability in patients
with severe COVID-19.

Another abundant platelet chemokine is CXCL7, which can be de-
graded to give rise to several chemotactic and anti-infectious derivatives
such as NAP-2. NAP-2 is a potent neutrophil activator/chemoattractant
[129-132] and facilitates neutrophil migration through platelet thrombi
[133]; platelet CXCL7 is critical in managing neutrophil recruitment in
response to vascular injury [134]. It was also shown to be increased in
the bronchoalveolar fluid of mice suffering from systemic inflammatory
response syndrome (SIRS) consistent with activated platelets moving
from the circulation into the lung [135]; these plateletswere responsible
for inducing pulmonary NETosis and lung damage [135]

The release of chemokines from platelets influences a wide range of
processes such as inflammation,wound healing [136], tumormetastasis
[137] and induction of immune tolerance [138]. This places them in a
213
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central role as first responders to danger and as a bridge between innate
and adaptive immunity (Table 2).

Platelet Antigen Presenting Cell (APC) Interactions
Platelets can directly interact with DC via CD62P/CD162 and this

influences DC maturation and enhances their production of the Th2
helper chemokine CCL17 [139,140]. Alternatively, direct CD40/CD40L-
dependent interactions between platelets and DC increases the latter’s
ability to uptake and kill bacteria [111]. In addition,firmadhesionof plate-
lets to DCs throughMAC-1 (integrin alfaMbeta2, CD11b/CD18,) and Junc-
tional Adhesion Molecule-C (JAM-C) leads to enhanced phagocytosis
[141,142]. Moreover, platelet release of CXCL4 and sCD40L influences
DCs to upregulate co-stimulatory molecules and proinflammatory cyto-
kine release [142,143]. Together these interactions between platelets
and DCs stimulate antigen processing/presentation and the proliferation
of CD4+ and CD8+ T-cells thereby significantly promoting adaptive
immunity [143]. From a therapeutic perspective, Xu et al [144] deter-
mined that vincristine-loaded platelets (VLP) opsonized with an anti-
CD41 antibody could significantly reduce macrophage phagocytosis
in vitro [144]. This suggests that platelets may be utilized to specifically
interact with APC and modulate their functional capabilities.

Platelet Interactions with T-Cells and Their Ability to Act as APC
The homing of T-cells from the circulation to lymph nodes is a

central mechanism in immunity and this process is facilitated by plate-
lets via adhesion to high endothelial venules by CD62P [145]. Platelets
can also recruit T-cells to sites of vascular injury [116,146] and platelet
CXCL4 has been shown to promote CD4+ Th17 cells [147]. On the
other hand, PMVs prevented differentiation of CD4+ Tregs into Th17
cells in a P-selectin dependent manner [148]. It appears that the PMV
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Table 2
Platelet chemokine /cytokine receptors

Chemokine/cytokine receptors

Chemokines Ligands Functions References

CCR1 CCL3, CCL5, CCL7, CCL8, CCL13–16 - Significant platelet activation and granule release
- T cell and monocyte migration
- Binding to MIP-1-alpha, RANTES, and less efficiently, to MIP-1-beta or MCP-1

[197]

CCR3 CCL5, CCL7; CCL11, CCL15–16, CCL24, CCL26 - Eosinophil and basophil migration

- Signal transduction by increasing intracellular calcium ions level

[198]
[199]

CCR4 CCL17, CCL22 - High affinity for the C-C type chemokines
- Activity mediated by G(i) protein activating phosphatidylinositol-calcium second messenger system.

[200]

CXCR1 CXCL6, CXCL7, CXCL8 - Receptor to interleukin-8 [201]
- Neutrophil activation

[202]

CXCR4 CXCL12 - MAPK1/MAPK3 activation and AKT signaling cascade
- Cell migration regulation (wound healing)
- LPS-induced inflammatory response, including TNF secretion

[203]
[204]

CYTOKINES
IFNGR IFN-Gamma - Phagocytes Activation, antigen presentation and Th1 cytokine expression

- Regulates other cytokines
- JAK/STAT signaling pathway

[205]

[206]
TNFR TNF-Alpha - Most of TNF-alpha metabolic effects

- TNF–TNFR regulate frequency of effector and/or memory CD4+ or CD8+ T cells
[207]

TGF-Beta R TGF-Beta - Transmembrane ser/thr kinase
- Cell cycle arrest in hematopoietic cells and wound healing
- TRAF6 autoubiquitination, apoptosis.

