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Abstract

Select persistent environmental chemicals have been associated with a reduction in the secondary 

sex ratio (SSR), or the ratio of male to female live births. We evaluated preconception maternal, 

paternal, and couple serum concentrations of perfluoroalkyl and polyfluoroalkyl substances 

(PFASs) in relation to the SSR, given the absence of previous investigation. Two hundred thirty-

three couples from Michigan and Texas were enrolled prior to conception and prospectively 

followed through delivery of a singleton birth, 2005–2009. Maternal and paternal serum 

concentrations (ng/mL) were measured at baseline for seven PFASs. Logistic regression models 

were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for a male birth, after 

adjusting for potential confounders. When maternal and paternal PFAS concentrations were 

modeled jointly, five of the seven PFASs, including the two most prominent PFASs, 

perfluorooctane sulfonic acid and perfluorooctanoic acid, were not significantly associated with 

the SSR. However, paternal N-methyl-perfluorooctane sulfonamidoacetic acid (MeFOSAA) and 

perfluorononanoic acid (2nd vs 1st tertile, OR, 0.43, 95% CI, 0.21–0.88) were significantly 

associated with an excess of female births. Meanwhile, a dose-response relation was observed only 

for paternal MeFOSAA (2nd vs 1st tertile, OR, 0.53, 95% CI, 0.26–1.10; 3rd vs 1st tertile, OR, 

0.34, 95% CI, 0.13–0.89). This study suggests a possible dose-response relation between a less 

prevalent PFAS and a reversal in the SSR, though the underlying mechanisms remain unknown 

and the findings await corroboration to eliminate other explanations including chance.
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1. Introduction

While the primary sex ratio is the ratio of males to females at the time of conception, the 

secondary sex ratio (SSR) is the ratio of males to females at the time of birth. Given the 

challenges in measuring the primary sex ratio, investigators rely on the SSR to monitor 

population health and fertility, undeterred by debate on its usefulness (Davis et al., 1998; 

James, 2008a). Commonly restricted to singleton births, the SSR is calculated as the number 

of male live births divided by female live births, although its denominator can be all live 

births to indicate the percentage of male live births as well (Buck Louis and Platt, 2011). 

Except in countries where sex-selective abortion or infanticide misrepresents the SSR, the 

SSR is expected to range from 1.05 to 1.07 in the United States and worldwide, indicative of 

a slight excess of males (Central Intelligence Agency; Mathews and Hamilton, 2005). 

Variations in the SSR are associated with parental ages at the population level (Jacobsen et 

al., 1999; Mathews and Hamilton, 2005), and also purported to be influenced by a variety of 

endogenous and exogenous factors, including the timing of conception within the ovulatory 

cycle (James, 2008b), length of follicular phase (Weinberg et al., 1995), endocrine and 

immunological effects (James, 2008a; Ober, 1992), race/ethnicity (Davis et al., 2007; 

Mathews and Hamilton, 2005), birth order of the child (Biggar et al., 1999; Mathews and 

Hamilton, 2005), stress caused by war and natural disasters (Fukuda et al., 1998; Zorn et al., 

2002), and possibly other lifestyle or environmental factors (Terrell et al., 2011).

In recent decades, declining trends in the SSR have been reported, notably in industrial 

countries such as the United States, Canada, the United Kingdom, the Netherlands, 

Germany, Denmark, Finland, and Japan (Davis et al., 2007; Grech et al., 2003; Mathews and 

Hamilton, 2005). It has been suggested that exposures to endocrine disrupting chemicals 

may have been contributed to the recent trends in the SSR. To date, more than 100 studies 

have been conducted to search for environmental or occupational toxicants perturbing sex 

selection and sex-selective survival in humans (Terrell et al., 2011). A comprehensive review 

article examined maternal and paternal exposures to polychlorinated biphenyls (PCBs), 

dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), metals including lead and 

methylmercury, dibromochloropropane (DBCP) and other pesticides, non-ionizing and 

ionizing radiation, boron, and g-forces, and identified select paternal PCBs as being 

associated with an increased SSR, whereas paternal dioxins were associated with a 

decreased SSR. Little evidence was observed for maternal exposures to any toxicants and the 

