
ORIG INAL PAPER

Modified Asano-Ohya-Khrennikov quantum-like model
for decision-making process in a two-player game
with nonlinear self- and cross-interaction terms
of brain’s amygdala and prefrontal-cortex

Luluk Muthoharoh1
& Hendradi Hardhienata1 & Husin Alatas1

Received: 13 January 2020 /Accepted: 24 June 2020 /Published online: 25 July 2020
# Springer Nature B.V. 2020

Journal of Biological Physics (2020) 46:297–307
https://doi.org/10.1007/s10867-020-09553-6

* Husin Alatas
alatas@apps.ipb.ac.id

1 Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural
University), Jl. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia

Abstract
In this report, we propose a modification on the Asano-Ohya-Khrennikov quantum-like
decision-making process model of a two-player game by adding additional nonlinear
terms to the related comparison step dynamical equation. The additions are in the form of
a self-interaction and cross-interaction of the brain’s amygdala and prefrontal cortex. We
show that the cross-interaction significantly determines the final decision of a player,
whether it becomes a rational or an irrational choice. In contrast, the nonlinear self-
interaction term provides a feedback mechanism that speeds up the corresponding
decision-making process. We also suggest the form of expectation values of the overall
reaction rate coefficients of those nonlinear terms by making an analogy with the original
model formulation.

Keywords Asano-Ohya-Khrennikov quantum-like model . Decision-making process . Two-
player game . Amygdala . Prefrontal cortex

1 Introduction

The physical mechanism underlying the high complexity of human brain behavior undoubt-
edly has attracted much attention in recent years [1, 2]. Mathematical and computational
models have been proposed to explain some particular brain’s behaviors [3–5]. One of those
behaviors is the ability to decide on a specific situation, e.g., when two persons play a specific
game. Players will take actions that are increasing their payoffs in order to win the game. For
the rational players, if there is an appropriate action which can be decided uniquely, they will
choose it with a probability of 1, without considering the action of other players. On the other
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hand, for irrational players, this situation does not automatically lead them to decide uniquely
or in other words, which actions they will take are probabilistic. Shafir and Tversky [6] have
shown from their experiment in two-player prisoner’s dilemma (PD) game that the probability
of a player to choose action irrationally is 0.37.

In [7], Asano, Ohya, and Khrennikov have developed a model to describe the behavior of
such player’s rational/irrational choices in a two-player game. Their model formulation
borrowed the quantum theory technical description, where each of the players is represented
by state vectors, which are called “predictive state” and “mental state,” as elements of a 4-
dimensional Hilbert space. The basic assumption of their quantum-like model was the
independency of each player choices, where a player does not know the choice of the other
player and can only make predictions on it. They defined three different states, namely
predictive state, alternative state, and mental state, to describe the decision-making process
that consists of prediction, comparison, and decision steps. In the comparison step, the
dynamical process is governed by a set of differential equations related to the probabilities
of players to choose their final decisions. It was assumed that the associated differential
equation is adopted from the model of a chemical reaction with a linear interaction term.

In this report, we consider two things. First, we assume that the corresponding decision-
making process in a two-player game is mainly due to the cognitive-emotional interaction
between the brain’s amygdala and prefrontal cortex. It has already known that the amygdala is
responsible for the irrational (emotional) decision in which a fear-driven emotional decision
plays a significant role [9, 10]. On the other hand, the prefrontal cortex, which is a part of the
brain’s neocortex, is likely responsible for the rational (cognitive) decision, where it has an
executive function [11, 12]. Second, based on the first assumption, we propose a model
modification, namely to include the self- and cross-interaction terms of the amygdala and
prefrontal cortex in the related dynamical equation of the comparison step. The interaction
between the amygdala and prefrontal cortex has been a subject for intense investigation in
recent years [13–19]. The assumption to include the interaction between the brain’s amygdala
and the prefrontal cortex, to some extent, offers flexibility in explaining the dynamics of the
decision-making process. To our best knowledge, this modification has never been reported
elsewhere.

