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Abstract

Background—Although acute neurologic impairment might be transient, other long-term effects 

can be observed with mild traumatic brain injury. However, when pediatric patients with mild 

traumatic brain injury present for medical care, conventional imaging with CT and MR imaging 

often does not reveal abnormalities.

Objective—To determine whether edge density imaging can separate pediatric mild traumatic 

brain injury from typically developing controls.

Materials and methods—Subjects were recruited as part of the “Therapeutic Resources for 

Attention Improvement using Neuroimaging in Traumatic Brain Injury” (TRAIN-TBI) study. We 

included 24 adolescents (χ=14.1 years of age, σ=1.6 years, range 10–16 years), 14 with mild 

traumatic brain injury (TBI) and 10 typically developing controls. Neurocognitive assessments 

included the pediatric version of the California Verbal Learning Test (CVLT) and the Attention 

Network Task (ANT). Diffusion MR imaging was acquired on a 3-tesla (T) scanner. Edge density 

images were computed utilizing fiber tractography. Principal component analysis (PCA) and 

support vector machines (SVM) were used in an exploratory analysis to separate mild TBI and 

control groups. The diagnostic accuracy of edge density imaging, neurocognitive tests, and 

fractional anisotropy (FA) from diffusion tensor imaging (DTI) was computed with two-sample t-
tests and receiver operating characteristic (ROC) metrics.

Results—Support vector machine–principal component analysis of edge density imaging maps 

identified three white matter regions distinguishing pediatric mild TBI from controls. The bilateral 

tapetum, sagittal stratum, and callosal splenium identified mild TBI subjects with sensitivity of 
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79% and specificity of 100%. Accuracy from the area under the ROC curve (AUC) was 94%. 

Neurocognitive testing provided an AUC of 61% (CVLT) and 71% (ANT). Fractional anisotropy 

yielded an AUC of 48%.

Conclusion—In this proof-of-concept study, we show that edge density imaging is a new form 

of connectome mapping that provides better diagnostic delineation between pediatric mild TBI 

and healthy controls than DTI or neurocognitive assessments of memory or attention.
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Introduction

Pediatric mild traumatic brain injury (TBI) is a major global public health problem, affecting 

up to 280 children per 100,000 on an annual basis and 475,000 children in the United States 

per year, resulting in 7,000 deaths and 60,000 hospitalizations [1]. Within the United States, 

falls are the most common cause, followed by motor vehicle collisions [2]. Recreational and 

team youth sports such as American football and hockey are also an increasingly discussed 

cause of pediatric concussions [3]. Concussion represents a head injury that leads to 

impairment of neurologic function, also known as mild TBI [4]. While acute neurologic 

impairment might be transient, other long-term effects can be observed with mild TBI. 

History of mild TBI in the pediatric population relates to impaired cognition [5], sleep 

disorders [6], and psychiatric afflictions such as post-traumatic stress disorder and obsessive 

compulsive disorder [5, 7].

When children with mild TBI present for medical care, conventional imaging with CT and 

MR imaging often does not reveal abnormalities. One study of 105 children who presented 

with acute mild TBI and received CT imaging on the day of injury and conventional MRI 

within 2 weeks demonstrated only a 15% detection rate of abnormal findings with CT and 

34% with conventional MRI [8].

Subtle mild TBI abnormalities not visualized on CT or conventional MRI can be detected 

with advanced neuroimaging techniques. One such method is diffusion MR imaging [9], 

which allows for qualitative and quantitative assessment of specific white matter tracts in the 

brain. This modality has particular relevance to mild TBI because of the associated white 

matter damage that occurs at a microstructural level from rotational, stretching and shearing 

forces [10]. In a separate study of pediatric mild TBI cases scanned within 96 h of injury, 

increased fractional anisotropy (FA) was shown in the middle temporal gyrus, superior 

temporal gyrus, anterior corona radiata, and superior longitudinal fasciculus [11]. These 

findings are consistent with a meta-analysis of 20 studies that reported a trend of increased 

FA 4 weeks post injury but decreased FA 3 months post injury [12]. This same study also 

linked FA values to cognitive scores at 4 weeks post injury [12].

