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Abstract
Background  The prevalence of heart failure (HF) is rising with ageing population and constitutes a major health problem 
globally. A common complication of HF is pulmonary hypertension (PH) which negatively impacts survival. A pathophysi-
ological association between HF and PH with tumorigenic processes has been suggested. We aimed to identify the plasma 
levels of, and the association between tumour-related proteins and hemodynamic improvements in patients with HF and PH 
due to left heart disease (LHD) before and 1-year after heart transplantation (HT).
Methods  Forty-eight tumour-related proteins were measured with proximity extension assay in plasma from 20 controls 
and 26 HF patients before and 1-year after HT. Patients’ hemodynamics were measured with right heart catheterization.
Results  Out of 48 proteins, specifically, plasma levels of endocan and brother of CDO (BOC) were elevated in end-stage 
HF patients compared to controls (p < 0.001), but decreased after HT (p < 0.01), towards controls’ levels. The decrease of 
endocan levels after HT correlated with improved mean pulmonary arterial pressure (rs = 0.80, p < 0.0001), pulmonary 
arterial wedge pressure (rs = 0.63, p = 0.0012), and pulmonary vascular resistance (rs = 0.70, p < 0.001). The decrease and 
normalization of BOC after HT correlated with decreased mean right atrial pressure (rs = 0.61 p = 0.0015) and NT-proBNP 
(rs = 0.57, p = 0.0022), as well as increased cardiac index (rs = − 0.51, p = 0.0086) and left-ventricular stroke work index 
(rs = − 0.57, p = 0.0039).
Conclusion  Our results suggest that (i) plasma endocan in HF may reflect the state of pulmonary vascular congestion and 
PH-LHD, whereas (ii) plasma BOC may reflect the cardiac function and the hemodynamic overload in HF. The exact role 
of these proteins and their clinical applicability as biomarkers in HF and PH-LHD ought to be investigated in larger cohorts.
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Introduction

Heart failure (HF) is a clinical syndrome with a prevalence 
of 1–2% of the adult population in developed countries [1]. 
Despite improved treatment modalities in the last 2 decades, 
the 5-year survival of HF patients with reduced ejection 
fraction remains poor [2]. A common complication in HF, 
irrespective of ejection fraction, is pulmonary hypertension 
(PH), with negative impact on survival and exercise capac-
ity [3]. PH may arise as a consequence of left heart disease 
(LHD), through congestion and backward transmission of 
elevated left-sided filling pressures. A sustained congestion 
may cause endothelial dysfunction and excessive vasocon-
striction with subsequent vascular remodeling [4].

The chronic progression of HF involves an array of 
different pathophysiological mechanisms [5]. Proteomic 
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biomarkers are emerging as a new tool for diagnosis and 
prognosis, and may reflect this pathophysiological pro-
gression [5, 6]. In the fields of HF [7] and especially PH, 
biomarker research is of particular interest, as outlined in a 
recent state-of-the-art review of PH pathology and pathobi-
ology [8]. To date, however, the clinical use of biomarkers 
in HF and PH remains mainly limited to natriuretic peptides 
and its precursors, which collectively reflect one pathophysi-
ological pathway [9, 10].

Although tumorigenic processes and HF are two distinct 
entities, recent studies reported that HF could prime the 
onset of cancer by mechanisms involved in pathophysiol-
ogy of HF, such as aberrant neuro-hormonal axis and growth 
hormonal overexpression with impact on proliferation [11, 
12]. Additionally, the Warburg effect, originally ascribed to 
cancer cells undergoing higher glycolytic activity through 
fermenting glucose to lactate during normoxic conditions, 
has also been postulated to be involved in the pathobiol-
ogy of HF and pulmonary arterial hypertension (PAH). 
For instance, in hypertrophic cardiomyopathy, metabolic 
dysfunction and energy deficit are functional in cardiac 
dysfunction and ventricular remodeling [13]. Moreover, 
the development of pulmonary vascular remodeling during 
PAH progression, which pathobiologically may imitate that 
observed in PH-LHD [14], involves cellular acquisition of 
tumorigenic traits including deranged cellular energetics, 
sustained proliferative signaling, and reduced susceptibility 
to apoptosis [15].

