
Christman et al. Translational Psychiatry          (2020) 10:317 

https://doi.org/10.1038/s41398-020-01004-z Translational Psychiatry

ART ICLE Open Ac ce s s

Accelerated brain aging predicts impaired
cognitive performance and greater disability
in geriatric but not midlife adult depression
Seth Christman1, Camilo Bermudez2, Lingyan Hao2, Bennett A. Landman1,2,3, Brian Boyd1, Kimberly Albert1,
Neil Woodward1, Sepideh Shokouhi1, Jennifer Vega1, Patricia Andrews1 and Warren D. Taylor 1,4

Abstract
Depression is associated with markers of accelerated aging, but it is unclear how this relationship changes across the
lifespan. We examined whether a brain-based measure of accelerated aging differed between depressed and never-
depressed subjects across the adult lifespan and whether it was related to cognitive performance and disability. We
applied a machine-learning approach that estimated brain age from structural MRI data in two depressed cohorts,
respectively 170 midlife adults and 154 older adults enrolled in studies with common entry criteria. Both cohorts
completed broad cognitive batteries and the older subgroup completed a disability assessment. The machine-learning
model estimated brain age from MRI data, which was compared to chronological age to determine the brain–age gap
(BAG; estimated age-chronological age). BAG did not differ between midlife depressed and nondepressed adults.
Older depressed adults exhibited significantly higher BAG than nondepressed elders (Wald χ2= 8.84, p= 0.0029),
indicating a higher estimated brain age than chronological age. BAG was not associated with midlife cognitive
performance. In the older cohort, higher BAG was associated with poorer episodic memory performance (Wald χ2=
4.10, p= 0.0430) and, in the older depressed group alone, slower processing speed (Wald χ2= 4.43, p= 0.0354). We
also observed a statistical interaction where greater depressive symptom severity in context of higher BAG was
associated with poorer executive function (Wald χ2= 5.89, p= 0.0152) and working memory performance (Wald χ2=
4.47, p= 0.0346). Increased BAG was associated with greater disability (Wald χ2= 6.00, p= 0.0143). Unlike midlife
depression, geriatric depression exhibits accelerated brain aging, which in turn is associated with cognitive and
functional deficits.

Introduction
Aging has an inevitable effect at molecular, cellular, and

organ levels, with biological aging resulting in degenera-
tion or reduction in the organ’s reparative or regenerative
potential1. “Accelerated aging” refers to biological aging
processes that occur more rapidly than expected, resulting
in biological characteristics appearing older than expected

based on the individual’s chronological age. Accelerated
aging may result from numerous disease processes and
can be quantified using a variety of markers such as oxi-
dative stress measures2, telomere length3 or epigenetic
measures of methylation such as Horvath’s epigenetic
clock4. Differences in these markers of accelerated aging
are reported in neuropsychiatric disorders including
schizophrenia, post-traumatic stress disorder, anxiety
disorders, and depression5. Depression is specifically
associated with decreased telomere length3, while a multi-
biomarker index of aging derived from measures of
inflammation, metabolism, and organ function predicted
greater depression severity in older adults6. Importantly,

© The Author(s) 2020
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Warren D. Taylor (warren.d.taylor@vanderbilt.edu)
1Department of Psychiatry and Behavioral Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA
2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN,
USA
Full list of author information is available at the end of the article
These authors contributed equally: Seth Christman, Camilo Bermudez

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-9975-3082
http://orcid.org/0000-0002-9975-3082
http://orcid.org/0000-0002-9975-3082
http://orcid.org/0000-0002-9975-3082
http://orcid.org/0000-0002-9975-3082
http://creativecommons.org/licenses/by/4.0/
mailto:warren.d.taylor@vanderbilt.edu


rates of aging as measured by biomarkers differ across
organ systems. As the central nervous system may age
differently than the rest of the body7, brain-specific mar-
kers of biological aging may be particularly germane to
neuropsychiatric disorders.
By building on large databases of normative aging,

examination of structural MRI data allows for examina-
tion of accelerated aging in the brain itself. One approach,
the Brain Age Gap Estimation (BrainAGE) method8, uti-
lizes a machine-learning technique for identifying
individual-level variability in brain aging. Using standard
structural MRI sequences, a prediction model generated
from a learning sample of neurologically healthy adults
can be applied to a new individual brain MRI to estimate
that individual’s apparent biological age. The difference
between this estimated biological age and the subject’s
chronological age yields the brain-age “gap” (BAG), a
marker of how much “older” or “younger” a given brain
appears relative to the individual’s chronological age. This
technique has been applied in psychiatric populations
including schizophrenia, where particularly obese indivi-
duals exhibit older-appearing brains, although differences
in estimated brain age are not seen in patients with
bipolar disorder9–11. Past studies using brain age estima-
tion techniques examining adult major depressive dis-
order (MDD) report that individuals with MDD tend to
exhibit older estimated brain ages than expected12,
although this finding is not universal13. If there is a dif-
ference in brain aging in MDD, it is possible it is asso-
ciated with chronicity or recurrence of depressive
episodes. This hypothesis is supported by studies asso-
ciating greater chronicity or duration of depression with
volumetric differences in key regions such as the hippo-
campus 14–16.
The examination of brain aging may have particular