Additional potential exists to extract sensitive metrics of mild TBI from diffusion MR 

imaging under the paradigm of the structural connectome: a network of white matter 
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connections containing hubs of particularly strong connectivity in the brain [13]. While FA 

is a robust parameter of microstructure in isolated large white matter tracts, it does not 

directly assess inter-regional connectivity and it can fail to capture complex details involving 

crossing fibers or subresolution structural differences [14, 15]. Therefore, diffusion 

tractography has been proposed as an alternative for assessing white matter integrity through 

the use of track density imaging and edge density imaging [15–19]. In particular, because of 

its focus on connectomics, edge density imaging has been shown to correspond well to 

patterns identified with other network analytic approaches such as rich club analysis, 

network communicability and network eigenmodes [20, 21]. If edge density imaging 

demonstrated abnormalities in mild TBI, it could change patient management by providing 

more sensitive diagnosis because a key obstacle in the care of these children is diagnosing 

them at subtler levels of injury.

We hypothesized that edge density imaging can serve as a diagnostic biomarker for white 

matter injury in children with mild TBI. The present study serves to formally characterize 

distinguishable patterns of edge density imaging in healthy development and in chronic mild 

TBI, particularly in cases where a lack of sensitivity of CT and conventional MRI can result 

in symptomatic patients with negative imaging results.

Materials and methods

Subjects

With institutional review board approval and Health Insurance Portability and 

Accountability Act (HIPAA) adherence, pediatric subjects were recruited for the 

“Therapeutic Resources for Attention Improvement using Neuroimaging in Traumatic Brain 

Injury” (TRAIN-TBI) study. Fourteen children with mild TBI diagnosis, based on Glasgow 

coma scale (GCS) score of 14/15 or 15/15, were prospectively enrolled. Because the focus 

of this study was to examine residual long-term changes caused by traumatic brain injury 

(TBI), the study does not pertain to the acute phase and participants were excluded if it had 

been less than 1 month since TBI. Besides GCS score, the inclusion and exclusion criteria 

for the study were: (a) ages 8–16 years old, (b) sustained blunt TBI at least 1 month prior to 

enrollment date, (c) currently experiencing at least one post-concussion symptom at the time 

of enrollment, and (d) had no previous neurologic or psychiatric medical history such as 

migraine headaches or depression. Post-concussion symptoms were determined by the 

Rivermead Post-Concussion Symptoms Questionnaire (RPQ) [20] and the Glasgow 

Outcome Scale–Extended Pediatric (GOSEP) [21] tests. Ten children matched in age, 

handedness and education with no history of mild TBI were recruited as a control group. 

Gender was a separate co-variate in all statistical analyses. All subjects underwent 

neurocognitive evaluations with the pediatric version of the California Verbal Learning Test 

(CVLT) [22] and the Attention Network Task (ANT) [23]. Two-sample t-tests were 

performed in SPSS Statistics (version 24; IBM, Armonk, NY) to compare demographic 

characteristics and cognitive tests between the pediatric mild TBI and control groups.
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Magnetic resonance imaging acquisition

A 3-T GE MR750 scanner (GE Healthcare, Waukesha, WI) was used to perform MRI using 

a 32-channel phased-array radiofrequency head coil. High-resolution structural MRI of the 

brain was collected using an axial 3-D BRAVO T1-weighted sequence (repetition time [TR]/

echo time [TE]/inversion time [TI] = 6.6/1.64/400 ms, flip angle 11°) with a 256-mm field 

of view (FOV), and 160 1.2-mm contiguous partitions at a 256×256 matrix. Whole-brain 

diffusion tensor imaging (DTI) was performed with a multi-slice single-shot spin-echo 

planar pulse sequence (TR/TE 6.7/80.4 ms) using 64 diffusion-encoding directions, 

isotropically distributed over the surface of a sphere with electrostatic repulsion acquired at 

b = 1,300 s/mm2, eight acquisitions at b = 0 s/mm2; interleaved slices of 2.7-mm thickness, 

each with no gap between slices; a 128×128 matrix; FOV of 350×350 mm; and ASSET 

(array spatial sensitivity encoding technique) parallel imaging with acceleration factor R=2. 

For clinical neuroradiology evaluations, non-contrast T1-, T2-, T2- fluid-attenuated 

inversion recovery (FLAIR), diffusion-, and gradient echo T2*-weighted images were 

assessed by board-certified neuroradiologists with certificates of added qualification in 

neuroradiology (E.L.Y., with 5 years of experience, and P.M., with 12 years of experience). 

