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Abstract

Rationale: Aggression, comorbid with neuropsychiatric disorders, exhibits with diverse clinical 

presentations and places a significant burden on patients, caregivers and society. This diversity is 

observed because aggression is a complex behavior that can be ethologically demarcated as either 

appetitive (rewarding) or reactive (defensive), each with its own behavioral characteristics, 

functionality, and neural basis that may transition from adaptive to maladaptive depending on 

genetic and environmental factors. There has been a recent surge in the development of preclinical 

animal models for studying appetitive aggression-related behaviors and identifying the neural 

mechanisms guiding their progression and expression. However, adoption of these procedures is 

often impeded by the arduous task of manually scoring complex social interactions. Manual 

observations are generally susceptible to observer drift, long analysis times, and poor inter-rater-

reliability, and are further incompatible with the sampling frequencies required of modern 

neuroscience methods.

Objectives: In this review we discuss recent advances in the preclinical study of appetitive 

aggression in mice, paired with our perspective on the potential for machine learning techniques in 

producing automated, robust, scoring of aggressive social behavior. We discuss critical 

considerations for implementing valid computer classifications within behavioral pharmacological 

studies.

Key results: Open-source automated classification platforms can match or exceed the 

performance of human observers, while removing the confounds of observer drift, bias, and inter-

rater reliability. Furthermore, unsupervised approaches can identify previously uncharacterized 

aggression-related behavioral repertoires in model species.
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Discussion and Conclusions: Advances in open source computational approaches hold 

promise for overcoming current manual annotation caveats while also introducing and 

generalizing computational neuroethology to the greater behavioral neuroscience community. We 

propose that currently available open-source approaches are sufficient for overcoming the main 

limitations preventing wide adoption of machine learning within the context of pre-clinical 

aggression behavioral research.
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1. Introduction

There is an increased risk for abnormal or pathological aggression in individuals suffering 

from neuropsychiatric disorders. A growing literature indicates that certain types of 

aggression, namely compulsive aggression seeking, may be a distinct externalizing 

pathology that potentially functions through dysregulation of reward processing in a manner 

akin to drug addiction (Blair 2016; Chester and DeWall 2016). This is supported by the 

common finding that, in humans, some neuropsychiatric disorders present comorbid with 

inappropriate aggression, including depression and substance abuse (Tyrer et al. 2015; Fazel 

et al. 2015), and recidivism rates of violent offenders closely mimic relapse rates for drug 

addicted individuals (Sinha 2011; Ducrose et al. 2014). We and others have hypothesized 

that studying the motivational component of aggression, termed appetitive aggression, may 

provide novel therapeutic approaches to the treatment of maladaptive aggression presenting 

both within and outside of neuropsychiatric comorbidities (Miczek et al. 2015, 2017; Golden 

et al. 2019b; Covington et al. 2019). Unfortunately, from a preclinical perspective, there are 

relatively few established models for mechanistically studying the neurobiological basis of 

maladaptive appetitive aggression (Hashikawa et al. 2018; Flanigan and Russo 2019; Golden 

et al. 2019b).

Aggression motivation has long been a focus of preclinical research (Thompson 1963), 

invariably examined through the lens of ethological analysis, but often stymied due to the 

tremendous effort and durations required to manually score complex social behavior with 

sampling frequencies and accuracies that match modern neuroscience techniques. Several 

recent reviews have highlighted the power of machine learning approaches for creating 

automated behavioral classifiers to study social behavior, including aggression (Anderson 

and Perona 2014; Egnor and Branson 2016; Robie et al. 2017; Gris et al. 2017; Brown and 

de Bivort 2018; Akay and Hess 2019; Mathis and Mathis 2019; Datta et al. 2019). The 

ability to recognize and categorize common behaviors in model species is an integral 

component of model reproducibility and extendibility, and these observations can be 

combined with computational neuroethology to circumvent several inherent issues with 

manual annotation - most notably including observer drift and bias, long analysis times, and 

inter-rater-reliability (Anderson and Perona 2014; Egnor and Branson 2016; Datta et al. 

