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Abstract

Omic technologies have enabled the complete readout of the molecular state of a cell at different 

biological scales. In principle, the combination of multiple omic data types can provide an 

integrated view of the entire biological system. This integration requires appropriate models in a 

systems biology approach. Here, we focus on genome-scale models (GEMs) as one computational 

systems biology approach for interpreting and integrating multi-omic data. GEMs convert the 

reactions (related to metabolism, transcription and translation) that occur in an organism to a 

mathematical formulation that can be modeled using optimization principles. We review a variety 

of genome-scale modeling methods used to interpret multiple omic data types, including 

genomics, transcriptomics, proteomics, metabolomics, and meta-omics. The ability to interpret 

omics in the context of biological systems has yielded important findings for human health, 

environmental biotechnology, bioenergy, and metabolic engineering. We find that concurrent with 

advancements in omic technologies, genome-scale modeling methods are also expanding to enable 

better interpretation of omic data. Therefore, we expect continued synthesis of valuable knowledge 

through the integration of omic data with GEMs.
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1. Introduction

Omic technologies aim to measure the molecular composition of a cell in its entirety. These 

measurements profile the functional potential (genomics) and activity (transcriptomics, 

proteomics, metabolomics) of an organism at the systems scale. These entities (genome, 

transcriptome, proteome, metabolome) are interrelated through expression, metabolism, 
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signaling and regulation. Understanding and interpreting each of these omic data types 

individually and combined could help unravel the mechanistic intricacies of biological 

systems. However, the interconnectedness among these different levels of function within a 

biological system poses significant challenges for studying the underlying mechanisms and 

relationships.

Each individual omic data type only describes part of the larger system. Therefore, 

integrative omic platforms are being developed. For instance, proteogenomics (proteomics 

with genomics/transcriptomics) can address genetic polymorphisms[1], improve the 

detection of novel genes or identify misannotated ORFs[2] and address the “missing protein 

problem,” which refers to predicted proteins that are not detected in proteomic data[3]. 

Likewise, metabolomics has been combined with other omic platforms to demonstrate the 

environmental effects on post-translational modification (PTM) rates[4], to understand the 

regulation of metabolite levels[5] and to elucidate complex interactions between the host, 

commensal bacteria, and pathogens[6]. These diverse datasets can yield a comprehensive 

understanding of biological mechanisms when they are contextualized and unified into a 

systems view of biology.

Systems biology is an interdisciplinary field that aims to predict the behavior of biological 

systems (i.e., phenotype) by considering interactions among biological parts in the context 

of the whole system. One approach to predicting system behavior is computational modeling 

such as genome-scale modeling. Genome-scale models (GEMs) have been used to analyze 

individual and multi-omic data sets[7]. GEMs can be analyzed using various methods 

including COnstraint-Based Reconstruction and Analysis (COBRA) methods (Figure 1) [8].

In general, for COBRA analysis, first the molecular composition of an organism can be 

represented as a network of interactions in which nodes represent specific entity (e.g., 

metabolites) and edges represent the interaction between these entities (such as substrate-

product conversion). To implement modeling using COBRA framework, these networks are 

converted to stoichiometric matrix (S-matrix) in which rows represent molecular entities and 

columns represent their interactions. Then, the S-matrix can be analyzed using mathematical 

optimization as formulated in the COBRA framework[8]. In this approach, the steady state of 

an organism can be solved by optimizing an objective function (Z). Without adding 

constraints to this optimization problem, we can get infinite number of solutions (fluxes) that 

can satisfy the steady-state assumption. Therefore, the optimization problem is subjected to 

certain constraints which are: Sv = 0 (mass balance constraints), and l ≤ vi ≤ u (flux bounds). 

Here, vi is the flux vector and l, u are the lower and upper bounds of the flux of the ith 

reaction. Hence, by optimizing Z, one can approximate the flux state of an organism, and 

identify molecular interactions that lead to such state.

