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Abstract

A fundamental question in psychology and neuroscience is the extent to which cognitive and 

neural processes are specialized for social behaviour, or shared with other ‘non-social’ cognitive, 

perceptual and motor faculties. Here we apply the influential framework of Marr (1982) across 

research in humans, monkeys, and rodents to propose that whether information processing is 

‘social’ or ‘non-social’ can be understood at different levels. We argue that processes can be 

socially specialised at the implementational and/or the algorithmic level, and that changing the 

goal of social behaviour can also change social specificity. This framework could provide 

important new insights into the nature of social behaviour across species, facilitate greater 

integration and inspire novel theoretical and empirical approaches.
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Social specificity through the lens of Marr

Many behaviours occur in a social context. Social behaviours, in some form, are exhibited 

across a surprisingly broad array of species from single-celled microorganisms [1] to rodents 

[2], fish [3], and primates [4]. However, a core question for psychology and neuroscience is 

whether there are cognitive processes, brain areas, circuits or cells that process information 

in a manner that is socially specific. That is, are there processes that come online only in 
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social situations in a way that is somehow different to what is required for ‘non-social’ 

cognitive, motor and perceptual abilities?

Here we draw on the pioneering idea of Marr’s levels [5] to provide a framework to 

understand and test whether cognitive and neural processes are socially specialised, or not. 

We argue that a process could be considered ‘social’ at the algorithmic level – it encodes a 

specific algorithm or rule that is different from what is being processed in a non-social 

domain –and/or at the implementational level, the same algorithm is used, but it is processed 

in a different brain area, circuit or cell. Moreover, we suggest that changing the social goal 

of the information processing system (computational level), such as during co-operation or 

competition, can change social specialisation at the other levels. These levels of description 

are often overlooked when studying information processing in social contexts. We contend 

that this can lead to inaccurate conclusions about cognitive or neural processes being 

specialised, calling for a more nuanced approach to the phrase, ‘the social brain’, beyond its 

simple connotation.

Marr’s framework: computation, algorithm, and implementation

Marr’s framework [5] argued that in order to understand an information processing system, 

it is critical to consider multiple levels of explanation – the computational, algorithmic, and 

implementational (Figure 1) [6]. The highest level of description, computational, describes 

the ‘why’ of a system or the goal that it intends to perform. For example, if we want to 

understand bird flight we cannot do so ‘by only studying the feathers’ [5]. We first need to 

know that the goal of the bird is to fly. The second level is algorithmic, or ‘what’ rules does 

the brain apply for a particular operation? This would be the bird’s flapping of its wings. 

The final level, implementational, is ‘how’ the brain achieves a particular operation. For a 

bird, this would be its feathers.

How can this apply to social behaviour? The computational goal of social interactions is 

dictated by the nature and the intentions of the agent, such as cooperating, affiliating or 

competing with conspecifics. The algorithmic level would be a particular, formalised, model 

of a social or cognitive process that is deployed only when engaging in a social interaction. 

Lastly, the implementational level would be the specific brain region, circuit or cell that the 

social process is realised in. Although the number of levels and their independence is 

debated [6,7], Marr’s theory provides an important organising framework that suggests that 

social specificity can be delineated at different levels. The most critical point is that for a 

process to be considered socially specific, there must be a dissociation between social and 

non-social processing at either the algorithmic or implemental level, and alternative, similar, 

domain-general processes must be ruled out.

Marr’s framework offers new insights into several debates in social neuroscience. We 

consider two notable examples. ‘Mirror neurons’ or ‘common currency’ accounts suggest 

that social information is being encoded based on an overlap in implementation (the same 

neuron fires similarly or the same fMRI BOLD response) to first-person and third-person 

events. Examples include pain to self and other [8,9], monetary and social reward [10,11] 

or one’s own or other’s action goals [12,13]. This overlap is interpreted as a ‘common 
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coding’ of different processes, namely that both first-person understanding and third-person 

understanding, or empathy has occurred [6]. However, such conclusions about mirroring are 

being drawn with reference only to the implementational level. But what if a different 

algorithm was being used to understand the states of another? Without manipulating or 

controlling the algorithmic level, mirroring could reflect either a total absence of social 

specificity, an absence of social specificity only at the implementation, or only in one 

particular circuit or cell. Indeed, it is clear that the goal level of the system is different when 

monitoring another’s actions. We are not necessarily aiming to reproduce the actions 

ourselves, so even if there is overlap at the implementation, there is likely to be functional 

dissociation. However, the other levels need to be measured using carefully controlled 

designs to manipulate them in order to understand what - if anything - the overlap means for 

social cognition and behaviour (Box 1).