[208]

IL1R IL1-Beta - Chemotactic for PMNs (IL-1,8) and fibroblasts (IL-4)
- Adapter molecule recruitment: TOLLIP, MyD88, and IRAK1 or IRAK2
- IL1B-mediated costimulation of IFNG production from Th1 cells

[205]
[209]
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selectively bind to a subset of memory-like Tregs and using CXCR3, in-
hibit Treg proliferation. These findings are important as they open up
the possibility that PMVs critically regulate the immune response at
sites of inflammation [148].

Antigen presentation to T lymphocytes via MHC-I molecules
is another central aspect of T-cell immunity. Platelets are estimated
to harbor approximately 80,000 MHC-I molecules on their surface
[92], however, there are controversies regarding the functionality
and origin of these molecules on platelets [93]. Nonetheless, it is
now known that platelets (and MK) contain all the molecules
necessary for antigen processing and presentation to CD8+ T-cells
including a complete proteasome [149,150] and co-stimulatory
molecules [151,152]. Although the platelet’s surface contains mainly
denatured MHC-I molecules, intracellularly, platelets have a large pool
of fully intact functional MHC-I molecules that are expressed upon
activation.

Earlier reports showed that peptides from platelet GP1b could be
presented on platelet MHC-I in patients with ITP [153]. In a subsequent
report, it was shown that platelets could functionally present ovalbumin
(OVA) andmalarial peptides to activate CD8+ T-cells [151]. Confirming
this report, it was shown that MK also process and present OVA and
GPIIIa self-peptides to activate antigen-specific CD8+ T-cells [152].
While the MK processed OVA, they were also actively packaging
the MHC-I/peptide complexes into proplatelets [152]. This may be a
mechanism by which MKs immunologically communicate with T-cells
in the periphery. Of interest, examining platelet surface MHC-I mole-
cules may be an efficient way to distinguish young platelets from old
as they lose their MHC-I over time [154]. However, since MK contain
all the necessary components for antigen processing/presentation and
activation of T-cells, they are continually transferring these molecules
to platelets for peripheral activation of T-cells.

Platelet NK Cell and Tumor Cell Interactions
Natural Killer cells (NK-cells) were originally described as innate

effector cells with cytolytic activity towards virus-infected and tumor
cells [155]. Like T-cells, they are recruited from the circulation by acti-
vated platelets to sites of inflammation [156,157]. The influence of
platelets on NK cell immunosurveillance comes from early observations
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that platelets form coats around tumor cells, which protects them from
immune destruction [158]. It appears that platelets transfer their MHC-I
molecules to tumor cells and thus confer resistance to NK-mediated
cytolysis. [157,159,160]. Moreover, activation of platelet-derived
glucocorticoid-induced TNF-related ligand (GITRL) and the receptor ac-
tivator of the NF-κB ligand (RANKL) are linked to reduced NK cell reac-
tivity and INF-γ production [160-163]. In addition, podoplanin on the
tumor cell surface can cause platelet aggregation by engagingCLEC-2 re-
ceptors [164]; this interaction enhances platelet TGF-β release to induce
epithelial-mesenchymal transition (EMT) in tumor cells. This drives the
tumor toward a more migratory phenotype, tumor cell-extravasation
and immune evasion [165]. Furthermore, platelet TGF-β downregulates
natural killer group 2, member D (NKG2D) thus diminishing NK cell
anti-tumor reactivity [166,167]. Taken together, the triad of platelet-
tumor-NK-cell interactions works largely to protect tumor cells and
facilitate metastasis [157,168]; a clear detrimental effect of platelets on
the immune system.