It should be emphasized from the beginning that our proposal does not alter the basic
quantum technical formulation of the model but mainly focus on the modification of the
associated dynamical equation on the comparison step, namely by considering the nonlinear
interactions between the amygdala and prefrontal cortex. It should be realized that the
corresponding Asano-Ohya-Khrennikov model neglects the interaction between players and
their environment. Such shortcomings have been remarkably addressed and generalized by
Bagarello [23, 24], namely by introducing a quantum-like formulation in terms of fermionic-
based creation and annihilation operators in the Heisenberg picture where the dynamics are
nicely expressed in terms of the open system full Hamiltonian operator H =H0 +Hint +HI. The
operators H0, Hint, and HI account for the number operator of players and environment
reservoir, interaction between players, and interaction between players and their environment
reservoir, respectively. Remarkably, Bagarello’s model also introduced the Hint interaction
term in the full Hamiltonian which further expands the Asano-Ohya-Khrennikov model to
account for the interaction between the players. This term is relevant in the discussion of our
present manuscript and any quantum technical based-formulation regarding prisoner’s dilem-
ma game. Hence, from an open quantum-like system point of view, the model that we propose
can be considered as a specific case. Our proposal is likely related to a nonlinear Hint



3 Asano-Ohya-Khrennikov quantum-like model

As mentioned in the Introduction, our discussion is based on the Asano-Ohya-
Khrennikov decision-making process model of the two-player game [7], where the

Table 1 Pay-off table of a two-player game with pay-off values a > b > c > d

A/B “0” “1”

“0” (b, b) (d, a)
“1” (a, d) (c, c)
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Hamiltonian formulation based on the related fermionic creation and annihilation operators.
Unfortunately, the nonlinear addition will require perturbative methods to be solved which is
currently beyond the scope of this work but worth for further research.

We organize this report as follows. In section 2, we briefly discuss the definition of a two-
player game. Meanwhile the original Asano-Ohya-Khrennikov model for the decision-making
process developed by Asano et al. [7, 8] is discussed in section 3, while in section 4, we
discuss our proposed perspective and modified model. Finally, a summary is given in the
section 5.

2 The two-player game

A two-player game consists of two players, say Alice (A) and Bob (B), in which they have two
distinct choices which can be assigned as “0” and “ 1.” In the corresponding game, these two
players are assumed to seek the highest pay-off. Each of them has to decide in order to achieve
it. The rule of the two-player game is given in Table 1. We assume that the choice of option
“1” will possibly give a player a highest pay-off, while oppositely, the option “0” will possibly
give a player a lowest pay-off. Nevertheless, whether those two distinct choices will eventually
give a player a highest pay-off is depending on the other player choice as shown in the table,
where a > b > c > d determines the corresponding pay-off. Here, we call the option “1” as a
rational decisional choice, while the option “0” is called an irrational choice, since if, for
instance, the player A chooses “ 1,” while player B chooses “ 0,” then A will get a highest pay-
off and vice versa. But this is not the case when both choose “1” simultaneously, it will give
them relatively low pay-off, so does if both of them choose option “0” simultaneously.

The process to determine the probability of a player, which is not knowing the decision of
the other player, to decide which option to be chosen is the main problem to be solved. On the
other hand, since the quantum theory provided a powerful technical tool to describe the
uncertainty behavior in the microscopic world, it offers a way to develop a model for mimicking
the cognitive-emotional decision-making process of the related two-player game. Based on a
similar technical formulation of quantum theory, many models have been proposed, e.g., refs.
[7, 8, 20–23] to describe this cognitive-emotional process. Discussion regarding the implemen-
tation of quantum technical concept of Asano-Ohya-Khrennikov generalized model for a two-
player decision-making process is given by Bagarello’s open quantum-like decision-making
model [23, 24] which has been described early on in the introduction.
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description of this model relies on the quantum technical formulation. We briefly
review the model in this section, followed by our proposed modification in the next
section. In principle, the model depends on three different states to be discussed
below, namely, predictive, alternative, and mental states. Concerning the decision-
making process, all these states are associated with the prediction, comparison, and
decision steps. As mentioned in the Introduction section, our primary focus in this
report is on modifying the dynamical equation in the comparison step.