Another major debate is whether social learning requires uniquely ‘social’ processes or 

arises from domain-general associative learning [14–16]. There is growing evidence that the 

same associative algorithms can indeed be used for both personal and social learning [4,17–

20], which could be argued to reflect an absence of social specificity. However, what about 

the implementational level? Contrasting with the algorithmic level, there is an increasing 

consensus for a dissociation at the implementational level for some social learning processes 

in cells or circuits that are not involved in learning from the outcomes of one’s own actions 

[17,19–25]. Thus, social learning may be ‘socially specific’ at the level of neural 

implementation, even though the algorithm may be the same.

These are just exemplars but highlight how debates in social neuroscience and psychology 

can be addressed by considering which of Marr’s levels one’s debate surrounds. Such an 

idea could inform experimental design in studies of social cognition and its neural basis. Key 

to addressing such debates empirically will be using experimental designs in which one of 

the levels is held constant, either the algorithm or implementation, to test for specificity at 

the other. For example, lesion and brain stimulation approaches can clearly examine the 

impact of disrupting the implementational level on the algorithmic level. We can disrupt a 

specific implementation and test whether a social or non-social algorithm is changed. At the 

algorithmic level, we might examine a common algorithm, such as a reinforcement learning 

process, and then test whether it is differentially implemented in a social (learning about 

rewards for others) vs non-social (learning about rewards for self) condition. Considering 

how to dissociate different levels of analysis is therefore important in generating 

experimental designs that aim to address specificity. Moreover, we suggest that it is critical 

that additional ‘non-social’ control conditions are tested, if identifying social specificity is 

the aim (Box 1). In the subsequent sections, we examine this hypothesis by using key 

examples from the field and across research in humans, non-human primates and rodents.

Social and non-social processing across levels and species

A first question to ask is why might we expect to find social specificity at any level of 

explanation? Evolutionarily, animal species are adapted to physical environments, and for 

species that often interact with their conspecifics, they are adapted to social environments 

too [26]. The social brain hypothesis argues that the cognitive abilities required for 

Lockwood et al. Page 3

Trends Cogn Sci. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



navigating through social environments shaped the large brains of primates relative to other 

animals [27–30], and the preceding social intelligence hypothesis argues that social group 

structures were an evolutionary pressure that drove the emergence of higher intelligence in 

animals [31,32]. In rodents, olfaction and vocalisations in social contexts are strongly linked 

to evolutionary fitness [33,34]. However, even if we consider that it is plausible that the 

brains of different species might be adapted to their social environments, it is not necessarily 

given that neural systems and processes must be specialised.

Moreover, whilst it goes without saying that humans are social creatures, the complexity and 

boundaries of social behaviour in non-human primates, and particularly rodents, is widely 

debated [2,4,35,36]. For example, whereas many would agree that humans engage in social 

processing such as empathising with others and theory of mind, such processes are much 

more controversial in non-human primates and rodents [4,35–37]. This is important when 

examining social specificity – if the same social cognitions and behaviours are not shared 

across species, then we might expect the algorithms and implementations also to be different 

rather than conserved. As well as clear differences in the complexity of social behaviour, 

there are also differences in homology of brain areas [38] and methodological approaches 

[2,36] (Box 2). These methodological approaches can also vary greatly in their experimental 

resolution, from optogenetics in single cells in rodents to whole brain neuroimaging in 

humans, and therefore specificity definition can change as a function of resolution. However, 

despite these differences, there are parallels that can be drawn, perhaps most readily in the 

domain of appetitive and aversive processing as similar experimental techniques have been 

used across species [4,39,40]. As such the following questions can be raised: are there 

specific neural circuits and cells that support social behaviours? are they apparent at 

different levels of explanation? and is there evidence for clear dissociations in social 

specificity at the implementational and algorithmic level?

Socially specific implementation?