Intriguingly, several studies have appraised tumour-
related proteins in the context of either PAH [16, 17] or HF 
[18]. In a murine model, deletion of the pro-apoptotic tran-
scription factor P53 exacerbated hypoxia-induced PAH [16]. 
A subsequent study showed that treatment with Nutilin-3a, 
a cis-imidazoline analog that stabilizes the pro-apoptotic 
transcription factor p53 and increases the pro-senescent p21 
expression, reversed PAH in mice and induced cell growth 
arrest and senescence in cultured human pulmonary arterial 
smooth muscle cells [17]. Mucin-16 or CA125, a marker of 
ovarian cancer, is, furthermore, elevated in HF patients with 
severe fluid overload and may be of prognostic value [18]. 
To our knowledge, there is, however, a paucity in studies 
with focus on tumour markers in HF and PH-LHD as well 
as the consequence of heart transplantation (HT).

In search of potential biomarkers reflecting alterative 
pathophysiological pathways in HF and related PH, such as 
inflammatory response, cellular proliferation, and endothe-
lial dysfunction, we aimed to identify the levels of tumour-
related proteins with associated hemodynamic improve-
ments in HF and PH-LHD, before and after HT. Identifying 
such proteins may aid in generating hypothesis for clinical 
research and the incorporation of a multi-marker testing 
panel of different pathophysiological mechanisms. Moreo-
ver, a biomarker-guided phenotyping of HF and related 

PH may potentially optimize the clinical management and 
prompt the development of new therapies [6], especially in 
the stagnant supply of donor hearts enabling HT [19].

Materials and methods

Study population

The present study was based on 29 patients with end-stage 
HF with or without preoperative PH evaluated before and 
1-year after HT at Skåne’s University Hospital in Lund, 
Sweden, as well as 20 cardiopulmonary healthy controls 
(≥ 18 years) with no history of ischemic heart disease, atrial 
fibrillation, stroke, or diabetes mellitus. Although two of 
the controls reported a previous thyroid illness, all were 
included as none of the controls exhibited cardiovascular-
related comorbidities. Patients with PH after HT (n = 1) 
and with missing postoperative hemodynamic data (n = 2) 
were excluded. Left-ventricular dysfunction was diag-
nosed according to the routine clinical investigation with 
echocardiography and/or magnetic resonance imaging [1]. 
Informed written consent was acquired from all participants. 
The population has previously been characterized, includ-
ing patients’ plasma creatinine and NT-proBNP, shown in 
Table 1 [20, 21]. Briefly, 50% of the controls were male, had 
a median age of 41 years and a median body surface area 
(BSA) of (1.92 m2, n = 19).

The study was conducted in accordance with the dec-
larations of Helsinki and Istanbul and approved by the 
ethical board in Lund, Sweden (diary numbers: 2010/114; 
2010/442; 2011/368; 2011/777; 2014/92 and 2015/270).

Protein analysis

Venous blood samples were collected from the venous 
introducer of the patients’ internal jugular veins during 
right heart catheterization (RHC) and from peripheral veins 
in controls, stored at − 80 °C in Lund Cardio Pulmonary 
Register (LCPR), a cohort of Region Skåne’s biobank. As 
per protocol, neither the patients nor controls were fasting 
during blood sample collection. Plasma aliquots, retrieved 
from LCPR, were analysed with proximity extension assay 
(PEA). PEA is based on the use of oligonucleotide-linked 
antibodies and qPCR for protein detection and quantifica-
tion (Proseek Multiplex Cardiovascular II, III and Oncology 
II kits, Olink, Proteomics, Uppsala, Sweden) [22]. Proteins 
analysed were N-terminal pro b-type natriuretic peptide 
(NT-proBNP), 5′-nucleotidase, protein AMBP (AMBP), 
aminopeptidase N (AP-N), bleomycin hydrolase (BLM-H), 
brother of cell adhesion molecule-related/down-regulated by 
oncogenes (CDO) or (BOC), carbonic anhydrase 9 (CA9), 
cathepsin Z, p21 or cyclin-dependent kinase inhibitor 1A 
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(CDKN1A), carcinoembryonic antigen-related cell adhesion 
molecule (CEACAM) 1 and 5, contactin-1, cornulin, car-
boxypeptidase A1 (CPA1), carboxypeptidase B (CPB1), car-
boxypeptidase E (CPE), cystatin B, endothelial cell-specific 
molecule 1 or endocan, epithelial cell adhesion molecule 