utility in older populations and late-life depression, or
geriatric MDD. Geriatric MDD is associated with cere-
brovascular pathology17, higher risk for dementia18, and
greater medical morbidity19 that may contribute to
impairment in multiple cognitive domains20 and acceler-
ated brain aging. For example, diabetes mellitus, a risk
factor both for cerebrovascular disease, dementia, and
depression, is also associated with an increased brain-age
gap21. The potential utility of brain-age estimation is
supported by work in Alzheimer’s disease, where patients
exhibit a greater brain-age gap than seen in cognitively
intact elders22 and a greater discrepancy between esti-
mated biological brain age and chronological age predicts
conversion from mild cognitive impairment to demen-
tia23. Structural MRI as a marker of accelerated aging may
therefore provide new insights in the interactions between
aging, depression, cognition, and disability.
In this study, we examined the BAG in two separate age

cohorts, one of young- to midlife-adults and one of older

adults. Both cohorts included both depressed and never-
depressed subjects. The goal of this study was to deter-
mine, using BAG as a cross-sectional marker of acceler-
ated aging, whether depressed individuals exhibited
accelerated brain aging and if this measure is related to
clinical outcomes, specifically cognitive performance, and
disability. In primary analyses, we hypothesized that the
estimated biological brain age of depressed participants
would be older than their chronological age and that a
greater BAG, indicating older biological age, would be
associated with poorer cognitive performance and greater
disability. In exploratory analyses in depressed subjects
alone, we examined whether there were different rela-
tionships between BAG and cognition than was seen in
the overall age cohorts, and whether greater depression
severity modified the relationship between BAG and
cognition.

Methods
Participants
The two age cohorts comprised one group of young-

to-midlife adults with and without MDD (“adult
cohort”) and another group of older adults with and
without MDD (“geriatric cohort”). Other than the age
criterion, these studies had similar entry criteria, with
depressed participants being required to have a current
diagnosis of MDD (DSM-IV-TR) and a Montgomery-
Asberg Depression Rating Scale (MADRS)24 score of 15
or greater. The studies shared common exclusion cri-
teria including acute suicidality, current or past psy-
chosis, current psychotherapy, electroconvulsive
therapy in the previous 6 months, presence of central
neurological disease, diagnosis of dementia, or unstable
medical conditions, developmental disorders, and MRI
contraindications. Never-depressed participants had
neither a history of psychiatric diagnoses nor a history of
mental health treatment. Both age cohorts were out-
patients recruited from clinical referrals and community
advertisements.
The adult cohort was enrolled at Duke University

Medical Center. The eligible age range was 20–50 years.
For depressed participants, entry criteria further specified
a diagnosis of recurrent MDD with the onset of a first
depressive episode prior to age 35 years and no anti-
depressant medication use in the last month. Exclusion
criteria included other lifetime DSM-IV Axis I disorders
including substance abuse or dependence, Axis II dis-
orders identified by the SCID-II25, use of illicit substances
in the last month, a first-degree relative family history of
bipolar disorder, or history of clinically relevant head
injury.
The geriatric cohort was recruited at Vanderbilt Uni-

versity Medical Center as part of three separate studies
with common entry criteria. Participants were age 60 years
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or older without a diagnosis of dementia or significant
cognitive impairment assessed by a Montreal Cognitive
Assessment (MoCA)26 score greater than 24 or a Mini
Mental State Exam (MMSE)27 score greater than 24. For
depressed participants, exclusion criteria included current
or past Axis I disorder diagnoses, except for anxiety
symptoms occurring during a depressive episode, history
of substance abuse or dependence over the prior three
years, and acute grief. Antidepressant medications were
allowed in one geriatric study, with 9 of 14 depressed
participants taking stable-dose antidepressant mono-
therapy at the time of MRI. The other two studies man-
dated no antidepressant use in the two weeks prior
to MRI.
The Duke University Medical Center Institutional

Review Board and the Vanderbilt University Institutional
Review Board approved the studies conducted at each
institution. All study participants provided written
informed consent. Data from the adult cohort has pre-
viously been reported28,29 and we have also reported
cognitive data from the geriatric cohort 20.