SSR (Terrell et al., 2011). On the other hand, in a systematic review of 15 studies on PCBs 

in relation to the SSR, Nieminen et al. (2013) found no strong or moderate indication that 

parental exposures to PCBs alter the SSR. Meanwhile, Taylor et al. (2007) reported increase 

in the odds of a male birth in relation to maternal exposures to estrogenic PCBs but not anti-

estrogen PCBs. Although not statistically significant, their findings suggest varying effects 

of PCB congeners on the SSR depending upon their purported hormonal activity.
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Despite the ubiquitous nature of perfluoroalkyl and polyfluoroalkyl substances (PFASs) for 

human populations given their use in textiles, carpets, upholstery, surfactants, and paper and 

packing protectants (Giesy and Kannan, 2002), we are unaware of any research focusing on 

the relation of PFASs to the SSR. Due to their bio-accumulative tendency, perfluorooctane 

sulfonic acid (PFOS) and select perfluorocarboxylic acids including perfluorooctanoic acid 

(PFOA) are known as prominent PFASs detected in human serum with varying 

concentrations and distributions of the chemicals among populations (Kannan et al., 2004; 

Kato et al., 2011). The data gap on the SSR contrasts with a growing body of evidence for 

potential human reproductive and developmental toxicity of PFASs, albeit not conclusive or 

consistent (Buck Louis et al., 2013; Fei et al., 2009; Joensen et al., 2013; Raymer et al., 

2012; Toft et al., 2012; Whitworth et al., 2012). To our knowledge, a recent study first 

evaluated the association between sperm Y:X chromosome ratio and serum levels of PFOS 

and PFOA in men from Greenland, Poland, and Ukraine (Kvist et al., 2012). Among the 

three populations, a positive linear trend between sperm Y:X chromosome ratio and serum 

PFOS concentration was observed; however, when analyzing the populations separately, a 

negative linear trend was observed in the Inuit population. The lack of any associations 

between sperm Y:X chromosome ratio and serum PFOA concentration was also noted. As 

stated by the authors, their findings may reflect regional differences in serum PFOS and 

PFOA concentrations and their effects on male fertility (Kvist et al., 2012). Although not 

directly assessed in terms of the SSR, perfluoroundecanoic acid levels were lower in cord 

blood of male infants than female infants in a Taiwanese birth cohort (Lien et al., 2013). 

With increasing speculation that the SSR is parentally and not just paternally mediated 

(James, 2008a), we sought to evaluate the association between maternal, paternal, and 

couple serum PFAS concentrations and the SSR.

2. Materials and methods

2.1. Study population

The Longitudinal Investigation of Fertility and the Environment (LIFE) Study is a 

prospective cohort study designed to assess reproductive and developmental toxicity during 

sensitive windows of human reproduction and development as previously described (Buck 

Louis et al., 2011). Briefly, this prospective cohort design includes the preconception 

enrollment of couples from Michigan and Texas between 2005 and 2009. Couples who were 

discontinuing contraception with the intention of having a baby were followed until pregnant 

or 12 months of attempting pregnancy. Given the absence of established population-based 

sampling frameworks for identifying couples planning pregnancy, a commercially available 

marketing database in Michigan and the fish/hunting license registry in Texas were used to 

recruit study participants. The inclusion criteria were as follows: a) couples who are married 

or in a committed relationship; b) female partners 18–40 years old and male partners ≥ 18 

years old; c) self-reported menstrual cycle length between 21 and 42 days; d) no 

contraceptive injections in the past 12 months; e) no surgical or non-surgical sterilization 

history; and f) couples who had the ability to communicate in English or Spanish. Of the 501 

couples who were enrolled in the LIFE study, 237 couples had a live birth during the follow-

up period. Among them, couples who had a multiple birth (n=2) or couples who had missing 

values for both maternal and paternal PFAS levels (n=2) were excluded from the eligible 
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population. As a result, a total of 233 couples who had a singleton birth during the follow-up 

period were included in the final dataset.

2.2 Data collection

Baseline data were collected in the couples’ home following a pregnancy test to ensure the 

female partner was not already pregnant. Approximately 20 mL of blood was obtained from 

each partner of the couple for quantification of a variety of environmental chemicals 

including PFASs following completion of a baseline interview. Couples who had a live birth 

were asked to complete a standardized birth announcement that captured information on 

date of birth, sex of the infant, birth size, and delivery mode.