(Ep-CAM), furin, gastrotropin, glyoxalase I or lactoylglu-
tathione lyase, kallikrein 6, 8, 11, 13 and 14, Ly6/PLAUR 
domain-containing protein 3 (LYPD3) or C4.4A, mesothe-
lin, methionine aminopeptidase 2 (MetAP2), melanoma-
derived growth regulatory protein or melanoma inhibitory 

Table 1   Demographic data of heart failure patients following heart transplantation

HT heart transplantation, IQR interquartile range, BSA body surface area = (weight0.425 × height0.725) × 0.007184 [14], PH pulmonary hyperten-
sion, HFrEF heart failure with reduced ejection fraction, HFpEF heart failure with preserved ejection fraction, Ipc-PH isolated post-capillary 
PH, Cpc-PH combined post-capillary and pre-capillary PH, DCM dilated cardiomyopathy, HCM hypertrophic CM, ICM ischemic CM, ACEi 
angiotensin-converting enzyme inhibitor, ARB angiotensin II receptor blocker, MRA mineralocorticoid receptor antagonist. Notably, 84.6% of 
the patients had either ACEi or ARB. These data have previously been published [20]
*p < 0.0001, FDR (Q = 0.01); vs. control
§ Nonsignificant vs. pre-HT
# One patient suffered from severe orthopnea, hence the unsuccessful PAWP assessment. After optimization with furosemide and levosimendan, 
subsequent right heart catheterization confirmed Ipc-PH. Estimated glomerular filtration rate was calculated with the revised Lund–Malmö for-
mula [62]

Variable Pre-HT (n = 26) Post-HT (n = 26)

n Median (IQR) n Median (IQR)

Female, n (%) 5 (19.2)
Age (years) 26 50 (45–61)* 26 52 (47–63)
Height (cm) 26 178 (172–180) 26 177 (172–181)
Weight (kg) 25 80 (71–89) 26 78 (69–90)
BSA (m2) 25 2 (1.8–2.1) 26 2 (1.8–2.1)
Creatinine (μmol/L) 25 108 (90–123) 26 114 (97–142)§

eGFR (mL/min/1.73 m2) 25 63 (55–71) 26 53 (43–72)§

Atrial fibrillation, n (%) 26 13 (50) 26 –
Hypertension, n (%) 26 5 (19.2) 26 3 (11.5)
Diabetes mellitus, n (%) 26 3 (11.5) 26 9 (34.6)
HF and PH classification n (%) n (%)
 HFrEF (EF < 50%) 24 (92.3) –
 HFpEF (EF ≥ 50%) 2 (7.7) –
 PH 19 (73.1)# –
 Ipc-PH 10 (38.5) –
 Cpc-PH 9 (34.6) –

HF aetiology –
 DCM 17 (65.4) –
 HCM 3 (11.5) –
 ICM 3 (11.5) –
 Other 3 (11.5) –

Medications
 β-Blockers 25 (96.2) 9 (34.6)
 ACEi 11 (42.3) –
 ARB 11 (42.3) 10 (38.5)
 MRA 22 (84.6) 3 (11.5)
 Furosemide 24 (92.3) 12 (46.2)
 Cordarone 4 (15.4) –
 Prednisolone 1 (3.8) 25 (96.2)
 Cyclosporine – 3 (11.5)
 Tacrolimus – 23 (88.5)
 Mycophenolate mofetil – 21 (80.8)
 Azathioprine – 5 (19.2)
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activity (MIA), midkine, mucin-16 or CA125, podocalyxin, 
prostasin, PVRL4 or nectin-4, S100A11, S100A4, secretory 
carrier-associated membrane protein 3 (SCAMP3), secre-
toglobin family 3A member 2 (SCGB3A2), tyrosine-protein 
phosphatase non-receptor-type substrate 1 (SHPS-1), sorti-
lin, T-cell leukemia/lymphoma protein 1A (TCL1A), trefoil 
factor 3 (TFF3), protein-glutamine gamma-glutamyltrans-
ferase 2 (TGM2), WAP four-disulfide core domain protein 
2 (WFDC2), vimentin, V-set and immunoglobulin domain-
containing protein 2 (VSIG2), and Xaa-Pro aminopeptidase 
2 (XPNPEP2). NT-proBNP and all 48 proteins are expressed 
arbitrarily in linear normalized protein expression scale. 
PEA’s analytical quality in assessing proteins is rigorously 
validated regarding sensitivity, dynamic range, specificity, 
precision, and scalability. Panel and protein-specific valida-
tion documents can be found on www.olink​.com/downl​oads.