GEMs were traditionally used to model the metabolic state of an organism (metabolic or M-

model). In recent years, however, GEMs have also been utilized to compute the metabolic 

and proteomic state of an organism (metabolism and macromolecular expression or ME-

model). Since ME-models deal with metabolism and proteome allocation, additional 

constraints including coupling constraints and biomass dilution constraints are added (check 
[9] for more information). In this article, we review how modeling in systems biology has 
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yielded new insights from omic data, and how GEMs can be used to interpret large-scale 

data. Modeling platforms in systems biology can integrate multiple omics and synthesize 

knowledge. Such modeling platforms include kinetic modeling (stochastic or deterministic), 

Boolean formalisms, Bayesian approaches, and COBRA[8b]. We focus on the use of 

COnstraint-Based Reconstruction and Analysis (COBRA) methods in which steady state of 

a biological system are modeled by optimizing an objective function subjected to constraints 

including thermodynamic, stoichiometric, and enzymatic ones. We highlight recent advances 

in COBRA that were made to integrate multi-omic data types. We organize our review by 

the omic data types analyzed and COBRA methods used (Figure 2).

2. From annotated genome sequences to genome-scale models of cell 

metabolism

The genome encodes the functional capabilities of an organism. Genomics is the study of the 

whole genome of an organism. Since the first genome sequence of human mitochondria in 

1981, there has been a steady increase in the publications that contribute to this field[10] 

(Figure 3). With the explosion of sequenced genomes, tools in comparative genomics have 

been developed to annotate sequences of previously uncharacterized genomes to unveil their 

functional potential[11]. With the advent of next generation sequencing technologies, 

sequencing genomes has become relatively quick, easy and cheap[12]. However, even though 

we can sequence an organism, we still do not understand the full functional potential of 

organisms[13].

A genome-scale model (GEM) is a modeling approach for mathematically describing all 

possible functions that are encoded by the genome, and their interactions, within the context 

of the full interaction network. For reconstruction of the network of an organism, genomic 

data and proper annotation are crucial in order to represent the correct interaction between 

various molecular entities. Following the reconstruction, COBRA methods can be utilized to 

analyze the state of the network to identify and predict important features of the organism 

such as genotype-phenotype-environment relationships, including growth rate, metabolite 

exchange rates, and gene essentiality[14]. GEMs have also been useful in predicting and 

analyzing the end result of adaptive evolution[15]. At present, GEMs have been manually 

reconstructed for at least 183 organisms [16], and methods are being developed to model 

microbial communities[17].

3. Using omic data to refine the genome-scale models

Three broad approaches exist to improve genome-scale models by utilizing omic data. First 

and foremost, omic data can be directly compared with the flux distribution derived by 

simulating GEMs to identify any discrepancies between the predicted and experimental data. 

For instance, one can compare exometabolome with modeling result to determine how 

accurately the model can predict the secretion profile of an organism under given media 

condition.

Next, omic data can be used as additional flux constraints on the GEMs to create context- 

and tissue-specific models[7a, 7b, 18] (Figure 1). For such purpose, numerous methods have 
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been developed which can be divided into three subcategories— 1) use omic data to either 

indicate presence or absence of enzymes or put relative constraints on enzyme activities 

(GIMME[19], GIM3E[20], REMI[21]), 2) use expression datasets to create context-specific 

models without prior knowledge of objective function (e.g. iMAT[22], INIT[23]) and 3) prune 

non-functional reactions (as extracted from the expression data) to create tissue-specific 

models (e.g. MBA[24], mCADRE[25], CORDA[26]). One inherent issue with these 

approaches is that such models can only describe the regulation of metabolism for which the 

data is integrated into the model.

For predictive models, integrated regulatory metabolic models need to be built. Methods 

such as Probabilistic Regulation Of Metabolism (PROM) [27] exist that can integrate 

expression datasets (normally transcriptomes) with a transcriptional regulatory network 

(TRN) and superimpose the information onto a GEM to create an integrated model. In such 

method, the maximum allowable fluxes of reactions catalyzed by particular enzymes are 

constrained by the probability of the expression of respective genes given the expression 

state of a controlling transcription factor (TF). Such TF expression is calculated from the 

expression datasets across multiple conditions. The rules of TF-target enzyme interaction are 

governed by the structure of TRN. Since PROM requires a pre-constructed TRN, in recent 

times, Integrated Deduced REgulation AND Metabolism (IDREAM) has been developed. 

