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Abstract

Androgen deprivation therapy (ADT) is a cornerstone treatment for locally advanced or metastatic prostate cancer
(PCa). However, its potential effects on the tumor immune microenvironment (TIM) of PCa patients and the underlying
mechanism remain largely unclear. To explore the effects of ADT on PCa TIM, RNA sequencing was performed on six
paired pre-ADT biopsy and post-ADT PCa lesions, and five paired paracancerous benign tissues from patients receiving
neoadjuvant ADT with locally advanced PCa. Bioinformatics methods including ESTIMATE and ssGSEA were used to
evaluate the stromal immune score and immune cell infiltration in PCa and paracancerous tissues. Weighted
correlation network analysis was used to screen hub genes in the ADT-induced immune remodeling process. The
results showed differences exist between PCa and paracancerous tissues in response to ADT. Compared with
paracancerous tissues, the immune remodeling effect of ADT in PCa was more intense. ZFP36, JUNB, and SOCS3 served
as hub genes in the ADT-induced immune remodeling process and were associated with PSA recurrent-free survival in
the TCGA and our necadjuvant ADT cohort. To investigate the joint action of the above three hub genes, an immune
signature score was constructed. The results showed that immune signature score-based immune subtypes reveal the
heterogeneity of the immune microenvironment of PCa and showed significant differences in patient prognosis,
tumor immune infiltration, mutation burden, and landscape.

Introduction

Prostate cancer (PCa) is the most common cancer
among men'. PCa progression is initially driven by
abnormal activation of androgens and androgen-related
signaling pathways. As such, androgen deprivation
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therapy (ADT) is a cornerstone for locally advanced or
metastatic PCa treatment. ADT promotes the apoptosis of
hormone-sensitive prostate epithelial cells, which leads to
the involution of PCa”. Although the mechanisms of the
direct antitumor effects of ADT have been widely studied,
the potential profound effects on the PCa tumor immune
microenvironment (TIM) remain largely unclear. Many
standard-of-care therapies, including chemotherapy,
radiotherapy, and small molecule inhibitor therapy, in
addition to their on-target antitumor effects, have also
demonstrated the ability to induce immunogenic mod-
ulation by altering the expression of proteins implicated
in immune recognition and/or antigen processing in
various cancers>?, Recently, several in vivo and in vitro
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studies have shown that ADT could induce a complex
immune cell infiltrate and increase the sensitivity of
tumor cells to immune-mediated lysis and killing. More
importantly, mice receiving a combination enzalutamide
treatment with cancer vaccine had significantly increased
overall survival compared to mice receiving no treatment
or either monotherapy alone®™”. In addition, several
clinical trials have revealed that combining ADT with
specific checkpoint inhibitors or immunotherapy may
potentially increase the antitumor effectiveness of
immunotherapies®'°. These results suggest that ADT
may also have indirect immunostimulatory effects. How-
ever, few studies have explored the potential immune
remodeling effects of ADT in human PCa tissues and the
underlying mechanism remains largely unknown.

The recent success of immune checkpoint inhibitors in
cancers has led to renewed interest in tumor immuno-
typing, which help us to identify prognostic and guide the
clinical individualized treatment. Several investigations
have attempted to define a pan-cancer immune landscape
ranging from broad classifications as immunologically
cold or hot to six molecular subtypes''. However, such
comprehensive classification of the TIM in PCa is cur-
rently unavailable.

PCa shows high genomic variability among different
ethnic populations. Compared with Western populations,
Chinese patients have a high frequency of CHD1 deletion
with a relatively high percentage of mutations in androgen
receptor upstream activator genes and a low rate of
TMPRSS2-ERG fusion. This leads to highly variable
clinical features, treatment response, and outcomes'”
Currently, most studies regarding ADT are based on
Western populations and the influence of ADT on Chi-
nese PCa and paracancerous benign tissues remains
incompletely characterized.

In this study, we performed quantitative transcriptome
profiling of PCa and paracancerous benign tissues from
patients prior to and following ADT using next-
generation sequencing (RNA sequencing (RNA-seq)),
and then analyzed and compared our data with public
PCa databases to determine the immune signature behind
ADT-induced immune remodeling and finally immuno-
typing of PCa patients according to the immune signature.
We hope to determine whether ADT remodels the PCa
TIM in the Chinese population and reveal the key
immunologic and transcriptomic changes in PCa.