2019). Additionally, both supervised and unsupervised machine learning algorithms have 

uncovered previously unknown behavioral repertoires in model organisms and have 

confirmed foundational assumptions of ethology (Vogelstein et al. 2014; Wiltschko et al. 
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2015; Rudolf et al. 2019). Several machine learning-based open source packages have been 

developed that can track one or multiple animals during freely moving behavior, while 

others, including one recently released by our lab (Nilsson et al. 2020), can be used to 

classify behaviors based on pose-estimation tracking (Table 2). These approaches have led to 

a renaissance in the study of ethology, which is poised to catapult classical behavioral 

neuroscience into the realm of “big data”.

However, even as these techniques have removed several hurdles impeding high throughput 

behavioral analysis, the use of automated behavioral classifiers has proven oddly difficult to 

adopt and generalize across labs. Implementation of these techniques is often slowed by a 

lack of computational knowledge, the need for specialized and expensive equipment, and the 

high computational expense to adequately train new classifiers. Due to the complexity of 

these programs, even the initial installation can be intimidating or difficult regardless of 

previous programming experience. In this perspective, we will briefly review the state of the 

appetitive aggression literature (also see Golden and Shaham 2018; Golden et al. 2019b), 

and then within this context, provide a primer on how machine learning approaches 

(regarding both acquisition/tracking and predictive classifier analysis) may be incorporated 

into future studies. Definitions of commonly used terms in computational neuroethology are 

included in Table 1. We propose, predominantly thanks to efforts of numerous labs in 

developing and advancing machine learning methods for behavioral tracking (He et al. 2017; 

Mathis et al. 2018; Graving et al. 2019; Pereira et al. 2019), that currently available 

approaches are sufficient to overcome the main limitations preventing wide adoption of 

machine learning for scoring complex social behavior within the context of pre-clinical 

aggression research.

2. Appetitive aggression

2A. Winners like to win: revisiting aggression reward

Sixty years of behavioral research have shown that the opportunity for, or experience of, an 

aggressive encounter with a conspecific can be reinforcing in many species, including select 

mammals. Early work established the propensity of Siamese fighting fish (Beta splendens) 

to perform operant tasks for the opportunity to attack a static (Thompson 1963; Thompson 

and Sturm 1965) or animate representation of a conspecific (Craft et al. 2003, 2007; Elcoro 

et al. 2008). Similar behaviors were also demonstrated in homing pigeons (Cole and Parker 

1971) and male fighting cocks (Thompson 1964). Although this pioneering work showed 

that animals will seek the opportunity for aggression (once thought to be a uniquely human 

trait), these studies did not explore the relationship between seeking aggression and the 

actual experience of an aggressive encounter.

Subsequent work allowing physical attacks against conspecifics has highlighted the 

importance of dominance in solidifying aggression reward seeking. Among many species, 

those animals that win their first aggressive encounter are more likely to win subsequent 

bouts, while those that lose are more likely to lose subsequent bouts. Such “winner” and 

“loser” effects (Ginsburg and Allee 1942; Oyegbile and Marler 2005, 2006; Kudryavtseva et 

al. 2011) and have been demonstrated in meadow voles (Vlautin and Ferkin 2013),crayfish 

(Momohara et al. 2016), flour beetles (Okada et al. 2019), Drosophila (Trannoy et al. 2015; 
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Kim et al. 2018), lobster cockroaches (Kou et al. 2019), Syrian hamsters (Schwartzer et al. 

2013), and many species and strains of mice (Oyegbile and Marler 2006). Some mammals 

do not display the winner effect, however, and species such as the white-footed mouse only 

do so following experimental manipulations of testosterone levels (Fuxjager et al. 2011). 

Aggressive encounters may be sought prior to exposure, but winning often matters in 

maintaining the drive to seek aggression and in determining future performance.