IDREAM can create a TRN followed by integration of TRN with GEM and high-throughput 

expression data (using PROM framework) to create integrated models [28].

In the next few sections, we will discuss individual omic data types and novel methods that 

are being introduced to integrate and improve the predictive capabilities of GEMs.

4. Using transcriptomics to build context-specific models

Transcriptomics is the quantitative study of all expressed RNA in an organism. 

Transcriptomic technologies have advanced from the use of microarrays (i.e., methods 

involving use of probes to detect specific markers) to exploiting next generation sequencing 

in the form of RNA-sequencing (RNA-seq). RNA-seq has become more popular because of 

the ease and availability of advanced sequencing machines[29]. Multiple RNA-Seq 

algorithms are available with varying degree of accuracy and precision[30].

Transcriptomics can be used to refine GEMs by integrating the data into model constraints. 

In this approach, transcriptomics is analyzed by specialized algorithms to create context-

specific models by determining the subset of genes that are expressed in a specific cell type, 

cell line, or tissues[31]. These context-specific models accurately capture tissue specific 

genotype-phenotype relationships, including gene essentiality[31]. Multiple algorithms are 

available for building context-specific models, each making different assumptions. Opdam et 

al.[31] compared six algorithms and showed that the choice of algorithm (and assumptions) 

had the greatest impact on the model’s accuracy of gene essentiality predictions[31]. Once 

constructed appropriately, context-specific models have yielded important insights into the 

metabolic mechanisms underlying human diseases.
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Gatto et al.[32] constructed context-specific models for 917 primary tumor samples across 13 

cancer types, using RNA-Seq and the tINIT algorithm[33]. The models indicated that 

although cancers can differ in gene expression, their metabolic capabilities are largely 

similar. Furthermore, cancer metabolic networks overlapped largely with matched normal 

tissues, suggesting that the metabolic reprogramming—a hallmark of cancer—may reflect 

cancer cell plasticity to varying conditions. The study also identified a smaller set of 18 

metabolic reactions that are present in all the cancers included in the study but without 

housekeeping functions (such as growth, energy generation and metabolism) present in 

normal tissues[32].

5. Integrating metabolomics with genome-scale models

Metabolomic technologies quantify the small molecules (molecular mass < 1500 Da) 

involved in energy metabolism (“metabolites”), representing the most direct way to profile a 

cell’s biochemical activity[34]. Metabolites are involved in the regulation of expression, 

metabolism and function of DNA, RNA, and proteins[35]. Research using metabolomic 

approaches has increased over the past decade (Figure 3) as studies involving identification 

of disease biomarkers[36] and other important applications[34a, 35] have risen. To identify and 

quantify metabolites, methods such as Nuclear Magnetic Resonance (NMR) and mass 

spectrometry (MS) are used. In MS, targeted (hypothesis-driven), untargeted (discovery-

based), and recently introduced pseudo-targeted approaches are available[34b, 37]. 

Identification of a metabolite through its spectral signature is crucial to understanding its 

biological role. However, this approach is limited by the number of available spectra in the 

available databases[38]. Therefore, multiple methods have been developed for predicting 

metabolites of which machine learning methods appear promising [39]. Furthermore, a 

metabolite’s function depends on its context-specific interactions with other biological 

entities. Various computational methods including pathway mapping and network 

modeling[40], and GEMs are addressing this need.