Right heart catheterization

As a part of the clinical evaluation for HT, the patients’ hemo-
dynamic profiles were characterized by cardiologists before 
and during the routine 1-year follow-up after HT by RHC, 
using a Swan-Ganz catheter (Baxter Health Care Corp, Santa 
Ana, CA, USA) inserted through the right internal jugular 
vein. Recorded parameters were systolic pulmonary arterial 
pressure (sPAP), diastolic PAP (dPAP), mean PAP (mPAP), 
mean right atrial pressure (MRAP), pulmonary arterial wedge 
pressure (PAWP), mixed venous oxygen saturation (SvO2), 
and arterial oxygen blood saturation (SaO2). Mean arterial 
pressure (MAP) was measured non-invasively and thermodi-
lution was used to estimate cardiac output (CO).

Hemodynamic definitions

The other hemodynamic parameters were calculated 
with the following formulas: cardiac index (CI) = CO/
BSA, stroke volume (SV) = CO/heart rate, stroke vol-
ume index (SVI) = SV/BSA, transpulmonary pres-
sure gradient, (TPG) = mPAP − PAWP, pulmonary 
vascular resistance (PVR) = TPG/CO, PVR index 
(PVRI) = TPG/CI, diastolic pulmonary pressure gradient 
(DPG) = DPAP − PAWP, right-ventricular stroke work index, 
(RVSWI) = (mPAP − MRAP) × SVI, left-ventricular stroke 
work index (LVSWI) = (MAP − PAWP) × SVI, pulmonary 
arterial compliance, (PAC) = SV/(sPAP − dPAP), and arte-
riovenous oxygen difference (a − vO2diff) = (SaO2 − SvO2) 
× plasma hemoglobin × 1.34.

PH-LHD was defined by a resting mPAP ≥ 25 mmHg, 
PAWP > 15 mmHg and sub-classified into isolated post-cap-
illary PH (DPG < 7 mmHg and/or PVR ≤ 3 WU) or combined 
post-capillary and pre-capillary PH (DPG ≥ 7 and/or PVR > 3 
WU), according to current guidelines [10]. HT were performed 
at Skåne’s University Hospital in Lund, Sweden, according to 

the International Society for Heart and Lung Transplantation 
guidelines [23, 24].

Hemodynamic improvement

Hemodynamic data of patients before and 1-year after HT 
have previously been described [20, 21], with an additional 
subgroup description of patients with HF without PH (Table 2 
and supplementary Table 1, respectively).

Statistics

Continuous data are presented as median (interquartile range). 
Distribution assumptions of normality were determined visu-
ally, using histrograms. As the data were non-Gaussian dis-
tributed, Wilcoxon signed-rank test and Mann–Whitney U 
test were used as appropriate. Correlation analysis of changes 
[∆, (Post-HT) − (Pre-HT)] was expressed by Spearman’s rank 
correlation coefficient (rs). The two-stage step-up procedure 
of false discovery rate (FDR) was used to adjust for mass sig-
nificance [25] and p values less than attained thresholds were 
considered statistically significant. Q values were set at 0.01 
for t tests and 0.1 for correlations. Statistical analyses were 
performed using Prism version 8.01 for Windows, GraphPad 
Software, La Jolla California USA, www.graph​pad.com).

Study set‑up

To identify plasma proteins reflecting the reversal of HF in 
response to HT, three criteria were set; (i) a significant plasma-
level difference pre-HT vs. post-HT, (ii) a significant plasma-
level difference in controls vs. pre-HT, and (iii) a plasma-level 
change of post-HT towards controls’ levels, resembling that 
of NT-proBNP, (FDR, Q = 0.01). Next, proteins reflecting a 
pattern consistent with the reversal of HF in response to HT 
were correlated with NT-proBNP and improved hemodynamic 
parameters of heart and pulmonary circulation, i.e., mPAP, 
MRAP, PAWP, PVR, PAC, CI, and LVSWI (FDR , Q = 0.1). 
Proteins correlating to several parameters were of particular 
interest; and a subgroup analysis between PH-LHD and HF 
without PH was performed for these proteins thereafter. The 
study set-up is summarized in Fig. 1.