Clinical assessments
For both studies, the DSM-IV-TR diagnosis of MDD

was made using the Mini-International Neuropsychiatric
Interview (MINI, version 5.0)30 and confirmed by an
interview with a study psychiatrist. In all studies, partici-
pants were assessed for depression severity with the
MADRS and medical burden with the geriatric Cumula-
tive Illness Rating Scale (CIRS). In one but not the other
two geriatric MDD studies, disability burden was mea-
sured using the World Health Organization Disability
Schedule 2.0 (WHODAS 2.0) 31.
Using procedures similar to past reports15,29, we quan-

tified age of initial depression onset and duration of
depression using a life-charting approach in a detailed
clinical interview, supplemented by acquisition of medical
records. For adult MDD subjects, this was for lifetime
duration of depression. For geriatric MDD subjects, this
was limited to the current episode.

Cognitive assessments
Participants completed a broad battery of neu-

ropsychological tests that assessed cognitive domains
relevant to depression or aging. As previously
detailed28,32,33, we combined tests to create composite
domain variables. We created z-scores for each measure
based on the performance of all participants within each
age cohort and averaged the z-scores for all tests within
that domain. This resulted in a z-score for each domain
for each participant. Cronbach’s alpha (CoA) was com-
puted for each domain as a measure of internal con-
sistency. As previously published28, for the adult cohort,
tests in each domain included:

● Episodic Memory (CoA= 0.87): Logical Memory 1
and 2 from the Wechsler Memory Scale, Benton
Visual Retention Test, Rey’s Verbal Learning Test
(total I–V and total VII);

● Executive Function (CoA= 0.75): Controlled Oral
Word Association (COWA) test (letters: C, F, L),
Trail Making B time (reverse scored), semantic
fluency (Animal Naming), Stroop Color-Word
interference condition;

● Processing Speed (CoA= 0.70): Symbol-Digit
Modality, Trail Making A time (reverse scored),
Stroop Color Naming condition;

● Working Memory (CoA= 0.75): Digit Span forward
and Digit Span backward from the Wechsler
Memory Scale.

Two of the geriatric studies used identical neu-
ropsychological test batteries and so were included in
analyses examining cognitive performance. As previously
published20,33, for the geriatric cohort, tests in each
domain included:

● Episodic Memory (CoA= 0.75): Word List Memory
Recall (immediate and delayed), Paragraph Recall
test, Constructional Praxis test (delayed), Benton
Visual Retention Test;

● Executive Function (CoA= 0.66): COWA test
(letters: C, F, L), Trail Making B time (reverse
scored), Stroop test color-word interference
condition, Mattis Dementia Rating Scale, Initiation-
Perseveration subscale;

● Processing Speed (CoA= 0.74): Symbol-Digit
Modality Test, Trail-Making A time (reverse
scored), Stroop color naming condition;

● Working Memory (CoA= 0.71): Digit Span forward,
Digit Span backward, and Ascending Digits from the
Wechsler Memory Scale.

MRI acquisition
The adult cohort was imaged on a research-dedicated

whole-body Siemens 3.0 T Trio Tim scanner at Duke
University Medical Center using an 8-channel head coil.
Parallel imaging was employed with an acceleration factor
of 2. Duplicate sagittal MPRAGE sequences were obtained
using a repetition time (TR) of 2300 ms, echo time (TE) of
3.46 ms, a flip angle of 9°, a 256 × 256 matrix, FOV
240mm, 160 slices with a 1.2 mm slice thickness for voxel
size of 0.9 × 0.9 × 1.2 mm.
The geriatric cohort was imaged on a research-

dedicated 3.0 T Philips Achieva whole-body scanner at
Vanderbilt University Medical Center using a 32-channel
head coil. The MPRAGE images were obtained using
TR= 8.75 ms, TE= 4.6 ms, flip angle= 9°, and spatial
resolution= 0.89; × 0.89 × 1.2 mm3 plus a FLAIR T2-
weighted imaging conducted with TR= 10,000 ms,
TE= 125 ms, TI= 2700 ms, flip angle= 90°, and spatial
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resolution = 0.7 × 0.7 × 2.0 mm3. FLAIR T2-weighted
imaging was also conducted using TR= 10,000 ms,
TE= 125 ms, TI= 2,700 ms, flip angle= 90°, and spatial
resolution = 0.7 × 0.7 × 2.0 mm3.

MRI analyses and calculation of brain age
The brain age estimator is an automated deep learning

tool used to predict or estimate age from a T1-weighted
brain MRI. The first step in the brain age biomarker
pipeline is to align the subject T1-weighted brain MRI
with the MNI-305 template34 using the affine registration
from the NiftiReg library35. Images also undergo N4 bias
field correction36 to alleviate bias from acquisition. The
input to the brain age estimation algorithm consists of
the preprocessed brain MRI described above as well as the
volume of 132 distinct regions of interest in the brain,
obtained from a whole-brain segmentation using a multi-
atlas technique37. The BrainAGE algorithm described by
Bermudez et. al8. uses a deep convolutional neural net-
work regression model trained on over 5000 healthy
controls ages 4–96 to predict age with high accuracy8.
The innovation presented from this work is the addition
of anatomical context in the form of volumetric estimates
of regions of interest throughout the brain, which resulted
in a more accurate prediction of age. The output is the
estimated age for that subject, with the BAG biomarker
being the difference between chronological true age and
algorithm estimated age. For this study, we conducted
model inference in our two cohorts using the BAG
algorithm without any further model optimization or
changes. Brain age calculations were performed on an
NVIDIA GeForce Titan GPU with 12 GB memory and all
deep learning algorithms were implemented and tested
using Tensorflow v1.4 with a Keras backend v2.2. In order
to analyze this cohort, we used a large-scale medical
image processing infrastructure38 and high performance
computing cluster at Vanderbilt University. Trained
models and analysis code for the BAG prediction used by
Bermudez et al8. are publicly available at (https://github.
com/MASILab/BrainAGE).
The Lesion Segmentation Toolbox39 was used to mea-