Multiple recent studies have used GEMs to integrate metabolomic data. In a recent study, the 

authors analyzed metabolomic data using GEMs of hepatocytes and identified dopa 

decarboxylase (DDC) as one of the major cancer-causing enzymes. Following this discovery, 

authors used the Library of Integrated Network-Based Cellular Signatures (LINCS) program 

to identify possible drugs that could inhibit expression of DDC[41]. In another study, time-

course metabolomic data from human red blood cells (RBCs) stored at different 

temperatures was analyzed using an RBC genome-scale model. The analysis revealed 

temperature-dependent metabolic states of RBCs in storage conditions[42]. Recently, a new 

COBRA method called unsteady-state flux balance analysis (uFBA) has been developed to 

integrate time-course metabolomic data with GEMs to study the metabolism of RBCs stored 

in blood bags. The uFBA method predicted that stored RBCs metabolize citric acid cycle 

intermediates to regenerate key cofactors. These predictions were experimentally confirmed 

using 13C-metabolic flux analysis[43].
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6. Measuring and predicting proteome allocation using ME-models

The proteome represents the functional state of a cell. Proteomics is the quantitative study of 

all expressed proteins in an organism. Out of several methods used in proteomics, mass 

spectrometry (MS) is one of the most common platforms. MS can be used in tandem 

(MS/MS) to provide additional information about a given peptide[44], and it can be coupled 

with chromatographic methods to reduce sample complexity and to improve quantification 

accuracy[45]. Furthermore, it allows multiple properties of the proteome—such as 

expression, interactions, and modification—to be studied[46].

Depending on the goal of a study, either targeted or untargeted proteomic approaches can be 

applied, and sometimes combined for improved analysis[47]. In untargeted proteomics, all 

possible proteins expressed from a sample are detected and quantified without a priori 
knowledge. On the other hand, a targeted platform is used to detect specific proteins 

especially when the desired proteins are known to be present in low abundance a priori[48]. 

Therefore, targeted approaches are more precise but have lower coverage than untargeted 

methods[47]. For data acquisition using tandem mass spectrometry (MS/MS), two modes 

exist – data-dependent acquisition (DDA) mode and data-independent acquisition (DIA) 

mode. In DDA, a subset of the most abundant precursor ions that exceed a predefined 

intensity threshold are selected from the first MS scan to the next MS scan. For targeted 

proteomics, alternative approaches called multiple reaction monitoring (MRM) and parallel 

reaction monitoring (PRM) which select precursor ions for a small set of predetermined 

peptides for subsequent MS scan are used[49]. DIA, on the other hand, relies on successive 

isolation and subsequent fragmentation of peptides within a defined mass-to-charge (m/z) 

window throughout the entire m/z range[50]. SWATH-MS is a DIA method combined with 

targeted proteomic analysis, and provides good coverage with comparable accuracy and 

reproducibility [51]. Both DDA and DIA approaches have their advantages and disadvantages 

related to sensitivity, dynamic range, accuracy, flexibility and ease of use[49, 51–52]. Finally, 

for quantification of proteins in a given sample, either relative or absolute quantification 

methods can be used (please refer to Calderón-Celis et al.[53] for review).

Genome-scale models of metabolism and macromolecular expression (ME-models)[7c, 9b, 54] 

directly predict protein expression and proteome allocation (i.e., the relative mass or mole 

fractions of expressed proteins in a cell). These predictions are validated directly using 

proteomics, or indirectly using transcriptomics. ME-models predict fluxes for reactions 

spanning metabolism, transcription, translation, protein modifications, translocation[55], and 

protein folding[56]. ME models compute up to 85% protein mass in E. coli[57]. ME models 

are now available for three organisms: Thermotoga maritima[58], E. coli[54a, 54b], and 

Clostridium ljungdahlii[59]. Proteomic data has been used to calibrate a ME-model of E. 
coli, decreasing prediction errors of growth rate and metabolic fluxes by 69% and 14%[54d], 

and to validate proteomes predicted by a ME-model updated with machine learning-based 

enzyme turnover rates[54c].

Recently, ME-models were extended to predict cellular response to three stresses: thermal 

(FoldME)[56], oxidative (OxidizeME)[57], and acid (AcidifyME)[60]. By mechanistically 

reconstructing key molecular responses to each stress, the models successfully predicted 
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phenotypic response (change in growth rate) and differential expression in various growth 

conditions (i.e., media, supplements, etc.) and stress intensities. These models have been 

used to explain biological mechanisms by interpreting omics.

