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Abstract

Radiomics is a newly emerging field that involves the extraction of massive quantitative features 

from biomedical images by using data-characterization algorithms. Distinctive imaging features 

identified from biomedical images can be used for prognosis and therapeutic response prediction, 

and they can provide a noninvasive approach for personalized therapy. So far, many of the 

published radiomics studies utilize existing out of the box algorithms to identify the prognostic 

markers from biomedical images that are not specific to radiomics data. To better utilize 

biomedical images, we propose a novel machine learning approach, stability selection supervised 

principal component analysis (SSSuperPCA) that identifies stable features from radiomics big data 

coupled with dimension reduction for right-censored survival outcomes.

The proposed approach allows us to identify a set of stable features that are highly associated with 

the survival outcomes in a simple yet meaningful manner, while controlling the per-family error 

rate. We evaluate the performance of SSSuperPCA using simulations and real data sets for non-

small cell lung cancer and head and neck cancer, and compare it with other machine learning 

algorithms.
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The results demonstrate that our method has a competitive edge over other existing methods in 

identifying the prognostic markers from biomedical imaging data for the prediction of right-

censored survival outcomes.
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1 Introduction

Bioimaging has emerged as an important diagnostic and prognostic tool in cancer. Imaging, 

as a non-invasive technique, has an advantage over other invasive clinical options and can 

generate a large amount of radiomics texture features that might be useful for predicting 

prognosis and therapeutic response for various conditions. In addition, it can provide 

valuable information for individualized treatments. Previous studies for analyzing 

bioimaging data have mostly focused on categorical outcomes. Success stories include the 

decipherment of not-otherwise-specified tumor for non-small-cell lung cancer by utilizing 

the features extracted from computed tomography (CT) imaging [1], the segmenting of brain 

tumor with data extracted from contrast-enhanced T1 and FLAIR magnetic resonance 

imaging (MRI) [2], and the segmentation and characterization of uterine for patients with 

major uterine disorders by using variables extracted from magnetic resonance imaging [3].

As radiomics texture features are of high dimension in nature, traditional statistical and 

computational models are not suitable. Recently, Cheng et al. have introduced machine 

learning classification methods for radiomics biomarkers to predict survival by 

dichotomizing the censored continuous survival data at a specific time cutoff [4]. The 

objective is to stratify patients into two survival classes by relevant survival time. However, 

due to the right-censored nature of the data, dichotomizing the survival time into binary 

outcome will lead to loss of information and biased estimation. A recent effort has been 

conducted to evaluate existing prognostic modeling methods for radiomics data with 1,610 

features [5]. The researchers have found that the combinations of machine learning 

algorithms and feature selection methods may have an impact on the prediction of overall 

survival. Nevertheless, none of the combinations investigated in their studies stand out as 

their performances are quite similar when applied to one real data set.

For radiomics study, it is important to assess the clinical relevance of radiomics features and 

examine its performance and stability for predicting prognosis. Methods applied to 

radiomics data should be reliable and accurate for clinical use [6]. Biomarker predictors 

obtained from the one-time experiment may not be easily generalizable. Also, texture 

features with higher stability tend to be more informative and have higher prognostic 

performance as well as reproducibility. This has been demonstrated by Aerts et al. [7]. To 

the best of our knowledge, many of the radiomics studies have been conducted by using 

some existing out of the box algorithms that are not specific to high-dimensional radiomics 

data and do not focus on identifying stable features that can be more applicable to clinical 

settings [8]. Unlike genomics [9], there is currently a lack of prognostic algorithms that are 
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designed explicitly for high-dimensional radiomics data. In this research, we focus on 

modeling texture features for cancer prognosis prediction with over 10,000 features 

extracted from biomedical images in a stable manner.

In this paper, we present a novel algorithm SSSuperPCA, a stability selection supervised 

principal component analysis tool for radiomics data, and apply it to two real radiomics data 

sets. Our objective is to address the issue of the lack of novel prognostic tools that can 

directly predict right-censored data for radiomics texture big data. We also benchmark our 

proposed SSSuperPCA against other regression and machine learning methods.

2 Materials and Methods

Our proposed algorithm, stability selection supervised principal component analysis 

(SSSuperPCA) integrates stability selection with supervised principal component analysis 

for the prediction of right-censored survival data.