Results

Plasma endocan, BOC, CPE, and kallikrein 11 
in end‑stage heart failure patients

The levels of tumour-related proteins in controls and patients 
at baseline and after HT are presented in Table 3 and supple-
mentary Table 2 (FDR, Q = 0.01). In end-stage HF patients, 
plasma levels of endocan (Fig. 2a), BOC (Fig. 3a), CPE and 

http://www.olink.com/downloads
http://www.graphpad.com
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kallikrein 11 were elevated compared to the controls (p < 0.01). 
After HT and reversal of HF and pre-existing PH, these levels 
decreased vs. pre-HT (p < 0.01), towards the controls’ levels, 
with normalization of BOC and CPE levels.  

Plasma ∆endocan, ∆BOC, ∆CPE, and ∆kallikrein 
11 correlate with hemodynamic changes 
following heart transplantation

Correlations of changes (∆) between proteins’ levels with 
∆NT-proBNP and ∆hemodynamic parameters following HT 
are presented in Table 4. ∆endocan correlated with ∆mPAP, 
∆PAWP, and PVR (Fig. 2b–d; p < 0.01). ∆BOC correlated 
with ∆NT-proBNP, ∆MRAP, ∆CI, and ∆LVSWI (Fig. 3b–e; 
p < 0.01). ∆CPE correlated with ∆mPAP, ∆PVR and ∆CI 
(p < 0.01). ∆kallikrein 11 correlated with ∆NT-proBNP and 
∆MRAP (p < 0.01).

Other tumour‑related proteins in end‑stage heart 
failure patients

In end-stage HF patients, plasma levels of AP-N, 
CEACAM1, CPA1, CPB1, furin, kallikrein 14, mucin-
16, and vimentin were elevated compared to controls 
(p < 0.01). After HT and reversal of HF and pre-exist-
ing PH, these levels decreased vs. pre-HT  (p < 0.01), 
towards the controls’ levels. Conversely, in HF patients, 
plasma cornulin levels were low compared to controls 
(p < 0.0001), but increased after HT vs. pre-HT (p < 0.01), 
towards the  controls’ levels (p < 0.001). ∆CEACAM1 
correlated with CI, whereas ∆mucin-16 correlated with 
∆NT-proBNP (p < 0.01). ∆AP-N, ∆CPA1, ∆CPB1, 
∆furin, ∆kallikrein 14, ∆vimentin, and ∆cornulin did not 
correlate with changes in hemodynamics or NT-proBNP 
(Table 4).

Fig. 1   Study set-up and bio-
marker selection. C control, 
HF heart failure, HT heart 
transplantation, PH pulmonary 
hypertension, Post-HT 1-year 
after HT, BOC brother of CDO, 
CEACAM1 carcinoembryonic 
antigen-related cell adhesion 
molecule 1, CPE carboxypepti-
dase E
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Plasma endocan in PH‑LHD patients following heart 
transplantation

A subgroup analysis of the plasma levels pre-HT and post-
HT between HF without PH (n = 7) and PH-LHD patients 
(n = 19) was performed for BOC, CEACAM1, CPE, endo-
can, kallikrein 11, and mucin-16 (supplementary Table 3). 
Plasma endocan levels pre-HT were higher in PH-LHD com-
pared to HF without PH group (p < 0.001). No differences 
were found in the other proteins.

Discussion

Developing a multi-marker panel reflecting different patho-
physiological mechanisms underlying HF  may be the 
future approach for individualized phenotyping and man-
agement of HF [9], and potentially PH-LHD. In the present 
study, we found that in end-stage HF patients, elevated endo-
can, BOC, CPE, and kallikrein 11 levels decreased after HT 
towards controls’ levels. Moreover, level changes of these 
proteins correlated with improved hemodynamics after HT. 
Our results suggest that endocan, BOC, CPE, and kallikrein 
11 may reflect different pathophysiologic mechanisms and 
be potential biomarkers in HF and PH-LHD.

Endocan is a dermatan sulfate proteoglycan expressed by 
vascular endothelial cells, cardiomyocytes, and pulmonary 
capillaries. By virtue of its ability to interact with bioactive 
proteins, endocan regulates a wide range of biological pro-
cesses including proliferation, neovascularization, and cel-
lular adhesion [26]. Endocan has been implicated in vascular 
diseases, endothelium-dependent pathologies, and inflam-
matory processes including sepsis [27] and systemic scle-
rosis [28]. Also, endocan has been proposed as an indicator 
of endothelium activation [27] and dysfunction in septic 
patients [29]. Elevated circulating endocan levels has been 
reported in various conditions including hypertension and 
atherosclerosis [30] as well as in malignant lymphoma, renal 
cell carcinoma [26], and lung cancer [31].