Result
The transcriptional landscape of PCa and paracancerous
benign tissue responses to ADT

RNA-seq was performed on six paired pre- and post-ADT
PCa lesions and five paired paracancerous benign tissues
from patients with locally advanced PCa (Supplementary
Table S1). First, we performed dimension reduction on
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these samples using principal component analysis (PCA)
(Supplementary Fig. 1A). The results showed that PCa and
paracancerous benign samples before ADT, PCa samples
before and after ADT, and paracancerous benign samples
before and after ADT can be clearly separated in two major
dimensions (principal components 1 and 2); however, there
are no clear boundaries between PCa and paracancerous
benign samples after ADT (Supplementary Fig. 1A).

Then, we identified a total of 2093 differentially
expressed genes (DEGs) (1440 upregulated and 653
downregulated; Supplementary Table S2 and Fig. 1a) at
least twofold (false discovery rate < 0.05) in PCa samples
in response to ADT. Similarly, we identified a total of 895
DEGs (449 upregulated and 446 downregulated; Supple-
mentary Table S2 and Fig. 1a) in paracancerous benign
samples in response to ADT. Compared with PCa data,
we found that PCa samples had more DEGs and they
shared 48.8% of DEGs (Fig. 1b).

Genomic rearrangements have been hypothesized to be
a mechanism driving prostate carcinogenesis'>'*. In our
study, a total of 59 genomic rearrangements were detected
(Supplementary Table S3). We identified a mean of five
rearrangements per sample and PCa samples showed high
rearrangements compared to the paracancerous benign
samples (P=0.016). However, unlike the Western
population-based study, many fusion genes could not be
detected after ADT'® and there was no difference between
samples pre- and post-ADT (P=0.16) (Fig. 1c, d).
Moreover, few ERG family gene fusions in our cohort
were detected, which is consistent with previous studies
based on the Chinese population'**¢,

To identify biological pathways perturbed following
ADT in PCa samples, enrichment analyses were per-
formed. Gene Ontology (GO) function analysis showed
that DEGs were enriched in both immune activation and
immune suppression functions (Fig. 1e and Supplemen-
tary Table S4). Similarly, many immune-related and
proliferation-related pathways were enriched by using
gene set enrichment analysis (GSEA) Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses (Sup-
plementary Table S4 and Supplementary Fig. 1B). Con-
sistent with a previous study, the WNT signaling pathway
was also enriched (Supplementary Fig. 1B)'°. Regarding
paracancerous benign samples apart from immune-
related functions and pathways, many skeletal muscle-
related pathways were also enriched (Supplementary Fig.
1C, D and Supplementary Table S4).

The above results indicated that ADT treatment may
activate the PCa TIM, and that both immune activation
and immune suppression functions have been stimulated.

ADT remodel PCa TIM
To further confirm the effect of ADT on the TIM of
PCa, several bioinformatics methods, including Estimation
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Fig. 1 The transcriptional landscape of PCa and paracancerous benign tissues response to ADT. a Circular visualization of chromosomal
positions for top DEGs 70 genes (top 35 upregulated and 35 downregulated genes) in our PCa and precancerous tissues response to ADT (innermost
group: precancerous; outermost group: PCa). Black genes: DEGs in PCa tissues; blue genes: DEGs in precancerous tissues; red genes: represent co-
DEGs in both tissues. b Venny diagram of DEGs in PCa and precancerous tissues. ¢ Top 14 most frequency fusion genes in PCa and precancerous
tissues pre- or post-ADT. d The box plot shows the number of fusion genes in different groups. e Representative enriched GO functions of DEGs in
PCa tissues response to ADT. GO categories are grouped according to functional theme.
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of STromal and Immune cells in MAlignant Tumor tissues
using Expression data (ESTIMATE)'” and single-sample
GSEA (ssGSEA)'® methods, were used to evaluate the PCa
stromal immune score and immune cell infiltration in
samples before and after ADT.