This study was performed in adherence with the guidelines of the Declaration of Helsinki 

and approved by the Institutional Review Boards at all collaborating institutions. All study 

participants provided written informed consent before any data or biospecimen collection.

2.3. Laboratory assessment

Toxicological analysis was conducted by the Division of Laboratory Sciences, National 

Center for Environmental Health, Centers for Disease Control and Prevention (CDC) 

according to established protocols for measuring persistent environmental chemicals in 

human serum. Both maternal and paternal serum concentrations were measured at baseline 

using online solid phase extraction high performance liquid chromatography-tandem mass 

spectrometry with isotope dilution quantification for the following 7 PFASs: PFOS, PFOA, 

perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctane 

sulfonamide (FOSA), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), and N-

methylperfluorooctane sulfonamidoacetic acid (MeFOSAA) according to published standard 

operating procedures, inclusive of ongoing quality assurance and control procedures (Calafat 

et al., 2007; Kuklenyik, 2004). PFASs in 1 mL of serum were quantified and recorded in 

nanograms per milliliter (ng/mL). The limits of detection (LODs) ranged from 0.1 to 0.2 

ng/mL. While concentrations below the LOD were not substituted to prevent introducing 

bias (Richardson and Ciampi, 2003; Schisterman et al., 2006), all machine-read values for 

chemical concentrations were utilized for analysis.

2.4. Statistical analysis

In the descriptive phase of analysis, distributions were summarized as means (± standard 

deviations [SDs]) for continuous variables and categorically for other variables. Differences 

in maternal, paternal, and couple characteristics at baseline by infant sex were assessed 

using the nonparametric Wilcoxon test for continuous variables and chi-square test or 

Fisher’s exact test for categorized variables. We estimated geometric means (GMs) and 95% 

confidence intervals (CIs) for serum PFAS concentrations by select characteristics (i.e., 

infant sex, maternal parity, and household income) and assessed significance using the 

nonparametric Wilcoxon test. Serum PFAS concentrations were log-transformed and 

standardized by their SDs to aid in the interpretation of results. Serum PFAS concentrations 

were also categorized into tertiles for analysis with the exception of FOSA and Et-FOSA-

AcOH. FOSA and Et-FOSA-AcOH were dichotomized as < LOD or ≥ LOD for analysis.
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In the analytic phase, we used logistic regression models to estimate odds ratios (ORs) and 

95% CIs for infant sex (male birth versus female birth). Separate models were run for 

maternal and paternal serum PFAS concentrations. We adjusted a priori for age (years; 

continuous), research site (Michigan and Texas), household income (< $70,000 and ≥ 

$70,000), and maternal parity (nulliparous and parous). Given the absence of any detected 

multicollinearity between maternal and paternal PFAS concentrations (all condition indices 

< 30 [Lesaffre and Marx, 1993; Segerstedt and Nyquist, 1992]; data not shown), we modeled 

both partner’s concentrations in the same model in relation to the ORs for a male birth. 

Additionally, we conducted sensitivity analysis excluding maternal parity, given its uncertain 

relationship with PFASs (Buck Louis et al., 2012). Two-sided significance levels (p-value < 

0.05) were used to assess significance without correcting for multiple comparisons, given 

the exploratory design of this study. All statistical analyses were performed by SAS Version 

9.3 (SAS Institute Inc., Cary, NC, USA).

3. Results

Of 233 live births, 115 (49.4 %) were boys and 118 (50.6 %) were girls. The overall SSR 

was 0.97 (95% CI, 0.75–1.26), indicative of a slight excess of females. Baseline maternal, 

paternal, and couple characteristics by infant sex are shown in Table 1. The mean ages (± 

SD) of mothers and fathers were 29.7 (± 3.7) years and 31.5 (± 4.6) years, respectively. Non-

Hispanic white and college-educated couples comprised the majority of the study 

participants. Approximately half of the mothers (46.3%) were nulliparous. None of the 

baseline characteristics differed significantly by infant sex (Table 1).