Stability selection was first introduced by Meinshausen and Buhlmann [10]. It is a generic 

approach that can be applied to a wide range of statistical techniques for feature selection in 

high-dimensional data. In contrast to other feature selection algorithms that aim to find the 

best predictors, stability selection identifies a set of stable features that are chosen with high 

probability with the rationale for consistent predictions. The idea of stability selection is to 

perform feature selection on many smaller samples called subsamples that are resampled 

without replacement from the original data. Selected features will then be based on the 

aggregated results from the subsamples. Average selection probabilities will be computed 

for each feature, from which we can expect strong relevant features with higher selection 

probabilities close to 1 while irrelevant features with probabilities close to 0 [10]. Shah and 

Samworth [11] proposed a refined version of stability selection called complementary pairs 

stability selection that uses the subsamples as well as its complementary pairs. A narrower 

error bound could be derived with the modified Markov’s inequality that assumed 

unimodality or r-concavity for the distribution of the selected frequencies. In order to tackle 

high-dimensional feature selection for -omics data with right-censored survival outcomes, 

Mayr et al. put forward a boosted C-index stability selection that combined complementary 

pairs stability selection and C-index boosting to filter out informative features and to acquire 

the risk prediction that maximized its discriminatory power [12]. Bair et al. first introduced 

the supervised principal components analysis that integrated principal component analysis 

(PCA), an orthogonal linear transformation technique for dimensionality reduction, with 

generalized regression to address the issue of high-dimensional data [13]. When dealing 

with the number of features far exceeding the number of observations, the conventional 

method may yield unsatisfactory results because of sparsity. Supervised PCA can generate 

favorable results through the use of the subsets of the selected features that account for their 

correlation with the outcome. This approach can reduce the potential problems caused by the 

noisy features of the prediction model and keep the model’s simplicity at the same time. 

Supervised PCA has been applied to the area of bioinformatics studies for most scenarios, 

such as genome-wide association analysis [14] and microarray gene expression analysis 

[15]. Radiomics, the recently emerging research field which extracts high dimensional 

quantitative features from medical images by using advanced data-characterization 
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extraction algorithms, can also take advantage of the unique characteristics of supervised 

PCA. For example, Kickingereder et al. incorporated supervised PCA with radiomics to 

provide a noninvasive approach as a novel decision tool for improving decision-support in 

the treatment of glioblastoma patients [16].

The analysis was performed using our R package, SSSuperPCA that was built on mboost, 

stabs and superpc under R version 3.4.3. The R package SSSuperPCA is available on the 

website: http://web.hku.hk/~herbpang/SSSuperPCA.html.

2.1 Stability Selection Supervised Principal Component Analysis (SSSuperPCA)

SSSuperPCA identifies the informative features from a large set of quantitative features 

extracted from biomedical images and predicts right-censored survival outcomes with 

supervised PCA to obtain the prediction model. Here, the continuous additive predictor η 
derived from the prediction model is defined as follows:

η = β0 +
i 1

n
βi xi = XTβ (1)

where X = (1, x1, x2, ⋯ , xn)T is the feature vector and β = (β0, β1, β2, ⋯ , βn)T is the 

corresponding regression coefficients vector of additive predictors.

The aim of the proposed algorithm is to identify a prediction model that aims to optimize the 

truncated concordance index (C-index) proposed by Uno et al [17], which will be further 

explained in section 2.2. The algorithm has seven basic steps:

1. Categorize the features into M subgroups based on the decreasing order of the 

average Uno’s truncated C-index that was derived from the k-fold cross-

validation of a univariate Cox proportional hazards regression model trained on 

the training partition;

2. Apply the complementary pairs stability selection with boosted C-index for each 

subgroup. Set the number of subsampling replicates to B which will lead to 2 × 

B subsamples under the scheme of complementary pairs.

a. Initialize the estimation of the continuous additive predictor η0 for each 

subsample and the corresponding features in each subgroup. For 

example, set β0 = 0 which will make η0 = 0. Set m = 1 and a large 

maximum number of iterations mstop.

b. Compute the negative gradient vector of the loss function and figure 

out its value at ηm − 1 that was derived from the previous iteration.

c. Fit the negative gradient vector of the loss function to xl, the features in 

the subgroup, through the base learners Cox proportional hazard 

regression model bl(·).
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d. Select the feature that minimizes the value of the loss function under 

the least-squares criterion.

e. Update the continuous additive predictor with the feature selected in d).

f. Stop if m meets the stop value mstop. Otherwise, update m = m + 1 and 

return to step a).

g. Average the selection probabilities that are derived from the 2 × B 

subsamples and return features that exceed the preset selection 

probability threshold πthr.

3. Aggregate the selected features obtained from each subgroup.

4. Estimate the standardized correlation coefficients, like proportional hazards for 

survival data, for each feature selected form stability selection through the 

univariate Cox proportional hazards regression.