A ME-model accounting for the proteostasis network, FoldME[56], was used to study the 

global effects caused by the protein stability of dihydrofolate reductase (DHFR). The 

experimental (transcriptomic data) and predicted data were quantitatively correlated for the 

major clusters of orthologous groups (COG). Further analysis using the ME-model 

suggested that protein destabilizing mutations can lead to chaperone-mediated strategy of 

systems-level proteome reallocation including downregulation of coenzyme biosynthetic 

pathways[56].

In another study, a ME-model accounting for the effect of ROS on metalloproteins, 

OxidizeME[57], was used to explain why the growth rate of E. coli was limited when using 

naphthoquinone (NQ) instead of ubiquinone (UQ) in the electron transport system (ETS)
[15b]. NQ autoxidizes more readily than ubiquinone (UQ), generating superoxide in the 

periplasm. OxidizeME showed that the metabolic and protein expression cost of detoxifying 

periplasmic superoxide strongly decreased growth rate. The reduced electron transport 

system efficiency due to electron leakage from NQ toward superoxide generation decreased 

growth rate further; however, the cost of detoxification was demonstrated to be the primary 

reason for reduced growth rate.

A modeling approach called metabolism and macromolecular mechanisms (MM) was 

developed recently for human RBCs[61]. Unlike ME-models, the reactions related to 

transcription and translation are not present in RBC-MM. In RBC-MM, proteomic data were 

used to constrain enzyme abundances, which constrained the reaction fluxes. This model 

simulates metabolism, hemoglobin binding, and the formation and detoxification of reactive 

oxygen species (ROS)[61].

7. Integrating multi-omic data with genome-scale models

Studies are now combining multi-omic platforms with GEMs to study complex interactions 

that occur at the molecular level within organisms. In a recent study, metabolomics 

combined with proteomics was integrated in genome-scale model of E. coli to identify 

pathway engineering strategies to improve biofuel production[62]. A ME-model was recently 

used to analyze multi-omic (genomic, transcriptomic, ribosomal profiling, proteomic, and 

fluxomic) data to discover two biological regularities associated with enzyme turnover rates 

and translation in E. coli [7c]. Likewise, a laboratory rat genome-scale model was integrated 

with transcriptomic, metabolomic and fluxomic data to identify plasma metabolites that are 

associated with acetaminophen-induced liver injury[63].

8. Using meta-omic data to build and refine microbial community models

Meta-omic technologies (metagenomics, metatranscriptomics and metaproteomics) measure 

the molecular makeup of an entire sample, which can include unculturable organisms. This 

area has grown steadily since the mid-2000s (Figure 3). Metagenomics provides tools to 

analyze genomic DNA to determine the abundance of all detectable organisms present in a 
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sample[64]. In metatranscriptomics, RNA is sequenced and analyzed to reveal the 

functionally active members in a microbial community[65]. Metaproteomics provides 

platform for analysis of proteins expressed by the organisms in a given sample[66]. Meta-

omic approaches have been applied to environmental (including marine and soil 

communities)[67], waste management[68] and clinical samples[69]. These platforms are 

crucial for generating and analyzing data to understand the dynamics within a community 

and to study biological systems in nature.

Multiple recent studies have integrated meta-omic data with GEMs to study microbial 

communities in finer detail. Computational tools have been developed to automatically 

reconstruct microbial community models using meta-omics. For example, human gut 

microbiome models can be efficiently reconstructed using metagenomics through the 

Microbiome Modeling Toolbox[17b]. Another method, MICOM (MIcrobial COMmunity), 

was developed to build personalized metabolic models for the human gut microbiomes of 

186 people using their individual metagenomic samples. The models revealed that changes 

in microbiome composition and diet have highly personalized effects[70]. Meta-omics in 

combination with GEMs have also been applied to environmental samples. For example, 

meta-genomics and meta-proteomics were used to build GEMs of two microbial 

communities in polyaromatic hydrocarbon contaminated soil[71].