Table 2 presents the distributions (in tertiles) of maternal and paternal serum PFAS 

concentrations by infant sex; no significant differences were observed. While the GMs (95% 

CIs) of maternal and paternal serum PFAS concentrations differed by infant sex, maternal 

parity, and household income, no significant differences were observed for infant sex (See 

Supplemental Table 1). In general, paternal serum PFOS, PFOA, PFNA, and PFDA 

concentrations were higher than maternal concentrations.

The ORs (95% CIs) for a male birth by log-transformed maternal, paternal, and couple 

serum PFAS concentrations are presented in Table 3. When the effects of maternal or 

paternal serum PFASs on the SSR were evaluated separately, no significant associations 

were observed between serum PFAS concentrations and a male birth. When couple serum 

PFAS concentrations were modeled jointly, the ORs for a male birth ranged from 0.64 to 

0.66 per one SD increase in the log-transformed paternal serum MeFOSAA concentrations 

across the three different models (Table 3).

When the tertiles of couple serum PFAS concentrations were used in the models, the 

findings for paternal MeFOSAA and a male birth were suggestive of a possible dose-

response relation, as reflected by a 47% reduction in the odds of a male birth observed for 

men in the second versus first tertile (adjusted OR, 0.53; 95% CI, 0.26–1.10), increasing to a 

66% reduction for men in the third versus first tertile (adjusted OR, 0.34; 95% CI, 0.13–

0.89) (Table 4). Additionally, the odds of a male birth were significantly reduced among 
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fathers in the second PFNA tertile versus fathers in the first tertile across all models (ORs, 

range 0.43–0.50).

4. Discussion

This prospective study with preconception enrollment of couples demonstrated that less 

prevalent PFASs (i.e., paternal MeFOSAA and PFNA) were significantly associated with an 

excess of female births. Conversely, more prevalent PFASs, such as PFOS and PFOA, were 

not significantly associated with the SSR. Use of a couple-based design enabled us to detect 

an association between paternal PFAS concentrations and a female excess of live births. Had 

we enrolled only females, this observation would have missed. Of particular note is that, 

although not statistically significant, the ORs for a male birth were elevated for maternal 

MeFOSAA (ORs, range 1.29–1.32 per one SD increase in the log-transformed maternal 

serum MeFOSAA concentrations across all models), suggestive of possible varying patterns 

for the SSR in relation to parental exposures (Table 3). This speculation is strengthened by a 

possible dose-response relation noted for maternal MeFOSAA and a male birth (the second 

versus first tertile, adjusted OR, 1.73 [95% CI, 0.81–3.69]; the third versus first tertile, 

adjusted OR, 1.88 [95% CI, 0.76–4.65]), though again not significant (Table 4).

To our knowledge, Kvist et al. (2012) first reported that paternal exposure to PFASs may be 

related to a lower proportion of Y-bearing sperm in the father’s semen, which in turn may be 

related to an excess of female births. However, evidence has indicated that the predominance 

of either sons or daughters in households may not be directly explained by an altered ratio of 

X- and Y-bearing sperm in the ejaculate (Irving et al., 1999). One of the implications of our 

study includes the fact that the reproductive effects of both maternal and paternal PFASs 

were assessed in relation to the SSR, as a couple-dependent fertility endpoint. As proposed 

previously (James, 2008a), when using the SSR for testing endocrine disruption, both 

maternal and paternal factors should be taken into account, considering possible opposing 

hormonal effects in mothers and fathers.

Albeit speculative, the positive association of paternal MeFOSAA and PFNA with an excess 

of female births and the null association of maternal PFASs with an excess of male or female 

births noted in this study seem to be comparable to previous findings on a wide range of 

environmental or occupational exposures. Although existing evidence has been inconsistent, 

there has been little evidence that paternal exposures to environmental toxicants other than 

PCBs are associated with a male excess in offspring. A large number of studies on other 

environmental toxicants, on the other hand, have indicated more female offspring born to 

fathers exposed to environmental toxicants (Terrell et al., 2011). Several animal studies have 

linked the production of male offspring to fertility. In a study in red deer, more male 

offspring were born to male animals with a higher percentage of morphologically normal 

spermatozoa, which is believed to be an important determinant of male fertility (Gomendio 

et al., 2006). Human studies have also shown that family size, as a possible indicator of 

fertility, is positively associated with the SSR, independent of possible negative associations 

between parental ages (Jacobsen et al., 1999; Mathews and Hamilton, 2005) or birth order 

(Biggar et al., 1999; Mathews and Hamilton, 2005) and the SSR (James, 2013).
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While suggestions have been made for identifying genetic (e.g., the SRY [sex-determining 

region Y] gene) and environmental determinants, the precise mechanism for offspring sex 

determination in humans is unknown. Some prevailing hypotheses on the SSR include the 

hormonal hypothesis, which theorizes that parental hormone levels around the time of 

conception are, in part, responsible for the alteration of SSR (James, 2008a, 2008b, 2013). 