5. Construct the reduced features matrix by using features whose absolute 

correlation coefficients exceeds the correlation threshold θthr that estimated via 

cross-validation.

6. Compute the principal components of the reduced features matrix.

7. Predict the right-censored survival outcome in the Cox proportional hazards 

regression model by using the first few principal components and return the 

stable features selected in step 3).

Unlike the conventional principal component analysis, SSSuperPCA performs singular value 

decomposition on the reduced data matrix to incorporate features that are highly correlated 

with the outcome. The input feature matrix for SSSuperPCA in step 4, whose components 

are features resulted from the stability selection with boosted C-index, should be 

standardized before performing prediction.

2.2 Stability Selection with Boosted C-Index

The concordance index (C-index) is a routine criterion in biomedical studies that measures 

the rank-based agreement probability between the continuous additive predictor and right-

censored survival outcome. C-index may take values from 0.5(random predictor) to 1 

(perfect prediction accuracy).

In general, C-index provides a global assessment of the discriminative ability of the fitted 

survival models. However, C-index may result in biased estimation because of the unknown 

true censoring pattern for all patients in practice. Observation pairs that cannot be ordered 

due to censoring will be omitted in the evaluation. To overcome this shortcoming, Uno 

proposed the truncated C-index that is independent with the censoring distribution and could 

consistently produce an asymptotically unbiased estimation of the conventional C-index 

[17]. The truncated C-index estimator is formulated as below:
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CUno(T , η, τ) =
i 1

n

j 1

n
wijI(ηi ηj) (2)

where wij =
Δi G(Ti)

−2I(Tj < Tj, Ti < τ)

i 1
n

j 1
n

Δi G(Ti)
2I(Tj Tj Ti τ)

, with T denotes the observed survival 

time subject to censoring, G(·) is the Kaplan-Meier estimator of the survival function that 

accounts for the censoring time, Δ is the censoring indicator and I(·) is the indicator 

function. τ is a pre-specified time point, Ti,Tj are survival times, and ηi, ηj are the predictors 

of two observations from an independent and identically distribution.

To obtain the optimal regression coefficient β that maximizes the truncated C-index, the 

component-wise gradient boosting algorithm [18] which is computationally efficient for 

high-dimensional data has been adopted. The idea is to update the base-learner in each 

boosting iteration through adding features that best fit the least square criterion of the 

negative gradient vector that derived from the loss function. However, Uno’s truncated C-

index estimator it is non-differentiable with respect to η, directly using it as the loss function 

for gradient boosting is out of the question. Therefore, an approximate approach that uses 

the sigmoid function has been applied to smooth the Uno’s truncated C-index [19].

The smoothed estimator is given below.

Csmootℎ(T , η) =
i j

wij
1

1 exp ηi ηj
σ

(3)

σ is a positive parameter which controls the accuracy of the sigmoid approximation. 

Previous studies demonstrated that the sigmoid approximation and its corresponding 

outcomes were not sensitive to σ when σ is small enough [19].

To avoid the problems of overfitting while ensuring the selection of informative features, 

boosted C-index was incorporated with complementary pairs stability selection proposed by 

Shah and Samworth. The general concept is to use 2 × B complementary pairs of size n/2 

(the subsamples and its complement as well) and fit the boosted C-index model to select a 

pre-specified number of features on each of the subsample. Average selection probabilities 

will be calculated for each feature after aggregating the selection results of all the 2 × B 

subsamples and only features that beyond a threshold will remain in the final selection list. 

By cooperating with stability selection under exchangeable assumptions for the set of 

selected variables in each subsample, we may control the upper bound of the per-family 

error rate (PFER) with the inequality showed below.

E(V ) ≤ q2

(2πtℎr − 1) × p (4)
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where E(V) is the expected number of false positive selected features, πthr is the probability 

threshold for stability selection, q is the number of features that need to be selected on each 

subsample, and p is the number of total features.

PFER metric, as the main characteristic of stability selection, can strictly control the noisy 

features that are falsely included. Meanwhile, the features matrix extracted from the 

biomedical images could be sparse (the number of features is much greater than the number 

of observations) or the features are not highly correlated with the outcomes. Thus, less 

features would be selected when applying the stability selection with boosted C-index 

algorithm to radiomics data. To tackle this problem and to include more informative features 

as the input for Supervised PCA, we first grade all the features based on the Uno’s truncated 

C-index that derived from a univariate Cox proportional hazards model and categorize the 

features into subgroups based on the ranking, then we perform stability selection with 

boosted C-index on the subgroups and aggregate the features selected from each subgroup as 

the final conclusion. In our experiments, the number of complementary pairs (B) was set to 

50 which led to 100 subsamples, and the number of uniquely selected variables (q) in each 

subsample was set to a lower bound as a function of PFER, stability selection πthr and the 

number of total features (p). The probability threshold for stability selection πthr was chosen 

to be slightly higher than 0.5 to include more features selected from the biomedical images 

and to reduce possible information loss.

