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Abstract
Herein, we report two female cases with novel nonsense mutations of STAG2 at Xq25, encoding stromal antigen 2,
a component of the cohesion complex. Exome analysis identified c.3097 C>T, p.(Arg1033*) in Case 1 (a fetus with
multiple congenital anomalies) and c.2229 G>A, p.(Trp743*) in Case 2 (a 7-year-old girl with white matter hypoplasia
and cleft palate). X inactivation was highly skewed in both cases.

Introduction
Cohesin is a multisubunit protein complex consisting of

four core proteins: structural maintenance of chromo-
some 1 (SMC1), structural maintenance of chromosome 3
(SMC3), RAD21 cohesin complex component (RAD21),
and stromal antigen (STAG)1. The cohesion subunit
STAG1, STAG2, or STAG3 can directly attach to a tri-
partite ring (comprising SMC1, SMC3, and RAD21) to
entrap chromatids1. Other interacting proteins, such as
the cohesin loader NIPBL, also regulate the biological
functions of cohesion1.
Cohesin is involved in a range of important functions,

including functions in sister chromatid cohesion, DNA
repair, transcriptional regulation, and architecture1,2.
Hence, germline pathogenic variants of genes encoding
cohesin subunits and their interacting proteins, such as
NIPBL, SMC1A, SMC3, and RAD21, are known to cause
developmental disorders referred to as cohesinopathies3,
and these are characterized by intellectual disability (ID),
growth retardation, and limb abnormalities4.

Recently, STAG2 was added to the list of genes
mutated in cohesinopathies5,6. As STAG2 is essential for
DNA replication fork progression, STAG2 defects may
result in replication fork stalling and collapse with dis-
ruption of the interaction between the cohesin ring and
the replication machinery as previously described7. To
date, 16 pathogenic variants of STAG2 have been
reported, including seven nonsense, four missense, one
splicing, and four frameshift variants5,8–13. Notably,
seven male patients in three families harbored missense
variants. In one family, five affected males showed ID
and congenital abnormalities11, and two other sporadic
males were reported to have dysmorphic features, short
stature, hypotonia, developmental delay (DD) and ID9,10.
Female patients had truncated and missense var-
iants5,8,10,12,13. Here, we describe the genetic and clinical
features of two female cases with de novo nonsense
variants of STAG2.
Case 1 was the second conceptus of healthy Japanese

nonconsanguineous parents (a 35-year-old mother and
37-year-old father). At 15 gestational weeks, holopro-
sencephaly, cleft palate, cleft lip, blepharophimosis, nasal
bone absence, and hypolastic left heart were noted by
ultrasonography. The fetal karyotype determined by
amniocentesis at 18 gestational weeks was normal (46,
XX). The pregnancy was terminated at 21 gestational
weeks because of multiple fetal abnormalities.
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Case 2 was a 7-year-old girl who was born as the second
child to healthy nonconsanguineous parents. She was
born uneventfully at full term. Her birth weight was
2734 g (–1.3 SD). A cleft palate was noted at birth and
surgically repaired at 1 year. She presented with mild
dysmorphic features, including a long philtrum. At
8 months, she developed afebrile convulsions for which
carbamazepine was effective. Anticonvulsants were dis-
continued at 4 years with no subsequent attacks. She
acquired independent gait at 2 years and spoke only a few
words at 7 years. Brain magnetic resonance imaging at 7
years revealed white matter hypoplasia. She currently has
mild DD, ID, sensorineural hearing loss, and amblyopia
with no neurologic abnormalities. She attends a school for
hearing-impaired children.
This study was approved by the institutional review

board of Yokohama City University School of Medicine.
WES was performed in the two cases (Cases 1 and 2) and
their parents. Blood leukocytes from the patient (Case 2),
parents (Cases 1 and 2) and umbilical cord (Case 1) were
obtained after obtaining informed consent. Exome data
acquisition, processing, annotation, and filtering and
variant calling were performed as previously described14.
Possible pathogenic variants were evaluated based on
mutational type (nonsense, missense, frameshift, or splice
site) using the SIFT score (http://sift.jcvi.org/), Polyphen-
2 (http://genetics.bwh.harvard.edu/pph2/), Mutation
Taster (http://MutationTaster.org/), and CADD (https://
cadd.gs.washington.edu/). Possible pathogenic variants
were validated by Sanger sequencing. Parentage was
confirmed using 12 microsatellite markers with Gene
Mapper software v4.1.1 (Life Technologies Inc.,
Carlsbad, CA).
Total RNA was extracted from lymphoblastoid cell lines