The ESTIMATE analysis showed that the immune score
and stromal score were significantly elevated, while tumor
purity was significantly lower after ADT (Fig. 2a). In
addition, the expression of many antigen presentation,
interferon-y (IFN-y) signaling and immune checkpoint
genes was elevated after ADT. This elevation was more
dramatic in PCa samples than that in the paracancerous
samples (Fig. 2b). ssGSEA analysis revealed the infiltration
level of 22 immune cell types in the immune micro-
environment. We classified immune cell types into three
categories as follows: (1) cells executing antitumor reac-
tivity; (2) cells delivering protumor and mediating
immunosuppression; and (3) others. Protumor scores and
antitumor immunity scores (sum of antitumor and pro-
tumor cells normalized ssGSEA scores) were generated.
The results showed that the infiltration level of many
immune cells was increased after ADT and these changes
were more dramatic in PCa samples (Fig. 2c). Both anti-
and protumor immune cells were increased in almost all
samples after ADT (Fig. 2d) and Pearson’s correlation
analysis showed that protumor and antitumor immunity
scores were positively associated (Fig. 2d).

According to the ssGSEA analysis, we found that the
infiltration level of CD8+4 T cells was dramatically
increased after ADT. Immunohistochemical assays fur-
ther confirmed that CD8+ T cells were abundant in PCa
TIM compared with samples without ADT (Fig. 2e).

All of the above results implicated that ADT could
significantly change PCa TIM. Compared with para-
cancerous tissues, the immune remodeling effect of ADT
in PCa was more intense.

Screening hub genes in the ADT-induced immune
remodeling process using weighted gene co-expression
network analysis (WGCNA)

To further explore the hub genes in the ADT-induced
immune remodeling process, WGCNA using the top 8269
variation genes in 22 samples was used to compile the co-
expression network. Keeping to the scale-free topology
criterion, =16 was considered in this study. Following
dynamic tree cutting, the topological overlap clustering
dendrogram identified 17 distinct gene modules (Fig. 3a).
The gray module consisted of genes that did not group
into any specific module. To identify co-expression
modules associated with sample traits (protumor immu-
nity scores, antitumor immunity scores, pre- vs. post-
ADT, and PCa vs. paracancerous), we assessed the rela-
tionship of the above four sample traits with the module
eigengene. Figure 3b, ¢ show that the bisque4 module has

Official journal of the Cell Death Differentiation Association

Page 4 of 14

the strongest association with antitumor immunity (0.96,
P <0.001), protumor immunity scores (0.79, P < 0.001),
and ADT (0.80, P < 0.001).

Therefore, we focus on the bisque4 module. Not sur-
prisingly, GO and KEGG enrichment analyses showed
that genes in the bisque4 module were enriched in many
immune-related functions and pathways (Supplementary
Fig. 2A, B). Then, we identified hub genes in the bisque4
module based on four scores as follows: (1) Module
Membership > 0.87 (high connectivity genes in the mod-
ule); (2) gene significance for antitumor immunity scores
>0.85; (3) gene significance for protumor immunity
scores > 0.80; and (4) gene significance for ADT > 0.85.
After screening, five highly correlated hub genes [CXCL2
(C-X-C motif chemokine ligand 2), DUSP5 (dual specificity
phosphatase 5), SOCS3 (suppressor of cytokine signaling
3), ZFP36 (ZFP36 ring finger protein), and JUNB (JunB
proto-oncogene)] remained (Fig. 3d). Pearson’s correlation
analysis further confirmed that five hub genes were highly
correlated with the majority of the infiltration level of 22
immune cell types in the immune microenvironment (Fig. 3e).

Then, we validated these five hub genes in the The
Cancer Genome Atlas (TCGA) PCa cohort. The results
showed that these five hub genes showed similar expres-
sion correlations (Supplementary Fig. 2C) and correlated
with many immune cell types (Supplementary Fig. 2D). In
the other castration-resistant PCa (CRPC) cohort con-
taining primary PCa and CRPC samples, differential gene
expression analysis showed that these five genes were all
significantly downregulated in CRPC samples compared
with primary PCa samples (Fig. 3f). Then, we combined
our data with the above CRPC data and compared the
infiltration levels of 22 immune cell types in TIM primary
PCa, ADT, and CRPC samples. After removing the batch
effect, the results showed that the infiltration levels of
many immune cell types were increased in ADT samples
compared to the primary PCa samples but then decreased
in CRPC samples.