sure white matter hyperintensity (WMH) volumes, find-
ings on T2- weighted FLAIR images related to cerebral
ischemia. These analyses were implemented through the
VBM8 toolbox in SPM8 and have been previously
described20,40. This lesion map is then used to calculate
total cerebral WMH volume. This process was only
applied to the geriatric cohort data as the adult cohort
imaging protocol did not include the necessary FLAIR
sequence.

Analytic plan
Statistical analyses were conducted using SAS Studio

3.8 (SAS Institute, Cary, NC). Participant demographics

within each cohort were summarized and univariate
comparisons conducted using pooled, two-tailed t-tests
for continuous variables and chi-square tests for catego-
rical variables. Data were graphed to facilitate the iden-
tification of outliers and one geriatric participant
exhibited cognitive domain z-scores several standard
deviations lower than the rest of the geriatric cohort. This
individual was excluded from analyses.
The two age cohorts were not combined, and data were

analyzed separately. As MRI data from each age cohort
were gathered at different sites using different scanners
(younger- to midlife adults at Duke, older adults at Van-
derbilt), this created a fundamental confound between age
and scanner type that cannot be clearly disentangled.
Additionally, deep neural networks are unstable to inho-
mogeneities in medical imaging41, so scanner and site
effects may introduce additional variability in the brain
age estimation between study cohorts that could obfus-
cate or mask underlying biological variability.
The primary imaging measure was the BAG, calculated

as the difference between the algorithm-determined esti-
mated age and the chronological age. A negative BAG
indicated that the brain appeared younger than antici-
pated based on chronological age, while a positive BAG
indicated a brain appearing older than anticipated (Fig. 1).
As the BAG was calculated from but did not capture
subjects’ chronological age, we included chronological age
as a covariate in statistical models. This decision was
based on age itself having a strong effect on brain struc-
ture, the importance of a given BAG value may vary based
on chronological age, and because we hypothesized that
there may be more variability in BAG with advancing age.
Primary analyses focused on testing for diagnostic

group differences in BAG and the relationship between
BAG, cognition, and disability. Statistical analyses used
general linear models (PROC GENMOD) with a similar
approach for both age cohorts. Initial models tested for
diagnostic group differences in BAG, including covariates
of chronological age, sex, education, and medical mor-
bidity by CIRS. This was followed by examining the effect
of BAG on z-scored cognitive domains, including cov-
ariates of the diagnostic group, chronological age, sex,
education, and medical morbidity measured by CIRS. As
an exploratory component of these analyses, we tested for
a statistical interaction between diagnostic group and
BAG affecting cognitive domain score. Similar approaches
were used to assess the effects of BAG on disability
measured by the WHODAS 2.0.
Subsequent exploratory analyses focused on the effects

of depression history or depression severity, so included
only depressed subjects. These models included covariates
of chronological age, sex, education, CIRS, and depression
severity by MADRS. We first tested for the relationship
between BAG and depression exposure, examined both as
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the age of onset of the initial depressive episode and
duration of depression, calculated as lifetime exposure for
the adult MDD group and duration of the current episode
for the geriatric MDD group. We next examined the effect
of BAG on z-scored cognitive domain performance in the
depressed groups alone, also testing for statistical inter-
action between depression severity and BAG.
As WMHs are common in geriatric MDD, associated

with aging42,43, and a potential marker of accelerated
cerebrovascular aging, in further exploratory analyses we
examined the relationship between WMH volume, BAG,
and clinical measures. As WMH volumes are often not
normally distributed, our primary measure was log-
transformed WMH volume. These exploratory analyses
examined the same models as detailed above but included
transformed WMH volume as an additional covariate.
These were only conducted in the geriatric MDD cohort
data as WMH are uncommon outside the geriatric age
range and the adult cohort did not have the required
FLAIR MRI acquisition.