2.3 Supervised PCA

The features that are selected through the stability selection with boosted C-index will serve 

as the entry matrix for Supervised PCA. Denote Xn×p as the standardized feature matrix, 

where n is the number of observations and p is the number of features.

First, the standardized regression coefficients C = (β1, β2, ⋯, βp) that measure the effect on 

the survival outcome will be estimated through the univariate Cox proportional hazards 

regression model. Let Xn × p1
θ  be the new feature matrix that consists of the columns of Xn×p 

whose absolute value of the standardized regression coefficients exceed the threshold θ. 

Here the optimal value of θ is determined by cross-validation of the log partial-likelihood 

ratio statistics. The singular value decomposition of Xn × p1
θ  is Xn × p1

θ = UθDθV θ
T , where the 

dimension of Uθ , Dθ , and Vθ are n × m, m × m, p1 × m, and m = min(n, p1) . 

Uθ = uθ
1, uθ

2, ⋯, uθ
m  is the supervised principal component of Xn × p1

θ . The last step is to use 

the first k supervised principal components to fit the Cox proportional hazards regression 

model and the number of supervised principal components k, used in final prediction is 

usually no more than three in practice. The threshold of regression coefficient Θ and the 

number of supervised principal components used in our experiments were determined 

through 5-fold cross-validation on training data.

2.4 Comparison with Other Machine Learning Algorithms

We compared the stability selection supervised principal component analysis and different 

machine learning algorithms for radiomics survival data. The algorithms compared include 

C-Index stability selection with supervised principal component analysis, supervised 
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principal component analysis without stability selection, Cox proportional hazards 

regression model [20], lasso and elastic-net based Cox proportional hazards regression 

model [21], survival random forests [22], and three recently proposed deep neural network-

based survival models, DNNSurv [23], Deephit [24], and DeepSurv [25]. The basic cox 

proportional hazards regression is implemented with R package survival, and the univariate 

Cox regression was employed to filter out the top K statistically significant features, then the 

forward and backward stepwise Cox regression were applied to the K features to build the 

prediction model. Based on Altman’s [26] guideline on the maximum number of variables to 

be examined in a regression model and made a tradeoff between the model complexity and 

the prediction bias, we set K = 10 in our study. The lasso and elastic-net based Cox 

regression approaches are available as Coxnet in R. 5-fold cross-validation was used to 

determine the optimal shrinkage parameter λ for lasso and elastic-net based Cox regression 

in the training data set. The weight for L1 penalty and L2 penalty terms in elastic-net Cox 

regression is fixed to 0.5. The survival random forests is carried through R package 

randomForestSRC, with the number of trees equals to 1000 and the split rule is set to ‘log-

rank’. The three deep neural network-based survival models are implemented with python, 

and the corresponding hyper-parameters tuning is determined through a random hyper-

parameter optimization search scheme [27].

2.5 Data Sets and Generation of Texture Features

We considered the two data sets, head and neck cancer [28] and non-small cell lung cancer 

[29], which are available on The Cancer Imaging Archive (TCIA) [30]. For both data sets, 

only subjects with Computed Tomography (CT) and its corresponding radiotherapy structure 

set (RTSTRUCT) files are included. For non-small cell lung cancer data set, 106 subjects 

were excluded. There are multiple contour types in the RTSTRUCT files for the head and 

neck data set. To stay consistent with the contouring information, 79 cases with gross tumor 

volume (GTV) which has the highest frequency were included. The feature extraction part 

was conducted with Matlab by using the algorithm proposed by Vallieres et al. [31]. There 

are total of 23 non-texture features and 43 texture features extracted from the tumor regions. 

The non-texture features are volume, size, solidity, and eccentricity, and 19 histogram-based 

features that include energy, total energy, entropy, minimum, 10th percentile, 90th 

percentile, maximum, mean, median, interquartile range, range, mean absolute deviation, 

robust mean absolute deviation, root mean squared, standard deviation, skewness, kurtosis, 

variance and uniformity. The texture features include gray-level co-occurrence matrix 

(GLCM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM) and 

neighbourhood gray-tone difference matrix (NGTDM). We have excluded first-order 

(histogram) features, as these require predefined bins and do not consider the spatial and 

topological information which has been pointed out by Li et al. as a disadvantage [32]. 