ZFP36, JUNB, and SOCS3 and their immune signature
scores were associated with patients’ prostate specific
antigen (PSA) RFS

Previous studies showed that patients with an activated
immune microenvironment showed favorable clinical
outcomes in various cancers. To evaluate the prognostic
value of five hub genes as a linear variable, we first per-
formed Kaplan—Meier curves and smooth hazard ratio
(HR) curves of PSA recurrence-free survival (RFS) in the
TCGA PCa cohort. Kaplan—Meier curves showed that
under the optimal cutoff point, the high expression
groups had higher PSA RFS than the low expression
groups (Fig. 4a). The smooth HR curves of PSA RFS
further confirm that the HR of PSA RFS decreased with
increasing gene expression levels in five hub genes,
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patients) ADT (original magnification x200).

Fig. 2 ADT remodel PCa TIM. a Stromal and immune score and tumor purity calculated by ESTIMATE method in PCa and precancerous tissues pre-
and post-ADT. b Expression of immune-related genes and immune checkpoint genes in PCa and paracancerous benign tissues pre- and post-ADT.
c ssGSEA analysis identifying the relative infiltration of immune cell populations in PCa and precancerous tissues pre- and post-ADT. The relative
infiltration of each cell type is normalized into a z score. d Correlation between infiltration of cell types executing antitumor immunity (activated
dendritic cell, CD8 T cell, central memory T cell, cytotoxic cell, effector memory T cell, nature killer cell, NK CD56 bright cell, T cell, T-helper cell, Type 1
T-helper cell, and Type 17 T-helper cell) and cell types executing protumor, immune suppressive functions (immature dendritic cell, macrophages
neutrophils, NK CD56 dim cell, regulatory T cell, and Type 2 T-helper cell) in PCa and precancerous tissues pre- and post-ADT. R coefficient of

Pearson's correlation. The shaded area represents 95% confidence interval. e Left: the expression of CD8 in samples with (43 patients) and without (22

referring to their corresponding cutoff values and vice
versa.

Then, univariate Cox regression analysis was used to
further determine the correlation between five hub genes
and patients’ PSA RFS. As expected, the hub genes ZFP36
(P = 0.005, HR = 0.74), JUNB (P = 0.017, HR = 0.77), and
SOCS3 (P=0.017, HR=0.80) were significantly asso-
ciated with PSA RFS and their high expression could
result in a favorable prognosis for patients (Fig. 4b).

Given the high correlation and significant impact on
PSA RES, a PCA-based variable, the immune signature
score was calculated to compress the expression level of
three hub genes (ZFP36, JUNB, and SOCS3).
Kaplan—Meier curves, smooth HR analysis, and univariate
Cox regression analysis (P=0.008, HR = 0.75, 95% con-
fidence interval HR = 0.61 ~ 0.93) all confirmed the cor-
relation between the immune signature score and PSA
RFS (Fig. 4c). Under the optimal cutoff point according to
the Kaplan—Meier curves, we separated the TCGA cohort
into two subtypes: a 198-sample immune-high subtype
with relatively high expression of immune signature score
and a 206-sample immune-low subtype with low immune
signature score. Multivariate Cox analysis showed that
immune signature score-based immune subtype, pathol-
ogy T stage, and Gleason sum score were presented as
independent predictors for PSA RES in the TCGA cohort
(Supplementary Table S5).

Then, we validated the above results in our neoadjuvant
ADT cohort. Immunohistochemical analysis showed that
the immunoreactivity of ZFP36, JUNB, and SOCS3 was
significantly higher after ADT in our neoadjuvant ADT
cohort (Fig. 4d). Kaplan—Meier curve analysis showed that
high immunohistochemical activity levels of ZFP36,
JUNB, and SOCS3 in radical prostatectomy PCa tissues
were associated with favorable PSA RFS in our neoadju-
vant ADT cohort (Fig. 4e).

Immune signature score-based subtypes were associated
with immune infiltration in the TCGA and the international
cancer genome consortium (ICGC) cohorts

We next characterized the immunologic profiling and
molecular differences between the immune signature
score-based subtypes in the TCGA and ICGC cohorts.