Results
Brain age analyses in the midlife adult cohort
The adult cohort included 76 depressed and 94 non-

depressed adults (Table 1). Depressed participants were
significantly older than never-depressed participants in
chronological age and estimated age but exhibited a
comparable BAG. Depressed participants exhibited sig-
nificantly higher medical comorbidity severity (via CIRS)

and, in univariate analyses, poorer episodic memory, and
processing speed performance. The depressed subjects’
mean age of onset was 20.8 years (range 6–35), with a
mean lifetime depression duration of 2115 days (5.8 years;
range 90–7500 days).
After controlling for covariates (chronological age, sex,

education, CIRS) BAG did not differ between depressed
and non-depressed participants (Wald Χ2= 0.40, 164 df,
p= 0.5294). BAG was also not significantly associated
with episodic memory (Wald Χ2= 1.56, 163 df, p=
0.2112), executive function (Wald Χ2= 1.94, 163 df, p=
0.1637), processing speed (Wald Χ2= 0.01, 163 df,
p= 0.9210), or working memory (Wald Χ2= 0.02, 163 df,
p= 0.8837.) Tests for an interactive effect between MDD
diagnosis and BAG on cognitive performance were not
statistically significant, thus the relationship between BAG
and cognitive performance did not appear to differ based
on a diagnosis of MDD (data not shown).
In exploratory analyses of depressed participants only,

depression severity by MADRS was not significantly
associated with BAG (Wald Χ2= 0.25, 70 df, p=
0.6141). We further did not observe significant rela-
tionships between BAG and age of onset (Wald Χ2=
0.06, 68 df, p= 0.8098) or lifetime duration of depres-
sion (Wald Χ2= 0.35, 68 df, p= 0.5515). In depressed
participants alone, there were neither significant direct
effects of BAG nor interactive effects between MADRS
and BAG on cognitive domain performance (data not
shown).

Fig. 1 Comparison of structural MRI of participant brains in midlife and older adult cohorts. Each image is a separate participant, displaying
coronal and axial images and actual (chronological) age and estimated (calculated) age. The top row is from the midlife adult cohort and the bottom
row is from the geriatric cohort.
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Brain age analyses in the geriatric cohort
The geriatric cohort included 118 depressed and 36

never-depressed elders (Table 1). Compared to non-
depressed participants, depressed elders were younger
with a lower mean chronological age but exhibiting
comparable estimated age. This resulted in depressed
elders exhibiting a significantly higher BAG. Depressed
elders exhibited poorer performance on unadjusted
measures of executive function and processing speed. For
depressed elders, the mean age of onset was 34.7 years
(range 5–84 years), with a mean current episode duration
of 953 days (2.6 years, range 15–5141 days).
After adjusting for chronological age, sex, education, and

CIRS, BAG was significantly higher in depressed elders
(Wald Χ2= 8.84, 148 df, p= 0.0029) indicating that the
brains of depressed participants appeared older than
expected by chronological age alone. After adjusting for
covariates including diagnosis, a higher BAG was asso-
ciated with poorer episodic memory performance (Wald
Χ2= 4.10, 132 df, p= 0.0430; Fig. 2) but not executive

function (Wald Χ2= 0.03, 132 df, p= 0.8643), processing
speed (Wald Χ2= 2.78, 132 df, p= 0.0957), or working
memory (Wald Χ2= 0.00, 132 df, p= 0.9974). Tests for an
interactive effect between MDD diagnosis and BAG on
cognitive performance were not statistically significant
(data not shown). Disability data measured by WHODAS
was available from one study, consisting of data from 85
depressed and 15 never-depressed older participants. After
adjusting for covariates, BAG was associated with greater
disability (Wald Χ2= 6.00, 93 df, p= 0.0143; Fig. 3).
In exploratory analyses examining depressed elders

only, there was no statistically significant relationship
between BAG and depression severity by MADRS (Wald
Χ2= 0.96, 112 df, p= 0.3271). We also did not observe
significant relationships between BAG and either age of
onset (Wald Χ2= 0.31, 110 df, p= 0.5769), or duration of
current episode (Wald Χ2= 0.05, 110 df, p= 0.8225). In
models examining depressed elders only (N= 103), con-
trolling for age, sex, education, CIRS and MADRS,
there was a primary effect of BAG on processing speed

Table 1 Demographic and clinical differences across samples.

Adult sample Geriatric sample

Depressed

(N= 76)

Never-depressed

(N= 94)

Test value p-value Depressed

(N= 118)

Never-depressed

(N= 36)

Test value p-value

Age, years (chronologic) 36.21 (9.04) 30.14 (9.2) 4.30 <0.0001 66.41 (5.45) 70.06 (6.65) 3.33 0.0011

Age, years (estimated) 43.67 (11.27) 37.48 (10.09) 3.77 0.0002 70.09 (8.12) 68.83 (10.59) 0.66 0.5117

Brain-age gap (BAG) 7.46 (7.56) 7.33 (5.54) 0.12 0.9027 3.69 (7.16) −1.23 (7.62) 3.55 0.0005

Sex, % female (N) 68.42% (52/76) 61.70% (58/94) 0.83 0.3621 61.0 (72/118) 55.6 (20/36) 0.34 0.5586