(LCLs) with the RNeasy Plus Mini Kit (Qiagen, Germany)
and, reverse-transcribed to cDNA with the Super Script
First Strand Synthesis System (Takara, Japan), and the
cDNA used as templates for RT-PCR. PCR amplicons
were subjected to Sanger sequencing.
CNVs were examined using WES data by two algo-

rithms: the eXome Hidden Markov Model15, and a pro-
gram based on the relative depth of coverage ratios
developed by Nord et al.16.
X chromosome inactivation was determined using the

human androgen receptor gene. X-inactivation ratios
(expressed arbitrarily as a ratio of the smaller allele to the
larger allele) were calculated twice and judged as pub-
lished criteria: <20:80 (random), >20:80 (skewed), and
>10:90 (highly skewed)17.
Ten micrograms of sheared DNA was subjected to

library preparation using a single-molecule real-time
(SMRT)bell Express Template Prep Kit 2.0 (Pacific Bios-
ciences, 100-938-900) and a SMRTbell Enzyme Cleanup
Kit (Pacific Biosciences, 101-746-400) in accordance with

the manufacturer’s instructions (Procedure & Checklist -
Preparing HiFi SMRTbell® Libraries using SMRTbell
Express Template Prep Kit 2.0, Pacific Biosciences). One
SMRT cell was used for the patient (Case 1). Secondary
analysis using base-called data was performed using
SMRT analysis v8.0 (Pacific Biosciences). Circular con-
sensus sequencing (CCS) from single molecules was
performed, and the generated sequence was mapped to
the hg19 human reference genome using the CCS with
Mapping application, provided by SMRT analysis, with
the default settings. DeepVariant 0.9.0 (https://github.
com/google/deepvariant) was used to detect SNVs and
indels in CCS reads. The aligned CCS BAM data from the
CCS with Mapping application were used as an input. We
ran Google DeepVariant with a model trained for PacBio
CCS (--model_type=PACBIO) using the prebuilt Docker
image from the DeepVariant public repository (https://
github.com/google/deepvariant). Small variant calls from
DeepVariant were haplotyped and phased using What-
sHap 0.18 (https://whatshap.readthedocs.io/en/latest/).
We first performed WES in Case 1. Case 1 had no

pathogenic variants in 14 known mutated genes asso-
ciated with holoprosencephaly, namely, SHH, ZIC2, SIX3,
TGIF1, GLI2, PTCH1, DISP1, FGF8, FOXH1, NODAL,
TDGF1, GAS1, DLL1, and CDON. Moreover, no patho-
genic CNVs were identified by exome-based CNV analy-
sis. After analyzing trio-based WES data, three de novo
variants were found. (Supplementary Table S1), but two
missense variants were likely benign based on computa-
tional predictions. The remaining de novo nonsense var-
iant [c.3097 C>T, p.(Arg1033*)] of STAG2 was confirmed
by Sanger sequencing (Fig. 1a) and was likely causative. X
inactivation was highly skewed (93:7), and the paternal X
chromosome was inactivated (Supplementary Fig. S1).
Unfortunately, living cells from Case 1 could not be
obtained for further mRNA analysis. Using HiFi long-read
genome sequencing and haplotype phasing with infor-
mative variants, we constructed haplotypes in the vicinity
of STAG2 and confirmed that the STAG2 variant occur-
red de novo on the paternal chromosome in Case 1
(Fig. 2). As the paternal X chromosome is mostly inacti-
vated in blood leukocytes, the X inactivation pattern
should be favorable in Case 1. We also identified another
STAG2 nonsense mutation [c.2229 G>A, p.(Trp743*)]
occurring de novo in Case 2 (Fig. 1a, Table 1). X inacti-
vation was highly skewed (96:4), and the maternal X
chromosome was inactivated (Supplementary Fig. S1).
RT-PCR indicated that only the wild-type allele was
expressed in LCLs of Case 2 (Supplementary Fig. S2).
Even after cycloheximide treatment, the mutant allele was
completely undetectable, suggesting that it was tran-
scriptionally repressed (through favorably skewed X
inactivation) rather than posttranscriptionally diminished
(through nonsense-mediated mRNA decay) in cultured
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LCLs. Regardless of the favorable X inactivation pattern in
both cases, Case 1 was clinically much more severe than
Case 2. Therefore, it is difficult to discuss phenotype
severity in relation to the X inactivation pattern.
In addition to the two variants in our cases, a total of 16