Official journal of the Cell Death Differentiation Association

First, supervised clustering using 22 immune-related cell-
type scores was applied to all TCGA and ICGC samples,
and 3 distinct subtypes were revealed in the TCGA (Fig.
5a left) and ICGC (Supplementary Fig. 3A left) cohorts.
Specifically, subtypes C1, C2, and C3 exhibited high,
middle, and low enrichment levels for 22 immune cell
infiltration levels, respectively. Subtypes C1 and C2 had
significantly higher immune signature scores than C3
(TCGA cohort: Fig. 5 right.; ICGC: Supplementary Fig. 3A
right) and presented high enrichment for samples classi-
fied into the immune-high subtype, whereas subtype C3
was enriched for samples belonging to the immune-low
subtype. Then, we further classified patients into three
groups as follows: Group 1—samples belong to both C1
and immune-high subtype; group 2—samples belong to
C3 and immune-low subtype; group 3—others.
Kaplan—Meier analysis showed that group 1 had sig-
nificantly favorable PSA RFS, whereas group 2 had the
worst RFS (Fig. 5b).

ESTIMATE analysis further confirmed that the
immune-high subtype had a significantly higher immune
sore in both the TCGA (Fig. 5¢) and ICGC cohorts
(Supplementary Fig. 3B). Moreover, the infiltration levels
of many immune cell types were significantly elevated in
the immune-high subtype compared with the immune-
low subtype, and the immune signature score was sig-
nificantly correlated with those immune cells in both the
TCGA (Fig. 5d) and ICGC cohorts (Supplementary Fig.
3C). In addition, the expression of many immune, antigen
presentation, IFN-y signaling-related and immune
checkpoint genes was elevated in the immune-high sub-
type in both the TCGA and ICGC cohorts (Fig. 5e and
Supplementary Fig. 3D).

Gene set variation analysis enrichment analysis showed
that many immune-related KEGG pathways and GO
functions were enriched in the immune-high subtype in
the TCGA (Fig. 5f) and ICGC cohorts (Supplementary
Fig. 3E, F).

Difference in somatic mutation landscape between
immune-high and -low subtypes

To investigate whether differences exist in the somatic
mutation frequencies between the two subtypes, we first
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value is accompanied by the corresponding P-value in brackets. ¢ WGCNA clustering of differentially expressed genes. d Left: Venny diagram shows the
conditions for screening hub genes. Right: Pearson’s correlation coefficient of five hub genes. e Pearson’s correlation coefficient between 5 hub genes
and the infiltration level of 22 immune cell types in the PCa TIM. e Volcano Plot visualizing the DERs between primary PCa and CRPC samples, which
was screened by DESeq2. The colorized points in scatter plot represent the DEGs with statistical significance (FDR < 0.05, |log2FC| > 1). Five hub genes
were significantly downregulated in CRPC samples. f The infiltration level of 22 immune cell types in the primary PCa, ADT, and CRPC samples.
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(see figure on previous page)

PRS in our neoadjuvant ADT cohort.

Fig. 4 ZFP36, JUNB, and SOCS3 and immune signature score constructed by them were associated with the PSA RFS in TCGA and our
neoadjuvant ADT cohort. a Kaplan-Meier curves (upper) and smooth HR curves (down) showed with optimal cutoff values; high level of hub genes
presented a favorable PSA PRS in TCGA cohort. b Univariate Cox regression analysis showed that ZFP36, JUNB, and SOCS3 expression affects patient
PSA RFS. ¢ Kaplan-Meier curves (left) and smooth HR (right) analysis confirmed the high immune signature score show favorable PSA RFS.