Race, % minority (N) 40.79% (31/76) 50.00% (47/94) 1.43 0.2308 10.17% (12/118) 11.11% (4/36) 0.02 0.8712

Education, years 15.34 (2.43) 15.69 (2.06) 1.01 0.3123 16.79 (2.21) 17.17 (1.93) 0.92 0.3573

CIRS 0.67 (1.16) 0.31 (0.75) 2.36 0.0199 5.45 (3.22) 4.72 (2.77) 1.22 0.2234

MADRS 23.62 (4.33) 0.80 (1.16) 44.7 <0.0001 26.21 (5.20) 0.75 (1.02) 50.11 <0.0001

WMH volume (log) – – 0.18 (1.48) 0.13 (1.43) 0.14 0.8894

N= 103 N= 36

MMSE – – 29.20 (1.1) 29.3 (1.1) 0.23 0.8186

Episodic memory −0.68 (4.24) 0.85 (3.68) 2.49 0.0137 −0.03 (0.73) 0.15 (0.74) 1.26 0.2104

Executive function −0.36 (3.05) 0.46 (2.92) 1.79 0.0754 −0.08 (0.69) 0.29 (0.51) 3.37 0.0012

Processing speed −0.51(2.49) 0.51 (2.20) 2.82 0.0053 −0.05 (0.72) 0.30 (0.54) 3.03 0.0033

Working memory −0.21 (1.67) 0.20 (1.88) 1.49 0.1370 −0.02 (0.82) 0.15 (0.81) 1.12 0.2632

N= 85 N= 15

WHODAS – – 23.91 (14.82) 4.51 (4.05) 10.21 <0.0001

Data presented as mean (standard deviation) for continuous variables and percent (N) for categorical variables. Analyses used pooled, two-tailed t-tests for continuous
variables and chi-square tests with 1 df for categorical variables. Pooled t-tests for the adult sample had 168 degrees of freedom. In pooled t-tests for the geriatric
sample, for the overall demographics df= 152, for the cognition sample df= 137, and for the disability sample df= 98. The exceptions requiring the use of
Satterthwaite t-tests due to unequal variances for the adult sample included analyses of BAG (133.8 df), (CIRS (122.8 df) and MADRS (83.7 df), and for the geriatric
sample analyses of MADRS (141.05 df), estimated age (48.2 df), executive function (81.1 df), processing speed (87.7 df), and WHODAS score (82.0 df).
BAG brain-age gap, CIRS Cumulative Illness Rating Scale, MADRS Montgomery-Asberg Depression Rating Scale, MMSE mini-mental state examination, WHODAS World
Health Organization Disability Assessment Schedule (Version 2.0), presented as percent disabled, WMH white matter hyperintensity.
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(Wald Χ2= 4.43, 96 df, p= 0.0354; Fig. 4) but not episodic
memory (Wald Χ2= 1.07, 96 df, p= 0.2999), executive
function (Wald Χ2= 0.30, 96 df, p= 0.5836), or working
memory (Wald Χ2= 1.00, 96 df, p= 0.3164). We further
observed statistically significant interactive effects
between MADRS and BAG on executive function (Wald
Χ2= 5.89, 95 df, p= 0.0152) and working memory (Wald
Χ2= 4.47, 95 df, p= 0.0346). In these analyses, a greater

BAG had an increasingly negative effect on executive
function and working memory in context of worsening
MADRS score. In other words, the effect of a higher BAG
(or having an older-appearing brain than expected) on
executive function and working memory performance is
greater in context of more severe depressive symptoms.
No significant interaction effects were observed between
MADRS and BAG on episodic memory (Wald Χ2= 0.98,
95 df, p= 0.3213) or processing speed (Wald Χ2= 0.04,
95 df, p= 0.8448).

Effect of WMH on the BAG and its clinical correlates in
geriatric MDD
As greater severity of WMH is an aging-related marker

of vascular damage in geriatric MDD, in further
exploratory analyses we examined the relationship
between log-transformed WMH volume, BAG, and
diagnosis. When adding log-transformed WMH volume
to the models described above, WMH was positively
associated with BAG (Wald Χ2= 7.01, 147 df, p= 0.0081),
but this did not appreciably change the relationship
between MDD diagnosis and BAG (Wald Χ2= 7.00,
147 df, p= 0.0082).
We next examined whether the addition of log-

transformed WMH volume to models examining cogni-
tive performance and disability changed the results
described above. The addition of WMH did not appre-
ciably change our observed associations between BAG,
cognitive performance, or disability (data not shown),
except for the interactive effect observed in the depressed
subjects between BAG and MADRS on executive

Fig. 2 Association between brain-age gap and episodic memory
in geriatric subjects. BAG was associated with episodic memory in
general linear models (Wald Χ2= 4.10, 132 df, p= 0.0430), including
covariates of diagnosis, age, sex, education, and medical morbidity.
Episodic memory has no units, presented as an average z-score across
tests. Brain-age gap (BAG) is in years, calculated as the difference
between the calculated estimated age and the chronological age.