The purpose of these evaluations was to document any visually identifiable abnormality 

including those detailed in the National Institutes of Health (NIH) common data elements 

for traumatic brain injury [24], such as visually identifiable brain atrophy or 

encephalomalacia, evidence of prior hemorrhage, or white matter damage.

Diffusion magnetic resonance imaging analyses

Diffusion MRI data were preprocessed and analyzed in the FMRIB (functional magnetic 

resonance imaging of the brain) Software Library (FSL, version 5.0.7; Analysis Group, 

FMRIB, Oxford, UK). Motion-artifact-degraded diffusion MR images were excluded from 

all analyses. Non-brain tissue was first removed using the brain extraction tool with a 

fractional intensity threshold of 0.3 [25]. Diffusion-weighted images were corrected for 

motion and eddy currents using the FMRIB linear-image registration tool [26], which uses 

the default options of a normalized correlation cost function for intra-modal registration with 

6° of freedom, a multi-start course search for optimization, and trilinear interpolation, with b 

= 0 s/mm2 image as the reference. Fractional anisotropy maps were computed using FSL’s 

DTIFit tool.

Connectome mapping with edge density imaging

Edge density images were computed as described in [18]. The T1-weighed MR images were 

segmented using FreeSurfer 5.3.0 [27] and the Desikan-Killiany parcellation into 68 cortical 

and 14 subcortical regions [28]. Bedpostx [29] was run to estimate the fiber orientations at 

every voxel. Probabilistic fiber tractography was performed with probtrackx2 [29] between 

each possible pair of regions, with each white matter connection between a pair of regions 

constituting an “edge,” which is graph theory terminology for a network connection. The 

directed edge path was defined as the top 95% of non-zero voxels by streamline count. To 

form a bidirectional edge, the union of both directed edges was taken. Spurious edges were 

removed by utilizing the consensus connectome computed in Owen et al. [19]. The edge 

density of a voxel was then defined as the number of edges that passed through the voxel.
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Tract-based statistics

To identify trends in FA and edge density in mild TBI, we first observed how those metrics 

changed in individual tracts. Specifically, we averaged the imaging metric of interest (FA or 

edge density) across each of the 48 Johns Hopkins University (JHU) atlas [30] regions and 

calculated a two-sample t-test between the mild TBI and control groups. We then corrected 

results for multiple comparisons using the Benjamini–Hochberg procedure [31] at a false 

discovery rate of 0.05. We also analyzed mean diffusivity and axial diffusivity in the same 

manner.

Dimensionality reduction and preliminary support vector machine–principal component 
analysis

Using the FMRIB linear-image registration tool, each edge density imaging map was 

registered to MNI152 space [32] and averaged across each JHU tract. We used principal 

component analysis (PCA) [33] and support vector machines (SVM) using linear kernels 

[34] to identify changes in the mean edge density of the 48 JHU atlas [30] white matter 

tracts at the subject level for preliminary binary classification purposes. The PCA 

components explaining the largest amount of variance were used as features in the SVM. 

Hyperparameters, such as the number of PCA components used or regularization weighting, 

were determined using nested leave-one-out cross-validation.

We validated our approach using receiver operating characteristic (ROC) analysis [35] and 

leave-one-out cross-validation to address involving imaging metric variability, multiple 

comparisons, and overfitting concerns [36]. For comparison, we repeated this analysis using 

FA as the input feature by training a new SVM-PCA model in the exact same manner.

Intuitively, SVM creates a hyperplane to separate the mild TBI and control groups from each 

other, and the predictor variable for each subject was defined as the distance between the 

subject and this hyperplane. The sign of this distance would indicate which side of the plane 

the subject was on. To evaluate for statistical significance, we calculated a two-sample 

heteroscedastic t-test between the predictor variables of the control and mild TBI groups. All 

code to analyze edge density imaging data was developed in-house using MATLAB (version 

2016b; MathWorks, Natick, MA).

We also used a voxel-level generalized linear model to identify any statistically significant 

voxels between controls and mild TBI groups, as previously detailed [37].