Platelet B-cell Interactions
The B-cell is another key player in adaptive immunity by dif-

ferentiating into antibody producing plasma cells in the secondary im-
mune responses [169]. Many platelet/B-cell interactions seem to
involve CD40/CD40L [95]. In conditions were antigen-specific T- and
B-cells are scarce, platelet-derived CD40L could enhance germinal
center formation and increase IgG levels supporting the adaptive
immune response [170]. Furthermore, when lymphocytes from
patients with ITP were cultured with activated platelets, platelet
CD40L significantly induced autoreactive B-cells to produce auto-
antibodies against GPIIbIIIa [171]. Finally, CD40L can be packaged into
PMVs thus giving platelets the ability to influence B-cell development
locally through direct interactions or at a distance by the release of
PMVs into the circulation [113].

Platelet Microvesicles (PMVs)
PMVs were discovered in 1946 [172] and were characterized as

minute particles that could be enriched by centrifugation [173];
they were termed platelet dust but retained coagulant properties
[173]. PMVs are the most abundant microvesicles in the circulation



Figure 3. Pleiotropic Platelet membrane receptors by which Platelets can interact with bacteria and numerous immune cells such as B-cells, T-cells, monocytes, neutrophils, epithelium
endothelium and tumor cells. Arrows and brackets show some of the major interactions. CD40, CD40 molecule; CD40L, CD40 ligand (CD154); sCD40L, soluble CD40L; LPS
Lipopolysaccharide; LP, Lipoprotein; dsRNA, Double-stranded RNA; ssRNA, Single-stranded RNA; CAPs, carboxy(alkylpyrrole) protein adducts; PMV, Platelet microvesicule; IL-1β
Interleukin-1 beta; NAP-2, Neutrophil Activating protein-2; EMT, epithelial-mesenchymal transition proteins; CXCL4, Chemokine (C-X-C motif) ligand 4; CXCL7, Chemokine (C-X-C
motif) ligand 7; CCL3, Chemokine (C-C motif) ligand 3; CCL5, Chemokine (C-C motif) ligand 5; TGF-β, Transforming growth factor beta; TC-1, Thrombocidin-l ;TC-2, thrombocidin-lI
CLEC-2, C-type lectin domain family 2; DC-SIGN, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; TLRs, Toll Like Receptors.
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and can readily activate neutrophils and ECs via CD62P and promote
tethering of flowing neutrophils to ECs in vitro [174]. Moreover, they
transfer GPIbα to monocytes and recruit them to sites of vascular
injury [175].

Elevated plasma PMV levels are linked to a wide range of diseases
[176]. For example, patients with rheumatoid arthritis (RA) have ele-
vated plasma PMV levels that correlate with disease severity [177]. In
addition, platelet GPVI was shown to enhance production of PMV
(laden with IL-1β) in the RA synovium that elicit chemokine release
by synovial fibroblasts thus attracting proinflammatory neutrophils
[178]. This mechanism was corroborated by a recent report showing
that Rac1 inhibition, located downstream of GPVI, decreased PMV re-
lease and alleviated collagen-induced arthritis [179].

Patients with ITP also have increased plasma PMV counts with the
highest levels in newly diagnosed ITP [180-182]. Bleeding tendency and
platelet count do not always correlate in ITP although Jy et al speculated
that ahigher PMV toplatelet ratio could alleviate somebleeding symptoms
[183]. PMVs are also increased in patients with systemic lupus erythema-
tosus (SLE) and form immune complexes with autoantibodies [184].
PMV-IgG complexes were internalized bymonocytes leading tomonocyte
activation and were positively correlated with disease activity [184].

From an infectious point of view, DENV can activate platelets
via CLEC-2 resulting in PMV release and activation of neutrophils and
macrophages via TLR2 [30]. This subsequently leads to NETosis and
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,
,

;

pro-inflammatory cytokine release which causes lethality in DENV-
infected mice [30]. It appears that increased levels of PMV are observed
inmanydiseases but to date,most have been only associations. Improving
isolation and characterization techniques will unravel more PMVmecha-
nisms and the biological relevance of these vesicles in different disease
states. Figure 3 summarizes themany aspects of platelets and their ability
to interact with and regulate immunity.

Conclusions

Platelets are completely armed to closely interact with infectious
agents and cells of the innate and adaptive immune systems. They do so
by containing a wide range of pro- and anti-inflammatory molecules,
some of which that have no obvious hemostatic function. Based on
these observations and the multitude of literature relating to platelets
and immunity, it is time that they are rightly placed as critical cells of
the immune system.
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