pathogenic variants of STAG2 have been reported in
unrelated families (Table 1), including 12 truncated var-
iants [p.(Arg69*), p.(Gln140*), p.(Arg146*), p.(Arg259*),
p.(Cys535*), p.(Val547Cysfs*29), p.(Lys553Ilefs*6),
p.(Arg614*), p.(Ala638Valfs*10), p.(Glu968Serfs*),
p.(Arg1012*), and c.2533+ 1 G] and four missense var-
iants [p.(Tyr159Cys), p.(Ser327Asn), p.(Arg604Gln), and
p.(Lys1009Asn)]5,8–13.
For a female patient with p.(Ala638Valfs*10), no

detailed phenotype was provided in the DECIPHER
database, therefore, this patient was omitted for further

comparison of clinical features8. Twelve cases with
STAG2 truncation variants reported in the literature were
all females, and one missense variant was reported in a
female patient. The 12 female cases with STAG2 trunca-
tion shared microcephaly (10/12), abnormal brain MRI
findings (10/12, including holoprosencephaly 7/12),
thoracic vertebral anomalies (6/12), DD (9/12), and ID
(4/12). Case 1 showed severe clinical features, such as
holoprosencephaly and hypoplastic left heart, similar to
previous literature, while Case 2’s clinical features were
relatively mild. p.(Arg69*) was recurrent in two unrelated
patients, both showing middle brain anomalies8,12.
Our two cases showed highly skewed X inactivation

(93:7 in Case 1 and 96:4 in Case 2) (Supplementary Fig.
S1). To date, X inactivation analysis has been reported in
only two cases, one with skewed X inactivation and
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Fig. 1 Summary of pathogenic variants of STAG2. a Familial pedigrees and electropherograms of STAG2 variants [Case 1: c.3097 C>T: p.(Arg1033*),
Case 2: c.2229 G>A, (p.Trp743*)]. The arrow indicates a heterozygous variant. wt, wild-type; mut, mutation. b Functional domain of the STAG2 protein
and pathogenic variants. Truncating and missense variants are shown above and below the protein, respectively. Our cases are shown in bold. The
STAG domain predicted by Pfam is shown (http://pfam.xfam.org).
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another with random X inactivation, but the exact ratios
were not shown in the literature10,12. Interestingly, one
splicing variant (c.2533+ 1 G) was inherited from the
mother, but unfortunately, an X inactivation study was
not conducted12.

In contrast, null STAG2 variants in males have never been
reported. We speculate that males with a hemizygous trun-
cating STAG2 aberration are lethal or show severe fetal
clinical ends. Interestingly, one missense variant [p.(Ser327-
Asn)] was transmitted in an X-linked recessive manner in a

NM_001042751.1:c.3097C>T:p.R1033*
(chrX:123220440)

chrX:123112714-123562452

449,739 bp phase block

STAG2

a

b

Fig. 2 Confirmation of the pathogenic STAG2 variant in the paternal chromosome in Case 1. a The c.3097 C>T variant could be successfully
mapped within the 450-kb phased haplotype block in Case 1 using HiFi sequence and haplotype phasing. b SNP typing confirmed that the mutation
occurred in the paternal chromosome (Allele 2, the brown haplotype block in Fig. 2a). POS: position of sequence, Pt: patient, Fa: father, Mo: mother.
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family with five affected males and two healthy carrier
females11. These five males showed ID (5/5), several facial
dysmorphisms [large nose (5/5), prominent ears (5/5), frontal
baldness (4/5)], hearing loss (3/5), short stature (5/5), and
cleft palate (1/5). An additional two hemizygous missense
variants [p.(Tyr159Cys) and p.(Lys1009Asn)] were recently
reported in two unrelated males9,10. They showed facial
dysmorphisms (2/2), cleft lip and palate (1/2), pituitary gland
abnormality (1/2), patent foramen ovale (1/2), hypotonia (2/
2), DD (2/2), and ID (2/2), as seen in the above family. Male
patients with missense variants exhibited milder mutant
effects than those with truncated variants, as expected.
In conclusion, of the two female patients with STAG2

variants, one showed a severe prenatal phenotype, while
the other showed a mild pediatric phenotype. X inacti-
vation was highly skewed in both cases. This phenotypic
difference might depend on another factor, such as a
modifier, that is yet to be found.

HGV Database
The relevant data from this Data Report are hosted at the Human Genome
Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2891, https://doi.
org/10.6084/m9.figshare.hgv.2894.
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