Results

In the pediatric mild TBI group, the time from injury to MR imaging assessment was on 

average 30.5±58.7 months. Average RPQ score was 16.7±2.9 and average GOSEP score was 

6.9±0.8. With respect to mechanism of injury, 71% (10/14) had sports-related causes 

including soccer (4), skiing (3), basketball (1), water polo (1) and American football (1). The 

remaining 4 children with mild TBI sustained their injuries from road traffic accidents (2), 

unintentional direct head impact against an object (1), and unintentional fall from height 

greater than 3 feet (1).
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Table 1 reports the neurocognitive test scores. No statistically significant difference was 

observed between the two groups on the ANT, although children with mild TBI showed 

trends toward higher values, indicating worse performance, on the mean reaction time, 

alerting and conflict subscores. With the pediatric CVLT, the group with mild TBI had 

statistically significant lower values, signifying worse performance, on the long delay free 

recall and long delay cued recall subtests, as well as for immediate recall Trials 1 to 5.

Diagnostic neuroradiology interpretations revealed abnormal findings in 43% (6/14) of the 

children with mild TBI. There were non-trauma-related incidental findings in 30% (3/10) of 

the controls. These findings are summarized in Online Supplementary Material 1. Tract-

specific JHU regional analysis also did not show any statistically significant group 

differences in FA, mean diffusivity or axial diffusivity values between the children with mild 

TBI and the controls. Online Supplementary Material 2 displays both FA and edge density 

imaging values for these tracts.

Figure 1 illustrates the classification weights assigned to each region by the SVM-PCA 

algorithm, where multiplying each child’s edge density in a given region with the associated 

weight and then summing over all regions yielded a weighted average edge density image 

that accurately separated controls and children with mild TBI [38]. Here, light blue regions 

are associated with higher edge density in controls compared to children with mild TBI. 

Dark blue regions are associated with the opposite. The three regions with the highest 

importance in weighting are the bilateral tapetum, bilateral sagittal stratum, and the 

splenium of the corpus callosum. Two-sample heteroscedastic t-tests of edge density 

differences between children with mild TBI and controls within those three tracts generated 

P-values of 0.07, 0.14 and 0.24, respectively. Fractional anisotropy generated P-values of 

0.28, 0.37 and 0.23, respectively.

Figure 2 shows the results of a preliminary analysis of diagnostic accuracy from edge 

density imaging maps from Fig. 1 in distinguishing children with mild TBI from controls, 

using all 48 JHU white matter regions. The accuracy for edge density imaging was highest at 

94%. Comparisons with ROC curves from FA values, and CVLT and ANT scores are also 

included for comparison. Two-sample t-tests between the SVM-PCA predictors of the mild 

TBI and control groups showed a P-value of 8×10−5 for edge density, P=0.03 for CVLT, 

P=0.49 for ANT and P=0.60 for FA. The effect size of the edge density group difference was 

2.0, as measured by Cohen d. There was no statistically significant correlation between 

classification of mild TBI versus control using the SVM-PCA algorithm and time between 

injury and MRI scan.

Voxel-level generalized linear model analysis did not yield any significant voxels after 

multiple comparisons correction. This is likely because of the small sample size 

necessitating some form of prior dimensionality reduction.

Figure 3 shows the SVM hyperplane and classification of individual cases and controls using 

edge density imaging with a sensitivity of 79% and specificity of 100%. The two controls 

that were nearly classified as mild TBI showed incidental findings that were not specific for 

trauma. One child had a developmental venous anomaly on gradient echo T2* imaging, 
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while another had nonspecific T2/FLAIR hyperintensities in the supratentorial white matter. 

A third control with a pontine capillary telangiectasia was correctly classified in this 

category. Two of the three children with mild TBI who were incorrectly classified as 

controls had no abnormal imaging findings on clinical neuroradiology assessment, while the 

third had a linear area of susceptibility-associated signal loss in the subcortical white matter 

of the left superior frontal gyrus that might represent a single focus of hemorrhagic 

traumatic axonal injury.

Discussion

We utilized edge density imaging, a novel biomarker based on the structural connectome, to 

identify abnormal white matter in children with mild TBI, specifically with decreased edge 

density in the bilateral tapetum, sagittal stratum, and the splenium of the corpus callosum 

being associated with mild TBI. We interestingly also saw a variety of areas with elevated 

edge density in mild TBI (albeit with lower importance weighting compared to those with 

decreased density), particularly within the frontal areas, which is hypothetically associated 

with adaptive changes given the lengthy amount of time between injury and scan date for 

some children in this study.

Edge density imaging displayed greater sensitivity and specificity for mild TBI than did 

neurocognitive testing, FA and standard neuroradiology interpretations, the last of which 

revealed visually apparent abnormalities on a dedicated 3-T MRI protocol in less than half 

of mild TBI cases. It should be noted that two of the children with mild TBI demonstrated 

peri-atrial white matter FLAIR signal abnormalities that did overlap with the reported edge 

density imaging findings.