Details of these features could be found in the work of Vallieres et al. [31] . Different 

extraction parameters setting were evaluated to investigate the influence of the extraction 

parameters on the predictive texture features. In our experiment, we investigated four 

extraction parameters, wavelet band-pass filleting (ratio of 1/2, 2/3, 3/4, 4/3, 3/2, 2 were 

investigated), isotropic voxel size (value of 1mm, 2mm, 3mm, 4mm and 5mm were tested), 

gray-level quantization algorithms (Equal-probability and Lloyd-Max quantization 

algorithms) and number of gray-levels in quantized volume (8, 16, 32 and 64 were tested). 
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General information regarding sample size and the number of features of the two data sets 

are listed in Table 1.

The 10,343 features extracted from the CT/RTSTRUCT image files are used to predict the 

overall survival of the patients, and a risk score will be applied to categorize the patients into 

high-risk and low-risk groups. The measurement matrices used in our experiment are Uno’s 

C-index that assesses the discriminative ability of the model, Brier score that indicates the 

overall model performance, and the log-rank statistics that evaluate whether the survival 

time of the two groups is statistically significantly different or not. As one of the data set has 

data from two hospital centers, we generated histogram plots and compared the distribution 

of the top stable features from the two hospital centers using Kolmogorov-Smirnov test. To 

enhance the computation efficiency of SSSuperPCA, we set the number of features 

subgroups (M) for non-small cell lung cancer and head and neck cancer data sets to 1 and 5, 

respectively. This decision is made based on the empirical evidence in our study.

In order to understand how well our approach performs both under the null of no informative 

stable features and under the alternative with different situations, we simulated data with a 

different number of stable features and different sample size based on the mean and 

covariance structure obtained from the non-small cell lung cancer data. Our simulation setup 

is quite similar to Pang et al. [9, 33]. For each simulated data, the total number of radiomics 

features is 3,000, the regression coefficients for stable features are sampled from a normal 

distribution with zero mean and a standard deviation 3, and the regression coefficients of the 

remaining features are all set to zero. With simulated radiomics features and the 

corresponding effect sizes, we can simulate the survival time and censoring status 

accordingly. In our simulation, the sample size is set to 150, 200 and 250 while the number 

of stable features is assigned to 0, 5, 15 and 25, respectively. In total, we simulated twelve 

different scenarios and 100 independent data for each scenario.

3 Results

In this section, we applied our algorithm to assess its abilities in predicting survival using 

biomedical images from two cancer data sets and compared its performance with the five 

machine learning algorithms. For the two data sets, we randomly selected 65 percent of the 

observations as a training set to build the model, and the remaining 35 percent was used as a 

testing set to evaluate the performance of the models. This procedure was repeated 100 times 

to calculate the average values for the three measurements mentioned above.

3.1 Simulation Studies

We simulated 100 data sets for each scenario with different sample size and the number of 

stable features as described before. For each data set, we split it into training and testing set 

and estimated the corresponding measures of Uno’s C-index, Brier score, and log-rank 

statistics.

The detailed results of Uno’s C-index for alternative scenarios are shown in Table 2, and the 

remaining two measures of alternative cases, as well as the results for null scenarios, are 

provided in the Supplementary Tables 1–3. For the results of null scenarios, the Uno’s C-
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index for different sample size were 0.492, 0.491, and 0.511, respectively. Considering the 

results of the alternative scenarios, as the number of stable features increased from 5 to 25 

along with the number of sample size increased from 150 to 250, the Uno’s C-index 

increased from 0.550 to 0.624, the Brier score dropped from 0.152 to 0.148 and the log-rank 

statistics increased from 2.914 to 6.104. A clear pattern was observed, as the number of top 

stable features increases, the performance of SSSuperPCA improves. The same trend could 

also be identified for the sample size, while the impact was not as significant as the number 

of top stable features. However, as the sample size and the number of stable features 

increased, the improvement of its performance became less impressive.