d Immunohistochemical assay of ZFP36, JUNB, and SOCS3 in pre-ADT biopsy and post-ADT radical prostatectomy samples of our neoadjuvant ADT
cohort (x200). e Kaplan—-Meier curves show high level of ZFP36, JUNB, and SOCS3 scores in radical prostatectomy samples presented a favorable PSA

found that the immune-low subtype presented a sig-
nificantly higher tumor mutation burden than the
immune-high subtype (Fig. 6a). Then, we filtered genes
with a mutation rate >5% and identified 13 genes (Fig. 6b).
TTN, TP53, and SPOP were the three genes with the
highest mutation rates in the TCGA cohort. Among them,
SPOP and FOXAI mutations were correlated with the
immune-low subtype (Fig. 6¢). Mutations in SPOP and
FOXA1 have been proven to be important events in the
development and drug resistance of PCa'®?°. Finally, we
compared the mutational signatures™ between two
immune subtypes. Multivariate analysis of variance was
used to analyze the association of mutational signatures
with two subtypes. We identified a significant difference
between the two subtypes (Fig. 6d). Signature 3 related to
DNA double-strand break repair was higher in the
immune-low subtype than in the immune-high subtype
(Fig. 6d).

Discussion

PCa is generally an indolent and “cold” tumor with a
relatively low tumor mutation burden and minimal T-cell
and immune infiltrates®?. Many immunotherapeutics,
such as PD-1 inhibitors, show promise in many cancers>’,
It is unlikely that any of the immunotherapeutics alone
can dramatically change PCa outcomes®>**, Therefore,
many investigators have attempted to integrate immu-
notherapy into the existing standard treatments, such as
ADT, radiotherapy, or chemotherapy, to improve the
efficacy of immunotherapy and patients’ overall survival in
tumor-bearing hosts. Previous researchers showed that
ADT affects the immune system by inducing thymic
regeneration, leading to increased production of naive
T cells® decreasing CD4+ T-cell tolerance®®, and
increasing CD4+ effector T cells*®. Given the potential
immune effects of ADT, multiple clinical trials have been
performed to evaluate the synergistic effect of ADT and
immunotherapy”®®*~'%?’, and some of them have shown
promising results. Unfortunately, few studies have com-
prehensively evaluated the effect of ADT therapy on TIM
in PCa.

In our study, we found that ADT could significantly
increase the infiltration and activity of immune cells in
PCa TIM. A variety of immune-related genes and
pathways, including antigen presentation, immune
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checkpoints (PD-1, PD-L1, CTLA-4, etc.), and the IFN-y
signaling pathway were significantly activated after ADT
treatment. Further analysis revealed that antitumor
immunity- and protumor immunity (immunosuppression
and immune escape, etc.)-related inflammatory cell
activity and pathways were significantly activated after
ADT treatment. More importantly, the effect of ADT on
the activation of the immune microenvironment in tumor
tissues is more significant than that in adjacent normal
tissues.

Through the analysis of primary advanced PCa,
neoadjuvant ADT, and CRPC samples, we found that the
activation of the immune microenvironment caused by
ADT may be time dependent. Early or short-term ADT
treatment can significantly activate the immune micro-
environment of PCa, and as ADT treatment continues or
enters the CRPC phase, the immune microenvironment
activation caused by ADT treatment becomes very lim-
ited. This suggests that combined immunotherapy with
early-stage ADT therapy may be more effective in
increasing the efficacy of immunotherapy.

At present, there have been many attempts to conduct
molecular classification of PCa, and further study of the
heterogeneity of PCa will provide more in-depth under-
standing and better personalized treatment for PCa
patients®®, Unfortunately, as the immune infiltration of PCa
is not obvious, few studies have conducted molecular typ-
ing of PCa based on immune infiltration or immune-related
genes. Interestingly, we found that the immune signature
score composed of SOCS3, JUNB, and ZFP36, the hub
genes driven by the ADT-induced PCa immune remodeling
process, was significantly correlated with the immune
infiltration of PCa and PSA RES. Based on the immune
signature score, we divided the patients into two subtypes
with high and low immune scores. The two subtypes
showed significant differences in patient prognosis, tumor
immune infiltration and mutation landscape. This suggests
that two immune subtype differences are essential and
reflect the heterogeneity of the immune microenvironment
of PCa, which is worthy of further study.