Several prior DTI studies focused on pediatric populations in mild TBI. One investigation 

examined 49 children with mild TBI compared to 39 controls and found reduced FA in the 

body and genu of the corpus callosum, frontal white matter, and left cingulum bundle [39]. 

Another study focused on a mixed population of mild, moderate and severe pediatric TBI 

cases in 41 subjects compared to 31 controls, showing widespread FA reductions in the 

corpus callosum [40]. A study of 14 mild TBI subjects ages 10–18 years defined by GCS 

score of 13–15 showed reduced FA in inferior frontal, superior frontal, and supracallosal 

white matter compared to 14 controls [41]. One mild TBI study with a population ages 10–

38 years showed lower FA values in males [42]. While other studies have also shown 

abnormally low FA values in multiple white matter tracts such as the cingulum bundle, these 

studies focused on moderate to severe pediatric TBI populations [43–45], whereas ours 

examined children with mild TBI.

Abnormalities in the callosal splenium seen in our study were observed in other mild TBI 

subjects ages 10–50 on FA analyses with DTI [46]. These differences were also observed in 

severe TBI, where T2/FLAIR lesions in that area relate to worse outcomes [47]. The sagittal 

stratum is a complex white matter bundle containing the inferior fronto-occipital fasciculus, 

the inferior longitudinal fasciculus, and the posterior thalamic radiation, all connecting the 

occipital lobe to the rest of the brain [48]. One prior DTI study in adults showed that 

decreased FA in the sagittal stratum was a distinguishing feature of mild TBI compared to 
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severe TBI [48]. Increased FA of the sagittal stratum was observed in a pediatric group with 

subacute mild TBI (n=15) [48]. The tapetum, composed of the callosal splenium fibers 

crossing along the margins of the lateral ventricles, has been implicated as abnormal in 

children with mild TBI [48]. The tapetum also connects the right and left hippocampus, 

which itself has been shown to be atrophic in pediatric TBI [49]. Thus, tapetum 

abnormalities might reflect underlying hippocampal involvement in TBI. The corpus 

callosum, particularly the splenium, might be selectively affected by TBI because of its 

longitudinal course with a midline location and close adjacency to the falx leading to 

damage from shear forces [50]. The role of the sagittal stratum in connecting the temporal 

lobes to the parietal lobes might also explain its involvement in TBI because the temporal 

lobes are among the most commonly damaged areas [51].

Diffusion tensor imaging findings in mild TBI range from near-perfect separation of mild 

TBI and controls to differences that are only barely significant on a group level [11, 12]. 

Lack of predictive power of FA values in identifying children with mild TBI should not be 

seen as contrary to this trend, but rather a result of multiple factors ranging from variance in 

the time from injury to mild TBI definition and cause of physical injury. These factors 

motivate use of edge density imaging as a more sensitive metric for mild TBI diagnosis in 

these particularly difficult cases.

Use of edge density imaging in our study yielded 40% improvement in diagnostic AUC over 

the FA scalar. Added value of edge density imaging over neurocognitive testing is also 

important given concerns regarding the cost of neuroimaging [52] and the current barriers to 

adoption of DTI for mild TBI in routine clinical practice and in medicolegal settings [53]. 

Lack of correlation between edge density imaging and neurocognitive testing potentially 

suggests an underlying level of damage to the brain from mild TBI that might precede 

identifiable neuropsychological deficits, although the small sample size of our study limits 

its statistical power for determining such correlations.

Several advantages and caveats are apparent in our investigation. Previous DTI studies in 

children with mild TBI have primarily analyzed white matter microstructure using FA 

analyses, particularly through the use of tract-based spatial statistics. However, there have 

been methodological critiques of fractional anisotropy and tract-based spatial statistics, 

ranging from the problem of crossing fibers within a given white matter voxel to signal-to-

noise resolution concerns [54].

One possible reason for the increased sensitivity of edge density imaging within this cohort 

is that much of the damage can be limited to sub-voxel changes [17, 19, 55]. Diffusion 

tractography has super-resolution properties [17, 19], so edge density imaging might be 

more sensitive to these differences. Another potential factor is the complex relationship 

between the brain’s structural architecture and the neural connectome. Whereas FA probes 

local structural changes, edge density imaging explicitly identifies how those local changes 

influence network-spanning connections [17, 18].