3.2 Application to non-small cell lung cancer data set

The non-small cell lung cancer (NSCLC) data contained 208 events out of 316 observations 

and the median survival time was 543 days. The results of non-small cell lung cancer data 

showed that our proposed algorithms SSSuperPCA, which integrates stability selection with 

boosted C-index and supervised PCA, performed better than supervised PCA without 

stability selection. SSSuperPCA increased the Uno’s C-index from 0.600 to 0.632, and the 

log-rank statistics from 7.071 to 8.844 when compared with supervised PCA without 

stability selection. The Brier score of SSSuperPCA was lower than that of supervised PCA, 

which suggested that the prediction model of SSSuperPCA was also better. We also 

aggregated the stable features that selected through our algorithm SSSuperPCA in the 100 

times’ running to further understanding the stable features that contribute most to predict the 

survival of non-small cell lung cancer patients. In summary, the top three features were 

selected as stable features for more than 90 times. The highly selected features including two 

non-texture features, volume, size and one texture features of small zone emphasis. Volume 

and size are two features that describe the size and shape of the tumor region and small zone 

emphasis is used to assess the homogeneity of the texture. It is acceptable that the tumor 

region characteristic would have higher prognostic power for survival prediction of non-

small cell lung cancer patients. A detailed definition of these features could be found in 

Vallieres’s paper.

Table 3 presents the average measurements for the six algorithms with non-small cell lung 

cancer data. In general, the performance of SSSuperPCA was higher than other algorithms 

compared using this data set based on the Uno’s C-index, Brier score, and log-rank statistics. 

For this data set, we observed that the survival random forests generated the worst prediction 

for survival, only slighter better than a random guess. For the Cox proportional hazards 

regression model, lasso and elastic-net based Cox proportional hazards regression model, 

these algorithms produced quite similar results with Uno’s C-index around 0.600, Brier 

Score equal to 0.152, and log-rank statistics close to 5. The survival random forests and the 

three deep neural network-based models, DNNSurv, Deephit, and DeepSurv were the four 

algorithms that produced poor prediction for survival, with the values of the concordance 

statistics proposed by Uno only marginally higher than a random prediction. Figure 1 shows 

the scatter plots of the SSSuperPCA against the other four algorithms when considering 

Uno’s C-index. Points above/on the reference line means that Uno’s C-index of 

SSSuperPCA is no less than the value of algorithms compared. The scatter plots for Brier 

score and log-rank statistics are provided in Supplementary Figures 1 and 2.

Yan et al. Page 10

Comput Biol Med. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, we tested the top machine learning algorithms combined with feature selection 

methods that were mentioned in Leger’s study [5]. For non-small cell lung cancer data, the 

boosted gradient linear model combined with univariate selection could achieve the best 

performance, with the Uno’s C-index, Brier score, and log-rank statistics equal to 0.589, 

0.153, and 4.074, respectively.

3.3 Application to head and neck cancer data set

The patients of head and neck cancer data set we used were collected from the two cohorts, 

30 observations from Centre hospitalier universitaire de Sherbrooke and 49 observations 

from Hôpital général juif de Montréal, QC, Canada. Before performing survival analysis, a 

log-rank test was used to evaluate the difference between the two studies and the 

corresponding p-value is 0.812, which indicates we could not reject the null hypothesis of no 

difference between the two studies. In total, we have 15 death events within the two studies. 

SSSuperPCA outperformed supervised PCA without stability selection again with head and 

neck cancer data. It increased the Uno’s C-index, log-rank statistics of Supervised PCA from 

0.661 to 0.701 and 2.316 to 2.379, respectively. The top three selected stable features for 

head-and-neck cancer data were zone-size non-uniformity, large zone high gray-level 

emphasis, and small zone emphasis. The three texture features that quantify the intratumor 

heterogeneity and homogeneous are components of the gray-level size zone matrix. We 

generated histogram plots for the three top selected stable features from the two centers. 

Their corresponding p-values are greater than 0.90, which indicates that there are no 

significant differences in the distribution of the identified stable radiomics features from the 

two centers. Table 4 shows the average measurements for the six algorithms with head and 

neck cancer data. Same as the non-small cell lung cancer data set, the Cox proportional 

hazards regression model, lasso, and elastic-net based Cox proportional hazards regression 

model generated almost identical results with Uno’s C-index of around 0.630, Brier Score 

equal to 0.060, and log-rank statistics close to 1.

Unlike its performance in non-small cell lung cancer data set, survival random forests had 

higher c-index for head-and-neck cancer when compared to other algorithms except for 

SSSuperPCA. DeepSurv was the best performer among the three deep neural network-based 

models. However, its performance was only comparable to that of the Cox regression-based 

algorithms. Figure 2 shows the scatter plots of the SSSuperPCA against the other five 

algorithms when considering the Uno’s C-Index and scatter plots for Brier score, and log-

rank statistics are provided in Supplementary Figures 3 and 4.