The expression of SOCS3, JUNB, and ZFP36 is highly
correlated in PCa, and through immunohistochemical
analysis we found SOCS3, JUNB, and ZFP36 proteins were
mainly expressed in PCa epithelial cells with a small
amount in tumor stroma. The expression of these genes is
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Fig. 5 Immune signature score-based subtypes was associated with the immune infiltration in TCGA cohort. a Left: heatmap of 22 related
cell types across 404 PCa samples distinguished three immunological patterns in TCGA cohort. Right: the box plot shows immune signature score
between the three immunological patterns in TCGA cohort. b Kaplan-Meier curve of PSA RFS in different subgroups. ¢ Stromal and immune score
calculated by ESTIMATE in immune-high and -low subtypes. d Difference of infiltration level of 22 immune cell types between immune-high and -low
subtype and the correlation of infiltration level of 22 immune cell types and immune signature score. e Expression of immune-related genes and
immune checkpoint genes in immune-high and -low subtypes. f Heatmap of the differentially enriched KEGG pathways and Go functions calculated
by gene set variation analysis analysis between immune-high and -low subtypes.
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closely related to the occurrence and development of
PCa***°, SOCS3 is a cytokine-inducible negative regulator
of cytokine signaling. The expression of this gene is
induced by various cytokines, including interleukin (IL)-6,
IL10, and IFN-y. The protein encoded by SOCS3 can bind
to JAK2 kinase and inhibit the activity of JAK2 kinase®!.
JUNB is a close homolog of c-Jun with tumor suppressive
function in the myeloid lineage®, and ZFP36 is a CCCH
zinc finger-containing protein that destabilizes mRNA by
binding to an AU-rich element. ZFP36 could negatively
regulate nuclear factor-kB (NF-xB) signaling at the
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transcriptional corepressor level, by which it may regulate
inflammatory gene transcription®”. The three genes are
key regulators of NF-kB, STAT3, and JNK signaling.
Activation and inhibition of these pathways are associated
with secretion of various cytokines and immune regula-
tion. However, their effects on the immune micro-
environment of PCa have been poorly studied. Our study
found that SOCS3, JUNB, and ZFP36 may play an
important role in the ADT-induced immune micro-
environment remodeling process of PCa. Their high
expression is associated with patient prognosis and
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immune infiltration. The underlying mechanisms deserve
further study.

In conclusion, ADT remodels the TIM in PCa.
Immune-related genes ZFP36, JUNB, and SOCS3 may
play an important role in the ADT immune remodeling
process, and PCa immunotyping based on the above three
genes showed great differences in PSA RFS, immune
infiltration, and mutation landscape in PCa.

Materials and methods
Study population

This study was approved by the ethics committee at
Beijing Hospital (2018BJYYEC-085-03) and informed
consent was obtained from all patients.

Samples for RNA sequencing

Six paired pre- and post-ADT PCa lesions and five
paired paracancerous benign tissues were obtained from
patients receiving neoadjuvant ADT (bicalutamide 50 mg
per day and goserelin and 3.6 mg every 4 weeks with 2
cycles) with locally advanced PCa. Pre-ADT tissues were
obtained from prostate biopsy tissue before ADT, and by
using the whole mount technique, we obtained post-ADT
tissues from the corresponding place in the radical pros-
tatectomy samples where the pre-ADT prostate biopsy
tissues were obtained. In total, 22 samples were obtained
for RNA-seq analysis. Detailed descriptions of RNA-seq
and bioinformatics analyses are included in the Supple-
mentary Materials and Methods. Patient demographic
information is summarized in Supplementary Table S1
Part 1.

Neoadjuvant ADT cohort for validation and PSA RFS
analysis

Forty-three radical prostatectomy samples with primary
advanced PCa receiving neoadjuvant ADT before radical
prostatectomy and 22 corresponding prostate biopsy
samples before ADT were retrospectively recruited in our
study. Forty-three radical prostatectomy samples were
used for PSA RFS analysis. Patients with confirmed
metastasis, positive surgical margin, a performance-status
score of 3 or more on the Eastern Cooperative Oncology
Group scale and other histopathological types, except
adenocarcinoma, were excluded from the study. Patients
with simultaneous cancers other than PCa were also
excluded. All samples were collected for immunohis-
tochemistry. Patient demographic information is sum-
marized in Supplementary Table S1 Part 2.

TCGA PCa cohort

The TCGA cohort comprised 404 PCa patients’ RNA-
seq raw count and fragments per kilobase million (fpkm)
data were obtained from the TCGA provisional database.
The selection criteria were as follows: (1) availability of

Official journal of the Cell Death Differentiation Association

Page 12 of 14

PSA RFS data and mRNA expression data; (2) the tissue
used for RNA-seq was frozen tissue and formalin-fixed
paraffin-embedded tissue was excluded. A total of 404
patients were included in the study. Demographic infor-
mation is summarized in Supplementary Table S1 Part 3.