Let us recall our two players: Alice (A) and Bob (B). Either of these players can choose two
distinct states namely irrational option “0” or rational option “1” decision denoted by |0〉 and
|1〉, respectively. In the mind of player A, the player B is assumed to have both possible
choices, namely represented in terms of the following predictive state vector:

ϕBj i ¼ α 0Bj i þ β 1Bj i ð1Þ
where the complex α and β coefficients are satisfying normalized condition |α|2 + |β|2 = 1. This
predictive state vector defines a predictive state with density matrix ΘA = |ϕB〉〈ϕB|, which is
mathematically interpreted to contain the possible situations of player A in making a definite
judgment on the player’s B choices [7].

Next, we can define the related mental state vector of A is defined as follows:

ΨAj i ¼ x Φ0Aj i þ y Φ1Aj i ð2Þ
where |Φ0A〉 and |Φ1A〉 are given as follows:

Φ0Aj i ¼ 0Aj i⊗ ϕBj i ¼ α 0A0Bj i þ β 0A1Bj i ð3Þ

Φ1Aj i ¼ 1Aj i⊗ ϕBj i ¼ α 1A0Bj i þ β 1A1Bj i ð4Þ
respectively. It should be emphasized that the state vectors (3) and (4) are considered to define
basis vectors, which can be interpreted as the possibility of the player A to consciously choose
the alternative |0A〉 or |1A〉 state, respectively. Meanwhile, |x|2 ≡ P0A and |y|2 ≡ P1A in the mental
state vector (2) are interpreted as the probabilities of A to choose either of both choices,
satisfying the normalization condition

P0A þ P1A ¼ 1 ð5Þ
Based on the above formulation, it is clear that the mental state vector |ΨA〉 given by
Eq. (2) describes the four consequences of choices to be experienced by player A.
Note that symmetric formulation can be found from B perspective simply by changing
A→ B label.

It is useful to note for the sake of a comprehensive review, that from the possible state basis
vectors (3) and (4), and from the mental state vector (2), one can also define the so-called
alternative state with density matrix ΛA = |Φ0A, 1A〉〈Φ0A, 1A| and mental state with the density
matrixΜA =ΛA⊗ΘA, respectively, as discussed in [7], whereΘA is the predictive state density
matrix. However, all these density matrices are irrelevant with the aim of our present
discussion, such that they will not be further discussed.

In the original Asano-Ohya-Khrennikovmodel, the dynamics of P0A and P1A probabilities in
the comparison step are assumed to be governed by the following coupled dynamical equation:
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dP0A

dt
¼ −k0LP0A þ k1LP1A ð6Þ

dP1A

dt
¼ −k1LP1A þ k0LP0A ð7Þ

which are adopted from a chemical equilibrium model of a reaction system [7]. In the chemical
reaction perspective, the coefficients k0L and k1L are considered as the overall possible reaction
rates from |0A〉→ |1A〉 and |1A〉→ |0A〉, respectively. Here, in our perspective based on [13–19],
both coefficients are considered to represent the influence of brain’s prefrontal-cortex, which is
related to the rational decision, and brain’s amygdala, which is related to the irrational
decision, respectively. It is seen in the Eqs. (6) and (7) that the coefficient k0L(k1L) plays a
role in stabilizing the irrational (rational), and simultaneously increasing the tendency of
rational (irrational), decision of player A.

For the sake of simple calculation, we use the condition (5) to reduce coupled Eqs. (6) and
(7) into the following single differential equation:

dP0A

dt
¼ k1L− k0L þ k1Lð ÞP0A ð8Þ

which is easy to prove that the equilibrium point of Eq. (8) is given as follows:

PE
0A ¼ k1L

k0L þ k1L
ð9Þ

such that

PE
1A ¼ k0L

k0L þ k1L
ð10Þ

Linearizing Eq. (7) around the equilibrium point (8) one finds:

dP0A

dt
¼ −k1LP0A ð11Þ

Clearly, the corresponding eigenvalue of Eq. (8) is nothing but λ = − k1L indicating that the
corresponding equilibrium point is a stable point for k1L > 0. Following the same procedure,

one can also find for the PE
1A equilibrium point λ = − k0L, which is also stable for k0L > 0.