Figure 3 shows the density plots of the two data sets regarding the three measurements, 

which can provide an overall view of the performance of the six algorithms. Considering the 

top algorithms compared in Leger’s study, survival regression combined with minimum 

redundancy maximum relevance would give the best survival prediction for head and neck 

cancer data with Uno’s C-index, Brier score, log-rank statistics equal to 0.684, 0.061, and 

1.413, respectively.
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4 Discussion

In this paper, we have proposed a new algorithm for radiomics analysis with right-censored 

survival data by coupling boosted stability selection with supervised principal component 

analysis. This approach allows us to identify a set of stable features that are highly 

associated with the survival outcomes and predict the survival in a simple and meaningful 

manner. Using two different biomedical images cancer data sets, we have successfully 

demonstrated that our algorithm is able to identify a set of biologically relevant stable 

features that can help researchers better predict the survival of cancer patients and assist 

doctors in their treatment decisions.

In our experiments, non-small cell lung cancer and head and neck cancer data sets were used 

to evaluate the performance of SSSuperPCA. Results from both sets of data showed 

consistent patterns that SSSuperPCA could improve the performance of supervised PCA and 

also outperformed other regression and machine learning algorithms. In this study, we 

aggregated the stable features that were selected by our algorithm SSSuperPCA in the 100 

runs for the two data set and calculated the frequency of these stable features. Two non-

texture features that quantified the compactness of tumor shape and one texture feature that 

assessed the homogeneity of tumor characteristics were identified as the top three highly 

selected stable features from the non-small cell lung cancer data. Three texture features, as 

parts of the gray-level size zone matrix, describing the intratumor heterogeneity and 

heterogeneity, were discovered from the head and neck cancer data. These types of 

radiomics features were also suggested as the potential biomarkers for lung cancer and head 

and neck cancer in other studies [7, 34]. The gray-level non-uniformity and wavelet gray-

level non-uniformity highpass-lowpass-highpass that measure the intratumor heterogeneity 

were two of the four consistency radiomics signatures for the prediction of survival in Aerts’ 

study.

The above results have demonstrated that our algorithm is able to identify stable features 

that have the higher prognostic ability. The stable features identified from the head and neck 

cancer data are not as stable as the non-small cell lung cancer data set. This could be due to 

the smaller sample size or a different disease type with more complex bioimages than those 

in the other data set. In addition, a simulation study based on non-small cell lung cancer data 

has also been conducted to assess the performance of SSSuperPCA under different 

scenarios. In general, when the number of stable features increased or the sample size 

increased, the performance of our algorithm improved.

There are two features selection parts involved in SSSuperPCA. In the first stage, stability 

selection with boosted C-index is employed to identify a set of stable features that are 

correlated with the right-censored survival outcome while controlling for the per-family 

error rate. Unlike some conventional feature selection methods that utilize conventional C-

index for high-dimensional data may lead to biased results due to censoring distribution. On 

the other hand, stability selection with boosted C-index is less sensitive to the underlying 

censoring distribution and can yield good variable selection results. This has been 

demonstrated in the comparison of SSSuperPCA and C-Index Stability Selection SuperPCA 

on two real data sets. It is then followed by a semi-supervised strategy through supervised 
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principal component analysis that enables SSSuperPCA to identify the gross correlation 

structure along with the corresponding survival outcomes and to pare down the influence of 

these less informative features. With the combined two-staged feature selection, 

SSSuperPCA can significantly reduce the data dimensionality and identify informative 

stable features as well. One drawback is that the high-dimensional radiomics features 

generated with different extraction parameters could be correlated to some extent. But our 

study has highlighted that SSSuperPCA is capable of identifying highly stable features like 

zone-size non-uniformity, large zone high gray-level emphasis and small zone emphasis in 

our experiments. Another drawback of our approach is that the selection model used in 

stability selection and the prediction model used in supervised PCA are based on Cox 

proportional hazards model. Once the assumption is violated, the prediction results could be 

misleading, and we may consider replacing the Cox proportional hazards model to the 

accelerated failure time model with a certain distribution, such as log-normal distribution or 

Weibull distribution. However, this may not be a major problem under some circumstances 

as the hazard ratio could be interpreted as the geometric mean of hazard ratio over time 

points when the assumption is violated [35]. Although our application data sets are based on 

CT scans, our method can be applied to MRI bioimage data as input as well. In conclusion, 

our approach is able to pick up a set of stable features via boosted survival model from 

radiomics data, control the per-family error rate and perform well in survival prediction. 

While the field is still in its infancy, the proposed algorithm would motivate and draw the 

interest of other researchers to develop novel algorithms for bioimage informatics analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Bioimaging can provide valuable information for individualized treatments.

• Stability selection supervised principal component analysis can better utilize 

bioimages.

• Our algorithm outperformed the other algorithms on two real data sets.