Secondary to HF, malfunctioning and hemodynami-
cally stressed cardiomyocytes result in cytokine release 
of tumour necrosis factor-α (TNF-α) and interleukin-1β, 
eliciting a sterile inflammation in the heart. As a result, 
cardiomyocyte apoptosis and hypertrophy, myofibroblast 
differentiation, and endothelial dysfunction ensue, leading 
to reduced myocardial perfusion, ventricular remodeling 
and subsequent progression of HF [32, 33]. Endothelial 
dysfunction, defined as an imbalance in the production 
of vasoactive substances, i.e., increased endothelin-1 
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Fig. 2   Plasma levels and correlations of endocan with hemodynamic 
changes following heart transplantation. Level changes (Δ) were 
calculated using values post-HT–pre-HT and outliers were defined 
with Tukey’s fence. HT heart transplantation, AU arbitrary units, rs 

Spearman’s correlation coefficient, mPAP mean pulmonary arte-
rial pressure, PAWP pulmonary arterial wedge pressure, PVR pul-
monary vascular resistance, WU wood units. *p < 0.01; **p < 0.001; 
***p < 0.0001
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expression and reduced nitric-oxide availability, plays a 
central role in the pathophysiology of HF [33], PH-LHD 
[34], and PAH [8] (Fig. 4a). Apart from being linked to 
cardiovascular risk factors, endothelial dysfunction pre-
dicts adverse clinical events, and its grade is analogous 
to the functional capacity and the severity of HF [33]. A 
recent study of chronic HF patients showed that apart from 
plasma endocan being elevated compared with healthy 
controls and patients with coronary artery disease, it 
emerged as an independent prognosticator of HF-related 
hospitalization and mortality [35]. In a rat model of PAH, 
endocan levels were elevated in the serum and lungs, and 
knockdown of endocan reversed monocrotaline-induced 
pulmonary vascular remodeling and reduced right-ven-
tricular pressure. A subsequent in vitro experiment on 
rat pulmonary microvascular endothelial cells displayed 
the important interplay between TNF-α and endocan, as 
TNF-α upregulation induced endocan expression, whereas 
endocan inhibition prevented TNF-α-induced vascular per-
meability [36]. In the present study, we found that endocan 
levels were elevated in end-stage HF patients with or with-
out PH-LHD compared to controls. After HT and rever-
sal of HF and concomitant PH, endocan levels decreased 
towards controls’ levels. The following subgroup analysis 
revealed that plasma endocan is higher in patients with 

HF and PH-LHD compared to HF patients without PH, 
potentially suggesting endocan to be more PH-specific. 
Moreover, Δendocan correlated with ΔmPAP, ΔPAWP, 
and ΔPVR, reflecting the state of PH, passive pulmonary 
congestion as well as pulmonary vascular tone following 
HT, respectively. Taken together, elevated plasma endo-
can, may, theoretically have a role in endothelial dysfunc-
tion in HF patients with PH, as reflected by the correlation 
with PVR (Fig. 4b). It is also possible that endocan may 
be linked to, or involved in pulmonary vasoconstriction 
and pulmonary vascular remodeling, as endothelial dys-
function is a well-known trigger of these processes in PH-
LHD [3]. Thus, it is encouraging to investigate the role of 
endocan, its interactions with TNF-α as well as its clinical 
implications as a biomarker of pulmonary congestion and 
potentially endothelial dysfunction in HF and PH-LHD.