It was assumed that the overall reaction rates k0L and k1L are determined by the following
four possible choices of comparison processes:

0A0Bj i ⇌
k 1ð Þ
1L

k 1ð Þ
0L

1A0Bj i; 0A1Bj i ⇌
k 2ð Þ
1L

k 2ð Þ
0L

1A1Bj i

0A1Bj i ⇌
k 3ð Þ
1L

k 3ð Þ
0L

1A0Bj i; 0A0Bj i ⇌
k 4ð Þ
1L

k 4ð Þ
0L

1A1Bj i
ð12Þ

where the symbol k ið Þ
0 1ð ÞL; i ¼ 1; 2; 3; 4; is representing the reaction rates of each particular

choice. Based on the above fact and by taking into account the effect of quantum interferences,
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one can further assume that the expectation values of the overall reaction rates are given as
follows [7]:

k0L ¼ αj j2 k 1ð Þ
0L

h i1=2
þ βj j2 k 2ð Þ

0L

h i1=2
þ αβ* k 3ð Þ

0L

h i1=2
þ α*β k 4ð Þ

0L

h i1=2����
����
2

ð13Þ

k1L ¼ αj j2 k 1ð Þ
1L

h i1=2
þ βj j2 k 2ð Þ

1L

h i1=2
þ α*β k 3ð Þ

1L

h i1=2
þ αβ* k 4ð Þ

1L

h i1=2����
����
2

ð14Þ

Depicted in Fig. 1 is an example of the P0A and P1A governed by Eq. (6) and (7). It
is shown that for an initial condition with P0A < P1A under a specific set of parameter
values, the A player tends to choose an irrational decision with final probability
P0A ¼ PE

0A ¼ 2=3 > P1A ¼ 1=3. It should be admitted that this model offered relative-
ly limited flexibility, since it only involves two free parameters in the model, namely
k0L and k1L, which only describe a linear interaction between the brain’s prefrontal-
cortex and amygdala in the corresponding decision-making process.

4 Modified Asano-Ohya-Khrennikov quantum-like model

We propose a modification on the Eqs. (6) and (7), which are related to the comparison step of
the decision-making process, to include the nonlinear self- and cross-interaction terms of the
brain’s amygdala and prefrontal cortex as follows:

dP0A

dt
¼ −k0LP0A−k0SP2

0A � kC;�P0AP1A þ k1LP1A þ k1SP2
1A ð15Þ

dP1A

dt
¼ −k1LP1A−k1SP2

1A∓kC;�P0AP1A þ k0LP0A þ k0SP2
0A ð16Þ

Fig. 1 The dynamics of probability functions P0A (red dash curve) and P1A (red solid curve) for k0L = 0.1 and
k1L = 0.2 with P0A(0) = 0.3 and P1A(0) = 0.7
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where in terms of the chemical reaction system, the Eqs. (15) and (16) represent a nonlinear
chemical reaction process.

As mentioned in the Introduction section, we should emphasize that we consider our
modification based on the observed amygdala and prefrontal cortex nonlinear interactions
[13–19], as well as the specific functions of both brain’s part [9–12]. Similar nonlinear
interactions can also be found in other physical systems, for instance, in the nonlinear
optical systems with two or more different interacting modes (see, e.g., [25–27]). In our
perspective, the coefficient k0(1)S corresponds to the self-interaction term of prefrontal-
cortex (amygdala) for stabilizing the irrational (rational), and simultaneously increasing
the rational (irrational) decision of player A, while kC, ± denotes the cross-interaction term
between the amygdala and prefrontal cortex. Here, the values of all coefficients are
positive. It will be shown later that kC, ± significantly determines the dynamical charac-
teristics of the decision-making process.

It is interesting to note that the quantum-like generalization of this modified comparison
step might be related to a nonlinear modification of Hint Hamiltonian term of Bagarello’s
open quantum-like decision-making model [23, 24]. This issue deserves further
investigation.