Starting with the first question, of whether there are specific neural systems for social 

behaviour at the implementational level, the Anterior Cingulate Cortex (ACC) is a key 

candidate (Figure 2). The ACC is also ideal for cross-species comparisons as it is relatively 

well studied in monkeys and rodents [21,38,41–44]. Most intriguingly, evidence points to 

important divisions in social and non-social implementation between sub-regions within 

ACC, particularly the sulcus (ACCs) and gyrus (ACCg) [4,21,39,42,45,46] (Figure 2). A 

seminal study by Chang et al., [45] showed that there are varying levels of specialisation for 

social and self-oriented reward processing in ACCg and ACCs, respectively. The researchers 

recorded single-unit activity from ACCg, ACCs and orbitofrontal cortex (OFC) while 

monkeys made decisions to deliver rewards to themselves, another monkey or neither. OFC 

neurons predominately responded to received reward outcomes of self, and ACCs neurons 

foregone reward outcomes of self. By contrast, neurons in the ACCg predominantly encoded 

the received reward outcome of a conspecific monkey, with some neurons responding to 

others’ rewards exclusively (other-referenced), and another cluster showing a response that 

was ‘mirror-like’, encoding rewards of self and other (both-referenced). These results 

suggest at the level of single cells there is some social specificity, as there were more cells 

that responded to others’ rewards in ACCg than in the other areas tested.
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Although there were still cells that responded to the monkeys’ own reward in ACCg, lesion 

studies can provide causal evidence as to whether a region’s function disrupts social 

behaviour. Strikingly, when the whole ACCg region is disrupted, it is attention to social 

information that is impaired, whereas lesions to the neighbouring sulcus leave attention to 

social information intact [47]. Further corroborating the social specificity of these effects, 

ACCg lesions did not change the processing of emotional stimuli (a snake) or of control 

objects. Likewise, a recent study that lesioned the whole ACC found a specific disruption to 

learning which stimuli rewarded others, but not self [48]. In contrast, preferences to reward 

self and other over neither with previously learned stimuli were preserved. It remains to be 

tested if these effects were largely driven by the lesion to ACCg [49]. However, they provide 

clear evidence that damage at the implementational level, to ACC, selectively affects social 

learning (Figure 2).

Research in rodents has also pointed to a key role for the ACC in social behaviour [44,50–

54]. It is thought that Cg1 and Cg2 may be a homologue of human ACC, although a division 

between the sulcal and gyral portions is not apparent in rodents as clearly as in humans and 

primates [38]. Converging evidence points to rodent ACC being linked to processing 

rewards and pain in social contexts with some specificity. For example, studies in rats have 

suggested that they avoid actions that harm others, with this effect abolished by ACC 

inactivation [51]. Similarly, ACC inactivation disrupts observational fear learning while 

leaving classical conditioning intact [55]. By contrast, amygdala lesions disrupt both 

observational learning and classical fear learning, suggesting a role in learning per se. 

Dovetailing with the work in macaques [45], there are a larger proportion of neurons in 

rodent ACC that respond specifically to other’s pain (27%) and to both other’s and self pain 

(34%) than to self pain alone (12%) [50]. Moreover, specific deactivation of the ACC region 

disrupts freezing responses in the social pain context but not to a non-social fear-

conditioned sound. The inclusion and comparison of the fear condition in this study [50] and 

the ‘neither’ reward condition in the study with macaques [45] provides an important control 

for the ‘both’ condition (Figure 3), when establishing the nature of overlap to self and other 

at the implementational level. Establishing a neuron or brain area is specifically involved in 

‘pain’ or ‘reward’ requires excluding that it is involved in general aversive and appetitive 

processing (Box 1).

By using paradigms with non-social controls, and by using both neural recordings and 

causal methods, these studies provide one of the clearest cases for social specificity at 

implementation (Figure 3); there are cells in ACC that specifically respond to other’s pain 

and reward across humans, primates and rodents, and ACC damage selectively disrupts 

social information processing.

Different implementation but same algorithm?

The development of model-based fMRI in humans, has seen many studies testing whether 

different competing algorithms can explain behaviour and map on to functional anatomy 

[56–58]. Reinforcement learning (RL), is perhaps the best exemplar of a clear algorithmic 

process, which has been applied extensively to understand self-relevant and social behaviour. 

RL describes how actions are associated with outcomes based on the unexpectedness (the 
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‘prediction errors’) and the valence of outcomes, quantifying how behaviours are positively 

or negatively reinforced by rewards or punishment [18,57,58]. In humans, evidence suggests 

that the same region - the ACCg - which putatively shows relatively high levels of social 

specificity for implementation, may do so under a common RL algorithm 

[17,21,23,24,39,59,60]. This includes when comparing self-relevant learning to learning to 

associate stimuli with others [23], learning whether to trust advice from others [17] and 

teaching others what to choose [24] where specific social prediction errors drive learning. 