9. Models provide a systems context for protein structures

Structural genomics aims to determine all 3D structures of proteins expressed from an 

organism’s genome, and this field has yielded over 150,000 structures in the Protein Data 

Bank (PDB)[72]. Recent studies have shown that this increasingly abundant data types can be 

integrated into GEMs. This integration has expanded the scope of mechanisms and 

biological questions addressable by computational systems biology. In particular, all three of 

the recent ME-models that account for stress functions in E. coli use 3D structures to 

perform key computations[56–57, 60].

In the FoldME[56] model that predicts E. coli’s thermal stress response, a key feature is to 

predict protein thermostability. This task required fitting thermodynamic contributions from 

each type of amino acid using 3D structures of E. coli proteins available from PDB. The 

OxidizeME[57] model that predicts E. coli’s response to oxidative stress required a method 

to predict metal cofactor damage for approximately 43 metalloproteins. Since experimental 

measurements for every metalloprotein were not available, the probability of metal cofactor 

damage was computed using protein 3D structural properties. A key feature of the 

AcidifyME[60] model is to compute (periplasmic) protein stability as a function of pH. This 

task required applying the multi-conformation continuum electrostatics method to 3D 

protein structures. In all of the studies above, the availability of high-quality 3D structures 

was necessary to predict systems-level response to macromolecule properties that change in 

response to physical and chemical stimuli.
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10. Using machine learning to improve structure-function predictions and 

to enhance the predictive accuracy of GEMs

One gap between structural proteome and cell phenotype is that functional alterations due to 

the variations in protein structure are still expensive or difficult to predict. More efficient 

structure-function prediction models, which predict functions of a protein based on its 

structure, would enable routine computation of mutation effects on function and properties 

(e.g., solubility, stability, activity, etc.) of proteins in the whole-cell context.

Machine learning (ML) has been successfully used in the computer vision and the natural 

language processing field. Recently, there has been a significant interest in applying machine 

ML in the research of protein structure-function prediction[73]. Motivated by the expensive 

and time-consuming experimental protein functions annotations and aiming to improve the 

traditional computational approaches, a variety of machine learning methods have been 

developed to predict protein functions[73e]. The traditional approaches (relying on sequence 

similarity) might not produce accurate predictions because some proteins might have similar 

function even with low sequence similarity[73e]. ML methods have improved the prediction 

performance of such in silico methods that make prediction solely based on the amino acid 

sequence similarity between proteins by focusing on protein structure itself[74]. Other ML 

methods focus on predicting the properties of proteins based on more comprehensive 

features, like protein 3D structure and biological process information[73a]. Current state-of-

the-art ML methods for protein structure-function prediction formulate the problem as a 

supervised classification task. The use of additional information such as the hierarchical 

structure of gene ontology and protein-protein interactions have been proved helpful to 

improve prediction capability[73a, 73c–e]. However, developing these ML methods is 

challenging because real biological data tend to be incomplete, noisy, biased and multi-

modal[73e]. Nonetheless, continued development of ML techniques to address these data 

limitations and, more directly, increase the availability of data for ML analysis will make 

ML a promising approach for predicting protein function from structures[73a, 73c].

ML has already been used to improve genome-scale model predictions, by predicting 

catalytic turnover rates in E. coli from a diverse set of features[75]. These features included 

network context, protein structure, biochemistry, and assay conditions. The study identified 

important features for turnover rate prediction: structural (active site depth, active site 

solvent accessibility, active site exposure), network context (predicted reaction fluxes, 

reflecting evolutionary selection pressure on turnover rate), and the number of reactions an 

enzyme promiscuously catalyzes. Using these ML-predicted turnover rates improved the 

accuracy of genome-scale model predictions: by 20–34% [75].