ICGC PCa cohort

A total of 144 patents with mRNA expression data
(raw count and fpkm) were included in the ICGC PCa
cohort (Prostate Adenocarcinoma—CA, https://dcc.icgc.
org/projects/PRAD-CA).

Castration-resistant prostate cancer data

The CRPC cohort containing 25 primary PCa and 12
CRPC samples and their paired-end RNA sequencing
fastq raw data were obtained from the SRA database
(SRP073789)*. The bioinformatics analysis process was
the same as that used in our RNA-seq data (Supple-
mentary Materials and Methods). When combining the
analysis of those data with our data, we used Surrogate
Variable Analysis methods (R package: SVA)** to remove
the batch effect between the above two data points.

RNA extraction

RNA was extracted from formalin-fixed, paraffin-
embedded tissue. After hematoxylin and eosin-stained
slide review, tumor and paracancerous benign tissues
were selected. We then manually microdissected the
corresponding tissue from unstained, 5 pm-thick tissue
sections (ten sections for RNA). For RNA-seq, we purified
RNA using the RNeasy FFPE Kit from FFPE slides. RNA
quality was determined with the DV,yy value (DVygp >
30%) by a Caliper BioAnalyzer 2100 Instrument. RNA
samples were submitted to WuXi NextCode for next-
generation sequencing with TruSeq RNA Exome. Paired-
end sequencing (2 x 150bp reads) was performed on
successful RNA libraries using the Illumina HiSeq X-Ten
platform. During the experiment, investigators were
blinded to patients information.

Construction of immune signature score

To investigate the joint action of the immune-related
genes SOCS3, ZFP36, and JUNB, an immune signature
score was constructed. In the present study, we found that
SOCS3, ZFP36, and JUNB influence patient PSA RFS and
their expression levels were also confirmed to be highly
associated, prompting us to focus on these three immune-
related genes. We identified a comprehensive immune
signature score to explain the original expression level of
immune-related genes SOCS3, ZFP36, and JUNB, which
was calculated by PCA. The new PCA-based variable
immune signature score was derived from the first prin-
cipal component that represented 91.8% and 92.8% of the
variation in the TCGA and ICGC cohorts, respectively.
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The coefficients (normalized loading) of SOCS3, ZFP36,
and JUNB to the first principal component are shown:
JUNB (0.309), SOCS3 (0.354), and ZFP36 (0.337) for
TCGA and JUNB (0.300), SOCS3 (0.368), and ZFP36
(0.334) for the ICGC cohort.

Supervised hierarchical clustering

Supervised hierarchical clustering based on immune-
related cell types (ssGSEA immune cell score) was per-
formed using the hclust R function via Ward’s clustering
and 1 — Pearson’s correlation distance. According to the
hierarchical results, we divided the TCGA and ICGC
cohorts into three clusters.

Statistical analysis

All statistical tests were performed using R software
3.6.1. Data were expressed as mean + SD. The number of
samples for RNA-seq meets the requirement of biolo-
gical repeats for RNA-seq bioinformatics analysis
(=3 samples each group). PCA is used for dimensionality
reduction and estimate of variation within each group.
The x°-test or Fisher’s exact test was used for categorical
data when appropriate and a two-sample Wilcoxon test
(Mann—Whitney test) was used for continuous data.
Log-rank test Kaplan—Meier curve, smooth HR curves®?,
and Cox regression for survival analysis were performed
by R package “survival.” and “smoothHR”. The survival
of patients belonging to different defined groups was
compared using the Kaplan—Meier method, with the p-
value determined by the log-rank (Mantel-Cox) test.
Pearson’s correlation was used to evaluate the correla-
tion between two objects. For all statistical analyses, P <
0.05 was considered statistically significant. Statistical
tests for every figure are justified as appropriate and all
data meet the assumptions of the responding tests.

Bioinformatics processes and materials and details
relating to tissue immunohistochemistry are described in
the Supplementary Materials and Methods.
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