This pattern can be contrasted with other brain areas such as ventral striatum that have been 

repeatedly related to tracking RL signals but without any socially specific implementation. 

For example, several studies have shown that social learning during observation, prosocial 

behaviour, trait understanding and trust learning and non-social learning about rewards are 

commonly encoded in the ventral striatum [17,19,22,25,61,62]. Ventral striatum responses 

even seem to track prediction errors when no individual is associated with an outcome [22], 

consistent with the idea that in humans a domain-general learning algorithm may be 

implemented in the ventral striatum. In contrast, the evidence from the ACCg points to the 

possibility that brain areas can be socially specialised but may do without needing to 

implement a specialised algorithm.

Socially specific implementations beyond cells and areas

Methodological developments such as optogenetics, psychophysiological interactions, 

diffusion tensor imaging and measures of synchrony allow for testing whether 

implementations can be socially specialised not just in single cells or brain area, but in 

circuits. Several studies in non-human primates and rodents have hinted at socially specific 

circuit implementations. For example, the social specialisation of ACCg for social reward 

encoding extends to inter-regional coupling patterns in a ACCg-amygdala network [63] and 

projections between ACCg and BLA are specific for observational as compared to classical 

fear learning [52]. Activation of a basolateral amygdala➔mPFC pathway increases anxiety-

like behaviours and reduces social interaction, whereas inhibiting the same pathway 

increases social interaction and reduced anxiety [64]. This shows that although research 

suggests a lack of social specificity when considering the whole amygdala [11], there could 

still be social specific circuit-level implementations when interacting with medial prefrontal 

areas. In humans, there are fewer studies that have directly compared social vs. non-social 

connectivity but notable examples include that ACCg-rostral cingulate connectivity is 

present only when another’s unexpected outcome is processed but not one’s own [65] and a 

common associative neural network preferentially connects with TPJ during social 

compared to direct fear learning [20]. These are just some examples of social specificity 

implemented in brain circuits.

Socially specific algorithms?

So far, we have discussed potential social specificity at the implementational level of cells, 

regions and circuits. But, are there algorithms that are social specific? This question is more 

challenging in terms of clearly defining algorithms, and there is wide controversy at the use 

of complex algorithms across species [4,66]. Nevertheless, it has long been argued that some 
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social processes, such as ‘theory of mind’ or ‘mentalising’ [67–70] may be socially specific 

and thus, we contend, rely on specialised algorithms (Figure 3).

Several lines of research have begun to develop algorithms to model theory of mind 

processing, and explain behaviour in two-person social exchanges [4,10,40]. Although many 

of these models have been derived from those used to explain economic preferences or more 

standard RL, they are clearly distinct and more sophisticated [71–73], and on the surface it is 

unclear why an agent would need such sophistication outside of social interactions. For 

example, several studies [70–72] have required participants to play the role of an ‘employer’ 

or ‘employee’ where they choose to ‘work’ or ‘shirk’ (in the role of an employee) and 

interacted with the ‘employer’ who could inspect or not inspect what they were doing 

(Figure 3B). For the employee, rewards were maximised if they ‘shirked’ when not 

inspected and worked when inspected. The algorithm that best explained participants’ 

behaviour was one that took into account the influence that the employee’s own actions 

would have on the employer’s behaviour, and this was a better predictor than a simple RL 

that just took into account the history of outcomes.

Other studies have directly compared a socially specific framing (hide and seek) to a non-

social framing (gambling) and shown that participants win more against mentalising agents, 

pointing to an ‘added-value’ of using mentalising when learning in social interactions [73]. 

The authors of this latter study also showed that non-human primate species do exhibit a 

precursor form of theory of mind algorithms [66], where they behave as if they were 

adjusting their estimate of others’ likely responses to their own actions. In rodents, a putative 

precursor of theory of mind is much less apparent, and to our knowledge has not been tested. 