Fig. 3 Association between brain-age gap and disability
(WHODAS) in older adults. BAG was associated with disability in
general linear models (Wald Χ2= 6.00, 93 df, p= 0.0143), including
covariates of diagnosis, age, sex, education, and medical morbidity.
Disability measured by the WHODAS 2.0, calculated as percent
disabled. Brain-age gap (BAG) is in years, calculated as the difference
between the calculated estimated age and the chronological age.

Fig. 4 Association between brain-age gap and processing speed
in older depressed subjects. BAG was associated with processing
speed in depressed elders in general linear models (Wald Χ2= 4.43, 96
df, p= 0.0354), including covariates of depression severity (MADRS),
age, sex, education, and medical morbidity. Processing speed has no
units, presented as an average z-score across tests. Brain-age gap
(BAG) is in years, calculated as the difference between the calculated
estimated age and the chronological age.
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function. Despite WMH not being significantly associated
with executive function in this model (Wald Χ2= 0.99,
94 df, p= 0.3202), the interaction between BAG and
MADRS was also no longer statistically significant (Wald
Χ2= 0.28, 94 df, p= 0.5979).

Discussion
Differences in brain aging can be observed comparing

chronological age with estimated calculated age using the
BAG metric (Fig. 1, video displaying geriatric MRI data
with both chronological and estimated ages at: https://
vimeo.com/393048773). We observed marked differences
in the clinical implications of the difference between
estimated brain age and chronological age between
younger and older cohorts. In the young to the middle-
aged adult cohort, BAG did not differ by diagnosis and we
observed no significant relationships between BAG and
cognition. In contrast, depressed elders exhibited a higher
BAG, indicating that the estimated age based on struc-
tural MRI was higher than expected. This higher BAG was
associated with poorer episodic memory performance and
greater disability. In exploratory analyses of depressed
elders only, higher BAG was further associated with
slower processing speed plus BAG exhibited an inter-
active effect with depression severity on executive func-
tion and working memory performance. Greater WMH
volume, an MRI marker of pathological brain aging
associated with geriatric depression42,43, was associated
with a higher BAG, but largely did not change observed
relationships between BAG and cognition or disability.
Our findings in adult MDD are generally concordant

with some past work in this population13, suggesting that
accelerated brain aging is not prominent in midlife adults
even with recurrent depressive episodes. We now extend
this approach to older adults. To our knowledge, this is
among the first reports to use a deep learning approach to
examine a brain-based biomarker of accelerated aging in
geriatric MDD. The different findings observed in the two
age cohorts raise the possibility that at some point
depressed subjects may diverge from never-depressed
individuals and the aging process accelerates, although
due to technical limitations between the two age cohorts
mean we cannot test this hypothesis with these data. If
this hypothesis is correct, it is then unclear whether the
acceleration of brain might be linear or if depressed and
nondepressed groups diverge in a specific midlife window.
Relevant to this hypothesis, we did not associate longer
depression exposure with increased BAG. However, our
findings may be constrained by using retrospective mea-
sures to assess duration of depression that are based
primarily on remote patient recall.
In geriatric MDD, BAG is associated with cognition and

disability. The association between increased BAG and
poorer episodic memory is consistent with work showing

episodic memory is particularly vulnerable even to normal
aging44. Episodic memory is the hallmark domain affected
in mild cognitive impairment and shows steeper decline
in pathological aging such as in Alzheimer’s dementia.
Similarly, other biomarkers of accelerated aging are
associated with worse episodic memory performance in
neuropsychiatric populations, including decreased telo-
mere length and gray matter volume45. Conversely, in
older adults, lower epigenetic age calculated from DNA
methylation was predictive of intact episodic memory 46.
In exploratory analyses examining only older depressed

subjects, we observed further associations between BAG
and cognitive performance. The effect of BAG on pro-
cessing speed in depressed elders is consistent with past
reports of decreased processing speed in geriatric
MDD47,48 that may serve as a core cognitive impairment,
mediating deficits in working memory and verbal cap-
abilities47,48. Intriguingly, we found an interaction
between increased BAG and depression severity on
executive function and working memory, although the
effect on executive function did not persist after adjusting
for WMH volume. It is well established that active
depressive symptoms can worsen cognitive performance,
even with treatment49. Our current findings suggest that
the effect of accelerated brain aging on executive function
and working memory may be mediated by depression
severity. In other words, an individual with an older-
appearing brain may exhibit a greater decline in these
cognitive domains as their depression severity worsens.
This may help explain variability in executive processes in
late-life depression, and furthermore why performance
may improve with successful antidepressant treatment.
Such a “two-hit” hypothesis of an older-looking brain
becoming increasingly vulnerable to the cognitive effects
of a depressive episode is consistent with clinical experi-
ence. However, this interpretation should be viewed
cautiously, and replication is needed as these were
exploratory analyses in a subsample of the larger study.
Our observed association of higher BAG with a greater