According to this hypothesis, high levels of testosterone (of either parent) and estrogen (of 

mother) may be associated with a male excess in offspring. Contrarily, high levels of 

parental gonadotropins, such as follicle-stimulating hormone (FSH) and luteinizing hormone 

(LH), around the time of conception may be associated with a female excess in offspring 

(James, 2013). Another hypothesis is the ‘over-ripeness ovopathy’ concept, which postulates 

that the SSR is influenced by oocyte maturation and cervical mucus liquefaction (Jongbloet, 

2004). Allegedly, non-optimally matured oocytes with coexisting non-optimally liquefied 

cervical mucus are more accessible by Y-bearing sperm, which are smaller, and in turn more 

desirable to navigate non-optimal cervical mucus, than X-bearing sperm. The preferential 

fertilization of non-optimally matured oocytes by Y-bearing sperm may cause 

disproportional loss of male embryos and fetuses. As both oocyte maturation and cervical 

mucus liquefaction are modulated by estrogen, perturbed hormonal milieu elicited by 

various endogenous and exogenous factors may affect the SSR (Jongbloet, 2004).

The xenoestrogenic properties of PFASs have been revealed in several experimental studies, 

in which PFASs exhibited estrogenic, anti-estrogenic, and/or anti-androgenic activities in a 

concentration-dependent manner or in a mixture (Henry and Fair, 2013; Kjeldsen and 

Bonefeld-Jørgensen, 2013). The effects of PFAS on reproductive hormone levels have been 

demonstrated in both animal and human studies, despite inconsistent findings among these 

studies. In vitro and in vivo assays in zebrafish exhibited that exposure to PFOS increased 

estradiol, decreased testosterone, and altered endocrine-related gene expression (Du et al., 

2013). The administration of 25 mg PFOA/kg/day for 14 days to male rats increased 

estradiol in serum, decreased testosterone in serum and testicular interstitial fluid, and 

ultimately developed Leydig cell adenoma (Biegel et al., 1995). However, in male 

cynomolgus monkeys, oral exposure to 0.75 mg/kg/day potassium PFOS for 182 days 

resulted in lowered serum estradiol levels but no significant change in serum testosterone 

levels (Seacat et al., 2002). In a study of 256 men in the United States, LH but not FSH was 

positively correlated with plasma PFOS and PFOA. No statistically significant associations 

were observed for total testosterone or estradiol (Raymer et al., 2012). However, a study of 

247 healthy young Danish men showed that serum PFOS was negatively associated with 

total testosterone, free testosterone, free androgen index (FAI), and other hormonal ratios 

(i.e., testosterone/LH, free testosterone/LH, and FAI/LH) (Joensen et al., 2013).

Equivocal findings on the reproductive and developmental toxicity of PFASs have been 

demonstrated in recent human studies. In a study of 588 partners of pregnant women from 

Greenland, Poland and Ukraine, a negative association between serum PFOS concentration 

and sperm morphology was observed (Toft et al., 2012). However, a study of 256 American 

men seeking infertility treatment showed that serum PFOS and PFOA concentrations were 

not significantly associated with semen quality parameters including volume, sperm 

concentration, and sperm motility (Raymer et al., 2012). In a study of 247 men from the 

general Danish population, no associations between PFASs and semen quality parameters 
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were observed, except for perfluoroheptanoic acid being associated with progressively 

motile sperm (Joensen et al., 2013). A study conducted among 1240 women from the Danish 

National Birth Cohort showed that higher maternal plasma PFOS and PFOA concentrations 

measured at 4–14 weeks of pregnancy were associated with longer time-to-pregnancy (TTP) 