Rodents can exhibit reinforcement learning, which would correspond to a very basic 

algorithm that could be used in social interaction and the most rudimentary theory of mind 

precursor, according to Devaine and colleagues [66]. It would be intriguing to test whether 

rodents can extend this basic associative process to learn associations that distinguish self 

from other or to hold a concept of another animal that is not oneself, which would be 

necessary conditions for having theory of mind. It is plausible that rodents have this capacity 

given the aforementioned observational learning research showing socially specific 

modulation of electric shocks delivered to rodents themselves or partner rodents [50,51]. 

There is also evidence in humans that simply forming associations between self, close 

others, and distant others is tracked in TPJ, whereas ACCg specifically tracks learning links 

between stimuli and distant others [23]. Future studies could therefore probe further whether 

rodents demonstrably have a sophisticated concept of another animal and the parts of the 

brain involved in that process.

Are the algorithms of theory of mind implemented in a socially specific manner? Several 

studies have suggested that the temporo-parietal junction (TPJ) and dorsomedial prefrontal 

cortex (dmPFC) may process mentalising algorithms with social specificity [4,10,40,67,74]. 

In the two aforementioned work/shirk studies, the ‘influence’ algorithm was uniquely 

implemented in the dmPFC and TPJ [71,72]. However, a limitation of many theory of mind 

studies – in terms of assessing social specificity at the implementation level – is that they 

often lack a comparable ‘self-relevant’ or ‘non-social’ condition, making it difficult to 

conclude a specialised implementation (Box 1) [71,72,75]. As a result, there has been 
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considerable debate as to whether processing in the dmPFC or TPJ is socially specialised, 

asocial [23] or reflects a common processing problem also engaged during self-monitoring 

and metacognition [76,77]. Other studies using non-social control conditions, such as 

‘computer’ agents have shown stronger responses to ‘other’ as compared to a computer 

[65,78–80] (see Box 1 for further discussion). Thus, two developments are needed to test the 

social specificity of theory of mind: (i) the use of appropriate non-social control conditions 

to test specificity at the implementational level and (ii) the development of formal 

algorithms of other competitor processes, such as metacognition, that can be used to test for 

specificity at the algorithmic level.

A promising new direction for integrating across Marr’s levels is the use of multivariate 

techniques, ranging from classifiers to more model-based representational similarity analysis 

(RSA) approaches. Such approaches have already been useful for showing that within some 

regions, patterns of activity can be differentiated between self and other [81–85]. This 

includes physical pain and social rejection, as well as self and other valuations, in ACC [81] 

and patterns reflecting others’ pain and other negative valence stimuli, including disgust and 

unfair monetary exchange, in right anterior insula [83]. Simple classifiers decoding different 

self and other patterns may reflect a distinct implementation – i.e. social specificity within a 

brain region. However, RSA techniques may bridge the gap between the algorithmic and 

implementational levels and also test for differences at the algorithmic level. This is because 

inherent within the RSA approach is the testing of models for how information or stimuli are 

being represented – that is, how information is algorithmically structured [86]. Competing 

models can be generated that predict different algorithmic structures, and then the brain 

areas that correlate most strongly with them can be quantified. The approach can link the 

algorithmic and implementational levels by using the models to understand the brain 

imaging data, and conversely, using the brain imaging data to build the competing models 

[86].

Such an approach is also possible using parametric model-based imaging approaches that 

hypothesise a particular cognitive model, such as reinforcement learning, to understand more 

about the implementational level in terms of function. Models therefore also provide a 

clearer link between the algorithmic and implementational levels than standard categorical 

analyses of brain data contrasting conditions, such as faces vs. houses. Future research may 

be able to link levels of social specificity by using multivariate and model-based approaches. 

These approaches can also shed light on the nature of the levels themselves, as well as their 

dependence, by highlighting the precise way in which they interact.

Does changing the goal change algorithms and implementations?

The highest level of Marr’s framework, the computational level, addresses the importance of 

the goals of an information processing system. Across species it is clear that goals of social 

behaviours – the social motivations – can differ from one context to the next. One minute we 

compete, the next we cooperate. But, can changing a goal modify social specificity at the 

other two levels? Although less work has directly tested this notion, there are hints that 

changing the social goal can indeed alter neural implementations. In rodents, a large 

proportion of ACC neurons code the net-value of rewards – size of the reward discounted by 
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the costs of competing with another for that resource. However, ACC neurons only code that 

net-value when rodents were required to compete [87]. In monkeys, task outcome signals 

(i.e., winning or losing) in many lateral prefrontal cortical neurons are gated by whether 

monkeys are competing for rewards or not [88]. In humans, whether we are cooperating or 

competing with others adjusts the extent to which the dmPFC tracks the performance of 

ourselves compared to others [89].