However, it is important to note that the results of our SVM-PCA analysis are preliminary 

and must be replicated in larger pediatric mild TBI cohorts with the sample size needed for 
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training, testing and validation analyses in full machine learning analysis. Chiefly, the 

limited sample size and lack of true external validation dataset might mask overfitting 

concerns. A limitation on the visual inspection of the MR brain images was the use of 

gradient T2* images that are less sensitive than newer susceptibility-weighted imaging used 

to detect axonal injury or microhemorrhages. With these limitations in mind, further studies 

should be conducted, especially with regard to comparing diagnostic accuracies among 

different methods.

While our current study was cross-sectional, the test–retest reliability of our diffusion MR 

imaging connectomic methods, including EDI, enabled longitudinal evaluations. An 

interesting future study would be to use the patterns we identify in this paper to predict 

patient outcomes. Presence of controls in our cohort with MR imaging abnormalities, while 

incidental, might have increased the probability of these subjects being misclassified, 

although none ultimately was.

Conclusion

In this proof-of-concept study, edge density imaging presented a promising new imaging 

technique for further development and application for diagnosing children with mild TBI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Edge density imaging map shows specific white matter regions of group results (arrows) that 

distinguish children with mild traumatic brain injury (TBI) from controls, projected onto the 

standard single-subject Montreal Neurological Institute (MNI) brain template [38]. (Table 1 

details participant demographics.) In this figure, light blue regions are associated with higher 

edge density in controls (mean age 14.2 years, 50% female) compared to those with mild 

TBI (mean age 14.2 years, 36% female). Dark blue regions are associated with the opposite. 

The bilateral tapetum, sagittal stratum, and the splenium of the corpus callosum have higher 

edge densities in controls compared to children with mild TBI, and these differences are the 

most predictive features for accurate classification
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Fig. 2. 
Receiver operating characteristic (ROC) curve for support vector machine (SVM)–principal 

component analysis (PCA) predictors in differentiating pediatric mild traumatic brain injury 

(TBI) cases from controls. SVM and PCA were used to generate a “TBI predictor” under a 

leave-one-out cross-validation, and the ROC curves based on these predictors are plotted 

here. For edge density imaging, the area under the curve (AUC) was 94%. Fractional 

anisotropy (FA) values resulted in an AUC of 48% in distinguishing children with mild TBI 

from controls. Neurocognitive testing yielded an AUC of distinguishing children with mild 

TBI from controls ranging from 61% with the Attention Network Task (ANT) to 71% with 

the California Verbal Learning Test (CVLT). No statistically significant correlations were 

observed between neurocognitive test results and either the diffusion tensor imaging (DTI) 

scalars or the edge density imaging maps
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Fig. 3. 
Individual control and mild traumatic brain injury (TBI) cases and their distances from the 

support vector machine hyperplane (gray line). A positive distance in this figure is noted 

with controls, and a negative distance with mild TBI cases. EDI edge density imaging, 

SVM-PCA support vector machine–principal component analysis
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Table 1

Therapeutic resources for attention improvement using neuroimaging in traumatic brain injury (TRAIN-TBI) 

study subject characteristics

Controls (n=10) Pediatric mild TBI (n=14)

χ±σ Count (n) χ±σ (P-value)
a Count (n)

Age 14.0a±1.7 14.2a+1.6

Gender
Male 5a 9a

Female 5a 5a

Handedness
Right 9a 14

Left 1a 0

Years of education 8.6a±1.6 8.1a±1.9

ANT conflict 80.6a±19.1 100.4a±32.1

ANT orienting 56.9a±20.1 45.5a±19.1

ANT alerting 33.0a±20.8 54.5a±39.1

ANT reaction time 555.1a±70.2 566.0a±102.2

CVLT long delayed cued recall 14a±1.1 12b±0.25
(P=0.004)

CVLT long delayed free recall 14a±1.2 12b±0.46
(P=0.02)

CVLT short delayed free recall 13a±0.7 12a±0.5

CVLT Trials 1 to 5 T score 62a±6.6 56b±5.7
(P=0.03)

ANT Attention Network Task, CVLT California Verbal Learning Test, TBI traumatic brain injury

a
Values in the same row and sub-table not sharing the same subscript are significantly different at P<0.05 in the two-sided test of equality for 

column proportions. Cells with no subscript were not included in the test. Tests assume equal variances
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