To minimize the effects of bout outcome on behavioral measures, many mouse assays for 

aggression use a variation on the resident-intruder task where a smaller subordinate intruder 

is introduced into the home-cage of a larger, older resident. Early studies using these 

procedures found that mice will cross electric grids (Lagerspetz 1964) and navigate T-mazes 

(Tellegen and Horn 1972; Legrand 1978) and runways (Legrand 1970) to attack a 

subordinate. Furthermore, physical aggression alone is sufficient to condition mice to prefer 

aggression-paired contexts (Potegal 1979; Taylor 1979). While these early influential studies 

demonstrate the utility of mouse models in the study of appetitive aggression, subsequent 

work shifted toward using resident intruder (Miczek and O‟Donnell 1978; Brain et al. 1981) 

or sensory contact (Kudryavtseva et al. 1991) assays where pairings are repeated and the 

subsequent interactions are recorded and scored for a variety of behavioral measures. 

However, such procedures may be biased toward reactive aggression due to their inescapable 

and involuntary nature (Kudryavtseva et al. 2011, 2014). To overcome these limitations, 

recent work has focused on behavioral procedures that examine both reactive and appetitive 

aggression using operant conditioning tasks, and this approach is instrumental for 

understanding the neurobiological differences underlying different types of aggression.

2B. Individual variability in inbred and outbred lines

A technical confound associated with preclinical aggression research is the relative lack of 

innately expressed aggression exhibited by commonly used inbred mouse strains relative to 

outbred strains (Jones and Brain 1987). Unlike outbred strains, inbred mice often require 

significant experimenter manipulation, either in the form of extended social isolation 

(Banerjee 1971) or repeated social instigation (Kudryavtseva et al. 2014; Covington et al. 

2018), to exhibit significant levels of aggression towards conspecifics. To overcome this 

confound, preclinical aggression research, and especially studies of appetitive aggression, 

has focused on the use of outbred mice (Chia et al. 2005) that exhibit a spectrum of innate 

aggression behavior (Golden et al. 2016). While inbred mice are typically preferred for 

many research applications, recent meta-analysis shows that inbred strains do not have 

greater trait stability than outbred mice, and data from outbred mice may be more 

generalizable across conditions and populations (Tuttle et al. 2018).

We and others have used CFW or CD-1 outbred mice as these strains display several 

naturally occurring aggression phenotypes ranging from compulsive addictive-like 

aggression seeking to aggression avoidance (Golden et al. 2016, 2017b). Unfortunately, the 

use of outbred strains precludes the use of genetically defined Cre-recombinase based 

methods. To overcome this, we have introduced a hybrid breeding strategy using the F1 

hybrid offspring derived from an inbred strain of interest and an outbred CD-1 (Golden et al. 

2017a; Aleyasin et al. 2018). Following behavioral phenotyping for baseline reactive and 
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appetitive aggression levels between inbred and hybrid populations, as well as molecular 

phenotyping for appropriate transgene expression, this approach introduces genetic 

selectivity to innately aggressive mice populations. We propose that this approach, in 

combination with more traditional but time-consuming backcrossing of Cre lines onto 

outbred strains or the impending development of outbred CRISPR transgenic lines, will 

provide a strong foundation for aggression research moving forward.

2C. Unconditioned vs. conditioned aggression

The conditioned place preference (CPP) procedure has historically been used to evaluate the 

rewarding effects of drugs and alcohol (Beach 1957; Mucha et al. 1982). In this procedure, 

one distinct context is paired with the conditioned stimulus while another context is paired 

with the unconditioned stimulus. During a subsequent stimulus-free test, the laboratory 

animal chooses to spend time within the conditioned or unconditioned context. An increase 

in preference for the conditioned stimulus paired context is indicative of rewarding effects 

(Bardo and Bevins 2000). More recently, CPP procedures have been developed to assess the 

relative reward of affiliative social interactions (Panksepp and Lahvis 2007; Dölen et al. 

2013; Goodwin et al. 2018).

Similarly, based on studies in female Syrian hamsters (Meisel and Joppa 1994) and male 

outbred OF-1 mice (Martínez et al. 1995), we have adapted a CPP procedure in combination 

with the resident-intruder social defeat procedure (Miczek et al. 1982; Kudryavtseva et al. 

1991; Golden et al. 2011) to study aggression reward in CD-1 mice (Golden et al. 2016). 