These findings, supporting the ability of social goals to regulate specificity at the other 

levels, has potential implications for understanding disorders of social behaviour and their 

social uniqueness. For example, in group studies examining differences in neural 

implementation between patients and controls, it could be that differences in neural 

implementation or in algorithms used between the two groups might look like algorithmic or 

implementational differences, when actually it is the goal that is different between groups 

and causes the changes in neural response. In support of this, the neural responses of 

individuals with psychopathy and non-psychopathic participants were compared whilst they 

viewed video clips of emotional hand interactions [90]. The authors found group differences 

in neural responses were markedly reduced when the psychopathic offenders were instructed 

to empathise vs. receiving no instructions. This study highlights how changing the social 

goal might change implementation and the importance of matching motivation between 

groups when studying social specificity.

Concluding remarks

Debates about social specificity have been at the core of social neuroscience and psychology 

for decades. Here, we outline how considering these questions within Marr’s framework 

provides a novel perspective that may help to restructure discussions (see Outstanding 

Questions). Considering which of Marr’s levels an experiment is testing at and designing 

experiments that control and dissociate at one of the three levels, will allow us to reformulate 

questions across species. Utilising techniques that may help to bridge the gap between the 

algorithmic and computational levels such as computational models of reinforcement 

learning and economic decision-making, and multivariate techniques such as 

representational similarity analysis, will be important moving forward. It is an open question 

how social specificity arises and what is conserved across species. Ultimately, the approach 

outlined here could help us to redefine the social brain by its implementations, algorithms 

and computations.
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Glossary

Marr’s levels
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David Marr suggested that there were three levels of explanation for an information 

processing system. The highest level is the computational or goal of the information 

processing system. The second level is the algorithmic or the rules that the system applies. 

The third level is the implementational, or the physical realisation of the system.

Metacognition
the ability to attribute mental states such as beliefs, desires and intentions to oneself.

Mirror neurons
neurons initially discovered in the monkey premotor cortex that fires similarly for both when 

executing an action and when observing an action.

Optogenetics
a biological technique where light is used to control neurons that have been genetically 

modified to express light-sensitive ion channels. This technique is commonly used in rodent 

studies but it is not currently possible to safely use it humans.

Reinforcement learning
learning associations between stimuli or actions and positive and negative outcomes. 

Learning is driven by how unexpected the outcome is.

Social pain
aversive nociceptive events that occur to other people.

Social prediction errors
differences between expected and actual outcomes involving others that occur during social 

interactions.

Social reward
rewards that are derived from, or obtained in the context of, social interaction.

Theory of mind
the ability to attribute mental states such as beliefs, desires and intentions to other people.
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Box 1: The importance of non-social control conditions

When designing an experiment to test if a cognitive or neural process has a selective role 

in social behaviour, it is important to think about appropriate control conditions. This 

idea stems from basic principles in philosophy of science on the necessity of falsification 

[91]. For example, if we find that a particular brain area responds to both smiling faces 

and to monetary reward, can we conclude if this area is encoding something about how 

rewarding the stimulus is? We have not shown that this brain area is not involved in any 

other process, only that it is involved in two processes that share a common feature. 

Many studies in rodents and monkeys have included explicit ‘non-social’ control 

conditions [21,42,45,47,50,51]. In studies of self and other reward processing in 

monkeys, a ‘neither’ reward condition has been added, where a reward is seen as being 

delivered to neither the monkey or their conspecific [45,63]. In rodent studies of 

observational fear conditioning, a more typical classical conditioning condition, without 

any social context, has been used to try to rule out a domain-general response to aversive 

events. In some studies of theory of mind processing, a ‘computer’ condition or a 

physical object condition has been used to try to show specificity to theory of mind 

processing [65,78–80].

However, these control conditions are not always part of the experimental design. 

Sometimes it can be very difficult to create an equally matched non-social control that 

shares all or most attributes of a social stimulus except for its sociality – that is, a 

stimulus being about or for another person or group. In the example of the computer 

condition, it may be that people anthropomorphise the computer and therefore still 

associate the stimulus with a social context, which can be worth checking how 

participants perceive the condition. It is also well known that simple geometric shapes 

moving in a way that implies social interaction can be interpreted as social [92]. 