disability is supported by past work in older adults.
Repeatedly, biomarkers of accelerated brain aging in both
gray matter and the white matter are associated with
increased disability and impairment in activities of daily
livings. These findings include associations between dis-
ability and hippocampal volume loss, cortical gray matter
changes, WMH, infarcts, and other measures of white
matter microstructure50–52. Our observation utilizing a
BAG measure derived from structural differences is
concordant with this past work. It also identifies biological
contributors to disability in geriatric MDD that extend
beyond the severity of depressive symptoms.
We did not observe a significant relationship in either

age cohort between BAG and depression exposure, either
measured as age at onset of the initial depressive episode
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or duration of depressive episodes. This important nega-
tive finding was contrary to our hypothesis, as past work
has associated depression exposure with other brain
measures, most notably hippocampal volume15,16,53. Age
of onset differences is also reported in measures of cor-
tical thickness in frontal, temporal, and cingulate
regions54. If we assume that cumulative depression
exposure does contribute to volumetric brain changes, it
is possible that more subtle, focal effects could not be
detected using a brain-wide measure of estimated age.
Alternatively, perhaps in some depressed individuals,
repeated depressive episodes do not contribute to struc-
tural brain alterations. In either case, the recall bias
inherent in retrospectively recalling depressive episodes
contributes to inaccuracies in those measures, challenging
our ability to definitively answer such questions in the
absence of prospective studies.
A strength of the study includes two large cohorts

across the adult lifespan. Limitations include the exam-
ination of cross-sectional rather than longitudinal data,
limiting our ability to make causal inferences or deter-
mine whether BAG measures may have prognostic utility
in predicting cognitive decline or worsening disability. We
additionally did not have the ability to look at potentially
protective behaviors that may be positively associated
with a negative BAG, where brain age is younger than
expected, such as physical activity or aerobic exercise.
Moreover, our analytic plan included numerous com-
parisons, raising the potential for a Type 1 error. Given
the novel nature of the analyses, we did not a priori plan
to adjust for multiple comparisons. However, we did work
to reduce the number of comparisons, such as examining
z-transformed cognitive domain scores rather than
examine performance across individual neuropsychologi-
cal tests. Had we adjusted for multiple comparisons in the
primary geriatric cohort analyses (using either a Bonfer-
roni or False Discovery Rate approach), only the diag-
nostic group difference in the BAG would have retained
statistical significance. This issue is also relevant for the
exploratory analyses. Thus our findings should be viewed
cautiously and warrant replication.
Although the size of our cohorts and the age range

examined is a strength, an additional limitation is that we
could not combine neuroimaging data across cohorts. As
the two age cohorts were scanned exclusively on two
different scanners, age is fundamentally confounded with
scanner type. As deep neural networks are unstable to
inhomogeneities in medical imaging41, combining data
would lead to scanner effects that would introduce addi-
tional variability in the brain age estimation between
study cohorts that could mask biological variability.
Observed differences in brain age prediction between
diagnostic groups are thus likely to be due to clinical
differences instead of bias due to site effect, despite

reducing the possible sample size if both cohorts were
analyzed together. In addition, while our participants
include younger and older adults, we have an age gap
between the studies, with no participants between the
ages of 50 and 59 years. These factors do not allow us to
directly examine the effects of BAG across the entire adult
age range and complicate our ability to test whether
depression results in a divergence in estimated brain age
from chronological age. These issues are highlighted by
differences in the accuracy in age prediction between the
two cohorts. We saw that the average BAG in the midlife
diagnostic groups ~7 years, whereas the average BAG in
the geriatric cohort was 3.7 years for depressed and −1.2
years for never-depressed subjects (Table 1). The model
of age prediction used in this work relies on patterns in
image intensity from the T1-weighted brain MRI to pre-
dict age. Deep neural networks are susceptible to small,
systemic changes in image intensity41, so site or scanner
effects, such as the differences between the two cohorts in
this study, may bias age prediction.
Future work should continue to examine the clinical

significance of measuring BAG and whether BAG may be
predictive of short- or long-term outcomes such as acute
antidepressant response or risk of recurrence following
remission55. It should also be determined whether it has
long-term prognostic value to identify individuals at
increased risk of cognitive decline. Such work would be
valuable in geriatric MDD but also early in the course of
neurodegenerative disorders such as Alzheimer’s disease.
This longitudinal work should examine BAG not only as a
cross-sectional predictor, but also how BAG changes with
aging, and whether such change trajectories may be more
informative than cross-sectional assessments alone.
Although this study does not support brain age as a
clinically useful marker of accelerated aging in midlife
adults with MDD, it does support a potential role for
disorders of aging.
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