• It can identify most stable biological meaningful features for clinical settings.
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Figure 1. 
Scatterplots of Uno’s C-index for non-small cell lung cancer data.
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Figure 2. 
Scatterplots of Uno’s C-index for head and neck cancer data.
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Figure 3. 
Density plots of three measures of six algorithms for the two data sets.

Yan et al. Page 19

Comput Biol Med. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yan et al. Page 20

Table 1.

Radiomics data sets used

Data Set Sample Size Number of Non-Texture Features Number of Texture Features

Non-Small Cell Lung Cancer 316 23
43×240 = 10320

+

Head and Neck Cancer 79 23
43×240 = 10320

+

+
Considering the full set of texture extraction parameters combinations (total 240 combinations) and 43 texture features, there are 10320 texture 

features in total.
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Table 2.

Average Uno’s c-index of the simulated data sets under different scenarios

Number of informative features over 3000 features Size 150 Size 200 Size 250

5 0.550 0.552 0.561

15 0.586 0.586 0.589

25 0.613 0.621 0.624
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Table 3.

The comparison of stability selection supervised principal component analysis with five machine learning 

algorithms with data non-small cell lung cancer

Non-Small Cell Lung Cancer C-Index+ Brier Score Log-Rank Statistic

SSSuperPCA* 0.632
(0.626,0.638)

0.148
(0.147,0.149)

8.844
(7.954,9.765)

C-Index Stability Selection
SuperPCA

0.609
(0.597,0.620)

0.149
(0.147,0.150)

8.173
(7.168,9.192)

Supervised PCA 0.600
(0.587,0.612)

0.149
(0.148,0.151)

7.071
(6.169,8.024)

Cox Regression 0.599
(0.590,0.607)

0.152
(0.150,0.153)

5.463
(4.619,6.355)

Survival Random Forests 0.545
(0.538,0.551)

0.156
(0.155,0.157)

1.535
(1.239,1.848)

LASSO Cox 0.600
(0.593,0.607)

0.152
(0.151,0.153)

4.906
(4.226,5.612)

ENET Cox 0.596
(0.588,0.604)

0.152
(0.151,0.153)

4.561
(3.929,5.239)

DNNSurv 0.512
(0.509,0.515)

0.157
(0.156,0.158)

1.155
(0.874,1.471)

Deephit 0.534
(0.527,0.541)

0.157
(0.156,0.158)

1.163
(0.888,1.471)

DeepSurv 0.518
(0.505,0.530)

0.154
(0.153,0.155)

4.199
(3.452,4.978)

The results are the average values that based on 100 times random training/testing splits.

*
SSSuperPCA: Stability selection supervised principal component analysis.

+
Concordance statistics proposed by Uno et al. that do not depend on the censoring distribution.

Confidence interval at 95% confidence level is calculated from bootstrap percentile method.
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Table 4.

The comparison of stability selection supervised principal component analysis with five machine learning 

algorithms with data head and neck cancer

Head and Neck Cancer C-Index+ Brier Score Log-Rank Statistic

SSSuperPCA* 0.701
(0.669,0.731)

0.057
(0.053,0.061)

2.379
(2.040,2.742)

C-Index Stability Selection
SuperPCA

0.671
(0.638,0.702)

0.057
(0.053,0.060)

2.177
(1.844,2.535)

Supervised PCA 0.661
(0.630,0.692)

0.057
(0.053,0.060)

2.316
(1.945,2.715)

Cox Regression 0.644
(0.611,0.675)

0.060
(0.056,0.064)

1.207
(0.935,1.502)

Survival Random Forests 0.679
(0.649,0.709)

0.059
(0.056,0.063)

1.025
(0.783,1.297)

LASSO Cox 0.627
(0.594,0.659)

0.060
(0.056,0.064)

1.087
(0.837,1.364)

ENET Cox 0.628
(0.596,0.661)

0.060
(0.056,0.064)

0.936
(0.720,1.188)

DNNSurv 0.578
(0.557,0.600)

0.059
(0.055,0.063)

1.300
(0.966,1.676)

Deephit 0.616
(0.590,0.643)

0.060
(0.056,0.064)

1.169
(0.878,1.475)

DeepSurv 0.627
(0.595,0.659)

0.061
(0.057,0.065)

0.779
(0.593,0.986)

The results are the average values that based on 100 times random training/testing splits.

*
SSSuperPCA: Stability selection supervised principal component analysis.

+
Concordance statistics proposed by Uno et al. that do not depend on the censoring distribution.

Confidence interval at 95% confidence level is calculated from bootstrap percentile method.
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