Therefore, a central factor in creating a social vs. non-social condition appears to be the 

beliefs that the person has about whether the stimulus is social or non-social, rather than 

necessarily the observed behaviour. This is clearly shown in a study by Stanley and 

colleagues [93] who used a 2 × 2 design to probe the role of beliefs and behaviour in 

perceiving stimuli as social. Participants observed dot motion animations and were 

instructed that they were either from pre-recorded human movement or that they were 

computer generated. They also manipulated whether the dot display followed biologically 

plausible or implausible velocity profiles. Participants experienced interference from the 

display when they were told it reflected human movement, regardless of whether the 

velocity profiles were biologically plausible or not. This study therefore supports the idea 

that inducing beliefs that a stimulus is social vs. non-social is critical for creating social 

and non—social experimental conditions.
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Box 2: Opportunities and challenges of cross-species comparisons

There are many challenges when trying to conduct and interpret findings that come from 

different species. Differences in homologies of brain areas and circuits, differences in 

experimental design and differences in resolution of methods are some of the most 

critical. Despite these challenges, comparisons can be drawn and are crucial if we want to 

ultimately understand human behaviour and its pathologies. When conducting studies 

with humans to investigate social behaviour, we have the advantage of inquiring about 

their thoughts and feelings and to study the system we are trying to understand. However, 

we ethically cannot cause focal lesions, and we cannot currently use very precise 

optogenetic methods for manipulating single cells. On the flip side, in rodents we can use 

very precise optogenetic methods but then might question how similar rodent behaviour 

is to human social behaviour and we certainly cannot inquire about their thoughts and 

feelings. This highlights the importance of using multiple methods and across different 

species to study social behaviour, and for being aware of the opportunities and challenges 

of most meaningfully comparing them to derive converging knowledge. It can also be 

useful for inspiring new empirical approaches and areas of research focus in different 

species. For example, work in monkeys on the key role of the anterior cingulate gyrus 

(ACCg) in social behaviour inspired several subsequent studies in humans that also 

confirmed the importance of ACCg in human and rodent social behaviour [21,42]. The 

organising framework of Marr suggesting social specificity at the level of algorithm and 

implementation is an approach that can readily be applied in different species and may 

allow us to draw greater connections between findings at multiple levels in future 

research.
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Outstanding questions

How do the algorithmic and implementational levels interact and can multivariate and 

computational modelling approaches be used to bridge the gap?

Are there species differences in algorithm or implementation? It is possible that more 

specialised social processing might be carried out in evolutionarily ancient subcortical 

structures in non-primate animals compared to primates, such as humans and monkeys. 

Existing evidence in non-human animals mostly reports elegant social specificity at the 

implementational level. It would be informative to also test for different algorithms, and 

an open question as to whether non-humans can use socially specific algorithms. This 

endeavour can be facilitated by recent advances in using computational models with clear 

algorithms to understand social behaviour.

Are socially specific algorithms and implementations innate and predetermined or can 

they arise via associative learning?

How should we design future studies aimed at establishing social specificity of a 

cognitive or neural process? We suggest the importance of holding a level 

(computational, algorithm or implementation) constant while examining the impact on 

the other level.

Are there any brain areas, circuits or cells that are uniquely socially specific? The 

strongest evidence seems to be for the anterior cingulate gyrus. Are there are algorithms 

that are socially specific? The strongest evidence suggests theory of mind processing.

Is the social vs. non-social distinction in the brain categorical or could there be a 

continuous relationship? The answers to this question can help better understand how 

algorithmic, computational, or implementational levels were repurposed for social 

functions in brain evolution.
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Highlights

• A central question in psychology and neuroscience is the extent to which 

social behaviour is sub-served by dedicated processes or systems that are 

‘socially specific’ or shared with other ‘non-social’ cognitive, perceptual and 

motor faculties.

• We suggest that a process can be socially specific at different levels of 

explanation. This approach could help clarify the role of mirror neurons in 

social contexts and whether social learning is uniquely ‘social’. Experimental 

design should be guided by an appreciation that social specificity is possible 

at different levels.

• Examining social behaviour across species can give unique clues about 

different implementations and algorithms. For example, converging evidence 

highlights anterior cingulate gyrus as crucial for processing social 

implementations and ‘theory of mind’ as a putative social algorithm.
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Figure 1. Marr’s three levels of analysis for non-social and social behaviour.
(A) If we want to understand the goal of a bird to fly, we cannot simply study its feathers. 