The hedgehog (Hh) signaling pathway is crucial in 
embryogenesis, organ development, as well as in adult tis-
sue repair and homeostasis [37, 38]. Aberrant Hh signal-
ing has emerged as an important pathway in human cancer, 
including basal cell carcinoma and medulloblastoma. BOC 
is a transmembrane co-receptor which through unknown 
molecular mechanisms enhances Hh pathway activity and 
facilitates Hh ligand binding to its receptor, Patched 1, 
which elicits responses in a dose-dependent manner [38]. 
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In an adult murine model, Hh signaling was shown to be 
critical in the maintenance of coronary arteries, and ablation 
of Hh signaling resulted in coronary vasculature dropout, 
cardiomyocyte apoptosis, ventricular failure, and death. In 
an ensuing experiment, reduction of endogenous Hh sign-
aling after myocardial infarction aggravated heart function 
and increased infarction size [39]. In another adult murine 
model, intramyocardial gene therapy with Shh—a Hh-spe-
cific ligand—after acute and chronic myocardial ischemia, 
resulted in preserved left-ventricular function by augmenting 
neovascularisation, as well as reducing fibrosis and cardio-
myocyte apoptosis [40]. In the present study, plasma BOC 
levels were elevated in HF patients irrespective of PH com-
pared to controls. These levels decreased and normalized 
upon the reversal of HF and PH after HT. The decrease of 
BOC following HT correlated with decreased NT-proBNP 
and MRAP as well as increased CI and LVSWI, reflecting 
decreased cardiac overload and improved cardiac function 
after HT. All in all, whether plasma BOC elevation is an 
endogenous response to counteract HF progression through 
enhancing Hh signaling reception and thereby augmenting 
cardiac tissue repair in chronic HF remains to be investigated 
(Fig. 4a, b).

CPE or enkephalin convertase is a member of metallocar-
boxypeptidase gene family and is most abundantly found in 

endocrine tissues, but also in heart and lungs [41]. CPE is 
involved in the biosynthesis of numerous prohormones and 
neurotransmitters. CPE is overly expressed in a variety of 
cancers including neuroendocrine tumours and small-cell 
lung carcinoma, and its abundance therein promotes neuro-
peptide biosynthesis, resulting in autocrine tumour growth 
[42]. In the fields of cardiovascular physiology and patho-
biology, it has been proposed that CPE may be involved in 
atrial natriuretic peptide synthesis in rat hearts [43]. Moreo-
ver, a series of studies of Chinese patients found that specific 
CPE gene polymorphisms may be linked to increased sever-
ity of coronary atherosclerosis [44–46]. In the present study, 
plasma CPE levels were elevated before HT compared to 
controls, which thereafter decreased after HT towards con-
trols’ levels. Plasma-level changes in CPE correlated with 
changes in mPAP, PVR, and CI. Whether these associations 
infer causality between CPE, HF, and pulmonary vascular 
disease remains to be further elaborated.

Kallikrein 11 is a member of soluble serine proteases and 
is regulated in a steroid hormone-dependent manner. It is 
highly expressed in human prostatic and tracheal tissues, but 
also present in lungs and serum [47]. Despite several studies 
addressing its potential diagnostic or prognostic properties 
in prostate, ovarian [47], and lung cancer [48], the precise 
physiological function of kallikrein 11 remains largely 

(a) (b)

Fig. 4   Endothelial dysfunction in the progression of heart failure and 
pulmonary hypertension; and possible roles of plasma endocan and 
BOC. a Mechanisms involved in the progression of heart failure (HF) 
and pulmonary hypertension due to left heart disease (PH-LHD). In 
HF, along with cardiomyocyte hypertrophy and apoptosis, endothelial 
dysfunction leads to reduced myocardial perfusion and progression 

of HF. In PH-LHD, endothelial dysfunction may trigger excessive 
vasoconstriction and vascular remodeling. b Hypothetical mechanism 
of elevated plasma brother of CDO (BOC) in response to HF, i.e., 
whether activation of the Hedgehog (Hh) signaling augments the pro-
gression of HF, as well as possible (patho-)physiological and clinical 
roles of both BOC and endocan. PVR pulmonary vascular resistance
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unknown. In assessing the enzymatic function and its physi-
ological substrates, unlike some kallikreins, kallikrein 11 is 
incapable of cleaving kininogen [49], an activator of the kal-
likrein–kinin system that has been implicated in left-ventric-
ular dysfunction [50]. Instead, it cleaves and degrades insu-
lin-like growth factor-binding protein 3 (IGFBP3) [51]. As 
a carrier protein, IGFBP3 extends the half-life of IGFs, and 
upon the cleavage of the IGF–IGFBP3 complex, IGFs are 
released to bind and activate IGF-1 receptor signaling [52]. 
In dilated cardiomyopathy, elevated IGFBP3 and IGF-1 
mRNA tissue expressions have been reported in comparison 
to controls [53]. Moreover, IGF-1 signaling has been impli-
cated in cardiac ageing and dysfunction [54]. Another study 
reported that elevated plasma IGF-1 in HF patients appeared 
to be associated with angiotensin-converting enzyme inhibi-
tor (ACEi) treatment and increased risk of cardiovascular 
mortality [55]. Herein, kallikrein 11 plasma levels were 
elevated in advanced HF patients in comparison to controls. 
These levels decreased after HT matching controls’ levels. 
Furthermore, a decrease in plasma kallikrein 11 correlated 
with a decrease in NT-proBNP and MRAP, reflecting an 
alleviated cardiac hemodynamic overload. Hypothetically, 
elevated circulating kallikrein 11 in HF may have a role 
in promoting cardiac ageing and accelerating ventricular 
dysfunction through increasing the bioactivity of IGF-1. 
Hence, the role of plasma kallikrein 11 in HF warrants fur-
ther investigation.