11. Using GEMs to delineate the network-level effects of post-translational 

modifications

Proteoforms are proteins expressed from one gene but altered through post-translational 

modifications (PTMs) and that may possess different functions from each other[76]. There 

are more than 200 types of PTMs recorded in various databases[77]. For proteoform 
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detection, top-down MS-based proteomic approaches which require intact protein separation 

through methods including serial size exclusion chromatography[78] and capillary zone 

electrophoresis[79] have been considered. To have a comprehensive understanding of a 

biological system, knowledge of global effects of PTMs is essential.

There have been some modeling efforts that have examined the network-level effect of 

PTMs. Brunk et al.[80] identified important branch point enzymes in the metabolic network 

using a genome-scale model. The authors then integrated the genome-scale model 

predictions, multiplex automated genome editing (MAGE), and molecular dynamic 

simulations to elucidate the mechanisms by which PTMs can affect the protein activity and 

overall cellular fitness. The authors demonstrated that PTMs can modulate protein 

interactions (in serine hydroxymethyltransferase), impact substrate binding (transaldolase) 

and regulate catalytic residues (enolase). These mechanistic insights elucidated how specific 

PTMs regulate cellular function at multiple biological scales, from individual enzymes to 

pathway usage and, ultimately, cellular phenotypes.

12. Conclusions and future perspectives

Advancements in omic technologies continue to extend our ability to read out the complete 

molecular makeup of a cell under various conditions of relevance to health, engineering, and 

knowledge expansion. Each omic technology measures a specific molecular category (RNA, 

protein, metabolite, etc.) as the cell is “taken apart” and analyzed. Computational systems 

biology provides a platform to “put together” these disparate data sets and to synthesize 

knowledge. Literature indicates that this pipeline of measure–model–synthesize is yielding 

knowledge with consistency and improving accuracy. However, we are also gaining more 

appreciation of the complexities associated with integrating multi-omics. Specifically, as the 

types of omic data types increase, so do the number of interactions we must consider across 

the different biological layers. Systems biology models, including the genome-scale models 

that we focused on here, help to navigate complexity by consolidating existing knowledge to 

provide context for data. Not all omic types can be interpreted with equal fidelity and 

resolution, however. Hence, mechanism-elucidating models are used routinely to study 

metabolic processes using multi-omics, while gene regulation, epigenetics, and signalling 

require more data-driven or statistical modeling approaches to study system-level 

phenomena. Furthermore, while structural proteomics has become invaluable for genome-

scale modeling in recent years, we require more efficient algorithms to compute the 

functional effects of genetic and structural perturbations. Recent advances in machine 

learning in this area show promise. With better predictions and availability of more data, the 

predictive power of genome-scale models will continue to rise making GEMs incredibly 

powerful tools in decoding biological systems.
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Figure 1. Building genome-scale models (GEMs) and integrating them with various omic data 
types as constraints.
Genome-scale models are systems representations of interactions occurring between 

different molecular components (e.g., metabolites, proteins). These models are built using 

the annotated genomes of respective organisms. Other omic data can also be used to refine 

GEMs (A). GEMs need to be constrained to obtain biologically relevant information (B). 

General/environmental constraints such as mass balance constraints and and flux bounds can 

be added to GEMs. For ME-models, additional constraints such as coupling constraints and 

biomass dilution constraints need to be applied[9](B-I). Transcriptional regulatory networks 

(TRNs) combined with transcriptome data can also be used to constrain a GEM to create 

integrated regulatory genome-scale model. It should be noted that gene expression 

thresholds are applied in this case as well (B-II). Likewise, multiple omic data 

(transcriptomic, proteomic and metabolomic) can be utilized to constrain the model using 

various approaches. The integration of data leads to new optimization problems (e.g., 

minimization of inconsistency between fluxes and expression states, maximization of total 

sum of fluxes through core reactions, etc.) subjected to their own sets of constraints 

including mass balance and flux constraints (B-III). The resulting models (C) can be 

simulated to investigate the genotype-phenotype-environment relationship in the biological 

system being studied.
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Figure 2. 
Graphical overview of synthesizing knowledge using omic data and genome-scale models
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Figure 3. 
Web of Science publications for various omic technologies.
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