We need to know that the bird’s goal is to fly (computation), which it does by flapping its 

wings (algorithm) where the aerodynamics to fly depend on the feathers (implementation). 

(B) We argue that to understand how specific social behaviour is, as compared to other ‘non-

social’ processes, such as bird flight, we need to understand the social goal (are we 

cooperating, learning from or helping the other person or group). Next, we need to 

understand the algorithm by which we achieve this. The relatively recent use of 

computational models such as reinforcement learning, cost-benefit trade off and cognitive 

maps are some examples of algorithms that could be used. Finally, we need to know how the 

social process is implemented, which brain areas, circuit or cell is it realized in? Critically, 

we argue that a dissociation is needed between a social and non-social process either at the 

level of algorithm or at the level of implementation to conclude that there is social 

specificity. When designing experiments to test social specificity we should be looking for 

dissociations at algorithm or implementation.
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Figure 2. The anterior cingulate cortex and socially specific implementation.
(A) In humans, several studies have found that the gyral portion of the anterior cingulate 

cortex (ACCg, light blue) responds to prediction errors and rewards predicted or delivered to 

other people, whereas the neighboring sulcus (ACCs, red) responds to self-relevant reward 

signals and prediction errors [4,17,21,42,43]. Importantly, there is also evidence that anterior 

cingulate sulcus responds to forgone prediction errors and rewards hinting that this area 

might process a domain general response to rewards not delivered to oneself, rather than a 

socially specific signal [4,17,21,42,43]. (B) Converging evidence from focal lesion and 

single-unit recording studies suggests that ACCg responds to other monkeys’ rewards in 

terms of attention allocation and behavioural choice, where monkeys show a preference to 

reward others over neither. Instead in ACCs, a large proportion of neurons signal both self 

reward and neither reward, consistent with an involvement in foregone rewards [45,47,48]. 

(C) In rodents, clear divisions of the sulcus and gyrus as not as readily apparent as they are 

in humans and monkeys, but roughly correspond to what is labelled as cg1 and cg2. 

Evidence suggests that rodent ACC contains neurons that respond both to foot shocks 

delivered to the rat themselves and to the observation of shocks given to another rat. 

Importantly, these same neurons do not respond to fear conditioning [50,51]. It is an open 

question as to whether the response profile in rat ACC reflects the differences in homology 

between rodents and other species or whether it reflects differences in brain evolution.
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Figure 3. Social specificity at implementation and algorithm
(A) Schematic illustrating hypothesized pattern of choice behaviour and/or brain response 

for socially specific information processing, mirror processing, self processing or asocial 

processing at implementation. These patterns highlight how including the ‘self’ condition 

and/or an ‘asocial’ condition can help to show how socially specific a particular process is, 

and the types of brain or behavioural profile we would expect to see in each condition (B) 

Examples of a ‘social’ and ‘non-social’ algorithm from Hill et al., [71] and Hampton et al., 

[72]. These algorithms can be distinguished in a task where participants are strategically 

interacting with another player either in the role of an ‘employee’ or an ‘employer’. In the 

role of the employee, to maximize their payoff, participants must work when inspected and 

not work when not inspected. The authors compared different models to explain how 

participants played the game, a simple reinforcement learning model that simply tracked the 

reward outcomes regardless of the opponent (non-social) was not able to explain behaviour 

as well as an influence algorithm (social) that took into account the influence that the players 

strategy has on the opponents behaviour. In the social example, the algorithm computes the 

decision of an agent at trial t a function of both the agent’s history of choice and the 

opponent’s history of choice. This is contrasted to a non-social algorithm that simply 

computes the history of outcomes in the environment regardless of the opponent’s history of 

choice. Pt is the opponent’s probability of choosing an action (inspect or not inspect). α is 

the learning rate parameter. K is a constant that weights second order beliefs and 

approximates the parameters of the opponent (the learning rate, temperature and payoff 

matrix). Qt is the employee’s action at trial t and qt is the employers inferred probability that 

the employee will work. In the non-social example, Vt is the action values that are updated 

based on the prediction error (PE) as to whether the action was selected and followed by 
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reward or not. The prediction error is weighted by a learning rate (α). For further details see 

Hill et al [71] and Hampton et al [72].
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