Moreover, plasma CEACAM1 and mucin-16 levels were 
elevated in HF patients, with these levels decreasing after 
HT towards controls’ levels. The decrease of CEACAM1 
and mucin-16 correlated with improved CI and NT-proBNP, 
respectively, supporting the previously reported associa-
tion between mucin-16 and volume overload [18]. Intrigu-
ingly, a study showed that CEACAM1 upregulation after 
hypoxic cardiomyocyte injury promoted unfavorable cardiac 
remodeling by inducing apoptosis [56]. Whether elevated 
CEACAM1 levels play a role in the chronic progression of 
HF remains to be investigated.

Strengths and limitations

Although concordant with the size of other studies, the rela-
tively small population and the lack of validation cohorts 
constitute limitations. Despite the inability to provide abso-
lute protein concentrations, tissue-specific expression and 
differentiation of protein isoforms, PEA, compared to con-
ventional multiplex immunoassays, warrant high specificity 
and sensitivity [22], which is crucial in the process of iden-
tifying biomarker candidates for future clinical utility. Thus, 
the use of PEA and the invasive hemodynamic measure-
ments constitutes major strengths in our study. Noteworthy 
is, however, that the present study is hypothesis generating 
and our results do not necessarily imply causality. Hence, 

our results do not allow for definite mechanistical conclu-
sions. Factors including comorbidities, age and sex dispari-
ties, diurnal variations, and medication intake may have 
affected the proteins’ levels. Although it is well established 
that β-blockers improve left-ventricular function [57] and 
ACEi increase CO and attenuate left-ventricular wall stress 
[58], their postoperative withdrawal effects remain unknown. 
Analogously, antihypertensive and HF-specific medications 
including ACEi, angiotensin II receptor blockers, and cal-
cium channel antagonists attenuate vascular inflammation 
and/or endothelial dysfunction [59], specifically valsartan 
and amlodipine, which may affect plasma endocan levels 
[27]. Conversely, first- and second-generation β-blockers and 
diuretics have not been shown to affect inflammation. More-
over, the role of diuretics in endothelial function remains 
unknown [59]. Although the effects of immunosuppressants 
on plasma protein levels have not been investigated in the 
present study, calcineurin and mTOR inhibitors are associ-
ated with endothelial dysfunction and increased risk of car-
diovascular morbidity [60], whereas mycophenolate mofetil 
reduces immune-mediated vascular injury and possibly exert 
positive effects on endothelial function [61]. Furthermore, 
given the large number of statistical tests conducted, false-
positive results may be present, even though FDR was used 
to accommodate for mass significance. Larger studies are 
necessary to confirm and validate our findings.

Conclusions

In the present study, we identified the tumour-related pro-
teins endocan, BOC, kallikrein 11, CPE, CEACAM1, and 
mucin-16 in end-stage HF patients before and after HT. 
Specifically, the decrease of high plasma levels of endo-
can in HF patients after HT was associated with improved 
mPAP, PAWP, and PVR. Moreover, the decrease after HT of 
elevated BOC levels was associated with decreased MRAP 
and NT-proBNP, as well as increased CI and LVSWI. Our 
results suggest that endocan may be a potential biomarker 
reflecting the state of PH, pulmonary congestion, and poten-
tially endothelial dysfunction in HF and PH-LHD. Addition-
ally, plasma BOC may be a biomarker candidate, potentially 
reflecting the hemodynamic overload and heart function in 
HF, irrespective of concomitant PH. The exact roles of endo-
can and BOC as well as their potential clinical applicabil-
ity in HF and PH-LHD remain to be elaborated in future 
studies.
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