Similar to Eqs. (6) and (7), we can also reduce Eqs. (15) and (16) into the following form
based on condition (5):

dP0A

dt
¼ k1L þ k1Sð Þ þ �kC;�−k0L−k1L−2k1S

� �
P0A þ k1S−k0S∓kC;�

� �
P2
0A ð17Þ

By a straightforward algebraic manipulation, we found the following relevant equilibrium
point of Eq. (17):

PE
0A ¼ −k0L−k1L−2k1S � kC;� þ ffiffiffiffi

Γ
p

2 k0S−k1S � kC;�
� � ð18Þ

with Γ = (±kC, ± − k0L − k1L − 2k1S)2 + 4(±kC, ± + k0S − k1S)(k1L + k1S), such that:

PE
1A ¼ k0L þ k1L þ 2k1S � kC;�−

ffiffiffiffi
Γ

p

2 k0S−k1S � kC;�
� � ð19Þ

Linearizing Eq. (17) around equilibrium point (18) yields the following equation:

dP0A

dt
¼ −

ffiffiffiffi
Γ

p
P0A ð20Þ

It is easy to prove that for the equilibrium point (19), the related linearized equation is given by:

dP1A

dt
¼ −

ffiffiffiffi
Γ

p
P1A ð21Þ

Obviously, from the linearized Eqs. (20) and (21), it is indicated that the corresponding
equilibrium points are nothing but stable points under a condition Γ > 0. This condition
leads to the real equilibrium point. On the other hand, we have to rule out the
condition Γ < 0, since it leads to an unphysical condition with complex equilibrium
point. Therefore, in our model, this Γ condition restricts the related parameter space. It



is also important to note that the replacement of
ffiffiffiffi
Γ

p
→−

ffiffiffiffi
Γ

p
in Eqs. (18) and (19) also

gives another equilibrium point, but it is readily seen from Eqs. (20) and (21), it leads
to unstable points, which are irrelevant to the model.

Depicted in Fig. 2, examples of the P0A and P1A = 1 − P0A dynamics by solving Eq.
(17) numerically based on the Runge-Kutta method. It is demonstrated that the cross-
interaction term with coefficient kC, ± can switch the final decision of player A. Similar to
the example in Fig. 1, as shown in Fig. 2a for kC, +, that the player A with initial rational
decision, i.e., P1A(ti) = 0.70 tends to achieve an irrational final decision with P1A(tf) =
0.35. On the other hand, as shown in Fig. 2b, an opposite decision is found when the
corresponding cross-interaction switch from kC, + to kC, −, where the player A tends to
keep rational with P1A(tf) = 0.58. This feature indicates that the cross-interaction term can
play a role as a bifurcation parameter of the system. In other words, the related nonlinear
cross-interaction between the amygdala and prefrontal cortex significantly determines the
final decision of a player.

Meanwhile, compared to the original Asano-Ohya-Khrennikov model, the addition
of self-interaction terms with k1(0)S coefficient affects the rapidity of the decision as
shown in Fig. 2a. This situation is likely explaining that the related self-interaction
term provides a feedback mechanism that speeds up the player’s decision-making
process. Note that this self-interaction term can also change the final decision player,
similar to the cross-interaction term. As shown in Fig. 2c, it is demonstrated that the
increase of k0S leads to a similar condition given by Fig. 2b. This feature further

(a) (b)

(c)

Fig. 2 The dynamics of probability functions P0A (black dash curve) and P1A (black solid curve) for k0L = 0.1,
k1L = 0.2, k0S = 0.2, k1S = 0.1, and (a) kC, + = 0.3, (b) kC, − = 0.3,and (c) kC, + = 0.3 with k0S = 0.7. We set P0A(0) =
0.3 and P1A(0) = 0.7. The red curves are similar to Fig. 1
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indicates that the corresponding k0S coefficient actually leads to a negative feedback
mechanism, while the k1S coefficient plays the opposite role.

At this point, similar to the previous model, to determine the next steps of the decision-
making process, we have to define each of k0L, k1L, k0S, k1S, and kC, ± coefficients in Eqs. (15)
and (16) based on the following four possible choices:

0A0Bj i————⇀↽————
k 1ð Þ
1L ;k

1ð Þ
1S ;k

1ð Þ
C;∓

k 1ð Þ
0L ;k

1ð Þ
0S ;k

1ð Þ
C;�

1A0Bj i; 0A1Bj i————⇀↽————
k 2ð Þ
1L ;k

2ð Þ
1S ;k

2ð Þ
C;∓

k 2ð Þ
0L ;k

2ð Þ
0S ;k

2ð Þ
C;�

1A1Bj i

0A1Bj i————⇀↽————
k 3ð Þ
1L ;k

3ð Þ
1S ;k

3ð Þ
C;∓

k 3ð Þ
0L ;k

3ð Þ
0S ;k

3ð Þ
C;�

1A0Bj i; 0A0Bj i————⇀↽————
k 4ð Þ
1L ;k

4ð Þ
1S ;k

4ð Þ
C;∓

k 4ð Þ
0L ;k

4ð Þ
0S ;k

4ð Þ
C;�

1A1Bj i
ð23Þ

By making analogy to the previous original model, it is likely reasonable to propose
conjectures for the expectation values of the associated coefficients in the following
forms:

k0S ¼ αj j2 k 1ð Þ
0S

h i1=4
þ βj j2 k 2ð Þ

0S

h i1=4
þ α*β k 3ð Þ

0S

h i1=4
þ αβ* k 4ð Þ

0S

h i1=4����
����
2

ð24Þ

k1S ¼ αj j2 k 1ð Þ
1S

h i1=4
þ βj j2 k 2ð Þ

1S

h i1=4
þ αβ* k 3ð Þ

1S

h i1=4
þ α*β k 4ð Þ

1S

h i1=4����
����
2

ð25Þ

kC;þ ¼ αj j2 k 1ð Þ
C;þ

h i1=4
þ βj j2 k 2ð Þ

C;þ
h i1=4

þ αβ* k 3ð Þ
C;þ

h i1=4
þ α*β k 4ð Þ

C;þ
h i1=4����

����
2

ð26Þ

kC;− ¼ αj j2 k 1ð Þ
C;−

h i1=4
þ βj j2 k 2ð Þ

C;−

h i1=4
þ α*β k 3ð Þ

C;−

h i1=4
þ αβ* k 4ð Þ

C;−

h i1=4����
����
2

ð27Þ

while k0L and k1L are given by Eqs. (13) and (14). Here, we have assumed that in our
formulation the order of k ið Þ

0 1ð ÞLP0 1ð ÞA∼k
ið Þ
0 1ð ÞSP

2
0 1ð ÞA∼k

ið Þ
C;− þð ÞP0AP1A; with i = 1, 2, 3, 4.

One should realize that the expectation values of reaction rates (13), (14), (24)–(27)
arise from the fact that there are four possible comparison processes experienced by
the player A as given by (23).

To this end, we have to re-emphasize that this report only focused on the dynamics of the
comparison steps. However, all the results, including the proposed conjectures (24)–(27), can
be used to determine the whole decision-making process of a specific two-player game, such
as the two-player prisoner’s dilemma game [6–8], which is beyond the scope of our current
discussion. It is also important to note that the proposed dynamics, supplemented by additional
nonlinear terms representing the very reasonable nonlinear self-interactions of the brain’s
amygdala and prefrontal-cortex and their nonlinear cross-interactions. The results change the
possible outcomes in nuanced and interesting ways. Therefore, further experimental observa-
tion based on, for instance, optical imaging methods [28, 29], is encouraged to validate the
model assumption. We also would like to put out further challenges regarding the incorpora-
tion of nonlinear interaction in the prisoner’s dilemma into a rigid quantum technical descrip-
tion, i.e., in the case of Bagarello’s open quantum-like decision-making model [23, 24]. Such
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an interaction can be build based on a nonlinear term in the corresponding Hamiltonian
expansion and solved using perturbation theory. All these issues might be an exciting topic
for further studies.

5 Summary

We have discussed in this report our proposed modified Asano-Ohya-Khrennikov quantum-
like model for the cognitive-emotional decision-making process in a two-player game. In our
perspective, the model should be considered describing the connection between the brain’s
amygdala and prefrontal-cortex in order to understand the related decision-making process
especially in the comparison step. To modify the model, we added two nonlinear interaction
terms in the associated comparison step dynamical equation, in the form of a self-interaction
and cross-interaction terms. These terms describe the nonlinear relationship between the
amygdala and prefrontal cortex. Our results show that the self-interaction term provides a
feedback mechanism that can speeds up the decision-making process, while the cross-
interaction term can significantly affect the final decision of a player. We also suggested the
explicit form of expectation values of reaction rates related coefficients involved in the
associated comparison step coupled nonlinear dynamical equation.
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