(Fei et al., 2009). A study using data from the LIFE study indicated that increased serum 

concentration of FOSA, a fluorochemical residual, in females was significantly associated 

with reduced couple fecundity, as assessed by a prolonged TTP, though serum 

concentrations of this fluorochemical residual were below the LOD in 90% of females 

(Buck Louis et al., 2013). On the other hand, a case-control study of 910 women from the 

Norwegian Mother and Child Cohort suggested the post-pregnancy re-accumulation of 

PFASs as a possible explanation of the association between PFASs and subfecundity, given 

that a long interpregnancy interval among parous women may increase the body burden of 

PFASs (Whitworth et al., 2012). In a case-cohort study of 156 cerebral palsy cases from the 

Danish National Birth Cohort during 1996–2002, high maternal plasma PFOS and PFOA 

levels in early or midpregnancy were associated with an increased risk of cerebral palsy in 

boys (Liew et al., 2014).

To date, the reproductive and developmental toxicity of fluorochemical residuals, such as Et-

FOSAAcOH and MeFOSAA, has scarcely been reported in humans. FOSA, which can 

metabolize to PFOS, is not specific to any one consumer application like PFOS. However, 

Et-FOSA-AcOH and MeFOSAA, which can metabolize to FOSA, are markers of consumer-

related exposure. While EtFOSAA is primarily detected in paper and packaging protectant 

applications, MeFOSAA is mainly detected in surface treatment applications such as 

textiles, carpets, and upholstery (Olsen et al., 2005). However, the biotransformation of 

fluorochemical residuals has not been well-established, although some toxicological studies 

proposed possible metabolic pathways and toxic mechanisms of select fluorochemical 

residuals (O’Brien and Wallace, 2004; O’Brien et al., 2006; Xu et al., 2004). This, in part, 

has led us to be unable to provide any biological explanations specific to paternal 

MeFOSAA, particularly considering the biotransformation of this chemical. It is important 

to note that chance may be an explanation for our findings, reflecting random error by 

multiple statistical tests performed. It is also noteworthy that serum MeFOSAA 

concentrations were relatively low and below the LOD (0.2 ng/mL) in 21.1% of the male 

partners (Table 2). However, the GMs of serum PFAS concentrations among the study 

participants were comparable to those for the U.S. population from the National Health and 

Nutrition Examination Survey, except for higher serum PFOS concentrations observed in the 

current study (CDC, 2014).

Important study limitations need to be considered when interpreting the findings, including 

the competing risk of pregnancy loss relative to live birth, and our inability to measure the 

primary sex ratio for all conceptions. As such, our findings only speak to the SSR. Another 

consideration is the impact of PFASs on semen quality and the relevancy of our 

preconception measure for spermatogenesis. Given the long half-life of most PFASs, 

particularly long-chain PFASs (Han et al., 2012; Olsen et al., 2007), it is plausible that the 

male partners’ PFAS concentrations were relevant for the sensitive window of 

spermatogenesis. Although this study is strengthened by its unique features including the 

prospective cohort design with both partners’ preconception measurements of serum PFASs 
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and the use of a couple-based approach when assessing a couple-dependent outcome, a 

relatively small sample size was used for the detection of variability in the SSR. Selection 

bias is a consideration if couples with higher or lower PFAS concentrations 

disproportionately participated in the study; however, none of the couples were aware of 

their concentrations at enrollment. Still, we cannot rule out other selective factors or residual 

confounding. Lastly, our results may not be generalizable to the general population or 

among couples with unplanned pregnancy, given our sampling on couples planning 

pregnancies.

While not inconsistent with previous data from persistent environmental chemicals and 

reversal of the SSR, our findings await corroboration specifically in relation to PFASs before 

a more meaningful interpretation can be made. Efforts to incorporate hormonal profiles or 

semen quality relative to the SSR would provide a more complete investigation regarding the 

effect of persistent environmental chemicals on sex selection and sex-selective survival in 

humans.
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Highlights

• Several persistent chemicals have been reported to be associated with the 

SSR.

• The effects of serum PFAS concentrations on the SSR have not been 

explored.

• Paternal MeFOSAA and PFNA were significantly associated with a female 

excess.

• PFOS, PFOA, PFDA, FOSA, and EtFOSAA were not significantly associated 

with the SSR.

• These findings await corroboration given the absence of previous 

investigation.
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