Using this method, we first categorized unconditioned reactive aggression in adult CD-1 

male mice through repeated daily resident-intruder assays with adolescent submissive 

C57BL/6J intruder mice. Mice that attacked the intruders during these screening assays 

(70%) were termed aggressors, while mice that did not attack (30%) were termed non-

aggressors. We then evaluated conditioned aggression motivation using the aggression CPP 

assay. Mice that displayed aggression during the initial screening tests developed aggression 

CPP, while those that did not attack the intruders demonstrated conditioned place aversion 

(Golden et al. 2016). In a series of follow-up experiments, we parametrically explored the 

aggression CPP phenomenon and observed several key findings. First, based on the 

observation that unconditioned reactive aggression falls along a continuum in CD-1 mice, 

we characterized individual differences in aggression CPP by testing a third phenotype, 

termed “variable aggressors,” composed of mice that performed inconsistently when 

repeatedly exposed to the resident-intruder procedure (Golden et al. 2017a). The variable 

aggressive mice exhibited significant, although weaker, aggression CPP, suggesting that 

repeated unconditioned aggression experiences can transform non-rewarding aggressive 

encounters into a rewarding experience. Second, aggression CPP is a learned phenomenon 

that can be acquired even by initially non-aggressive mice. Specifically, we exposed a large 

cohort of non-aggressors to 10 days of repeated resident-intruder testing and found that 50% 

transitioned to variable aggressors and exhibited aggression CPP. Lastly, aggression CPP is 

persistent, lasting several weeks following the final condition session (Golden et al. 2017a).

Notably, the portion of CD-1 mice that fail to show aggression is small and has not been the 

focus of study due to the difficulty in screening animals and filling group sizes. Advances in 
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automated behavioral tracking, however, may be able to distinguish these phenotypes at an 

earlier age, alleviating these restrictions, as will be discussed in the second part of this 

review.

2D. Addiction-like aggression behavior and relapse

Beyond measures of reactive aggression and conditioned aggression reward, several groups 

have developed operant tasks that measure appetitive aggression. The Miczek group has 

designed an operant conditioning panel including active and inactive nose-poke ports that 

can be introduced into the home cage of outbred CFW mice. The resident mice are trained to 

nose poke on fixed ratio and fixed interval schedules of reinforcement to attack intruders 

(Fish et al. 2002, 2005; Bannai et al. 2007). The development of operant aggression tasks 

has allowed the pharmacological decoupling of aggression seeking versus aggression 

consumption behaviors. The Miczek group reported that the GABAa positive allosteric 

modulator allopregnanolone increases operant response rates at lower doses than are 

required for increased attack behaviors (Fish et al. 2002), but that the effects are inhibited by 

the rise in corticosterone that are necessary for both operant responding and escalated 

aggression behaviors (Fish et al. 2005). While alcohol administration increases the 

motivation to fight, these effects are distinct from fighting performance and were not 

impacted by the antagonism of NMDA or AMPA receptors (Covington et al. 2018). 5-HT1b 

receptor agonism was found to decrease attack intensity without changing operant 

responding (Bannai et al. 2007).

The Kennedy group subsequently replicated and extended these results, finding reliable 

operant aggression self-administration in mice under progressive ratio, differential 

reinforcement of low rate behavior, and variable ratio reinforcement schedules (Couppis and 

Kennedy 2008; May and Kennedy 2009). Local nucleus accumbens dopamine receptor 1 or 

2 antagonism in Swiss Webster mice inhibited both operant responding and select attack 

behaviors (Couppis and Kennedy 2008), and we have found similar results following 

chemogenetic inhibition of dopamine receptor (Drd) type 1, but not type 2, in hybrid F1 

CD-1 x Drd1-Cre or Drd2-Cre mice (Golden et al. 2019). Extensions of these operant 

procedures have also shown that animals rapidly cease aggression self-administration when 

confronted with a non-submissive intruder (Falkner et al. 2016), further highlighting the 

necessity of winning in promoting aggression reward.

Pathological aggression in humans mimics cardinal features of drug addiction. Aggressive 

encounters are often sought despite severe negative consequences, pathological aggression 

develops only in a minority of individuals (Lacourse et al. 2002; Provencal et al. 2015), and 

recidivism rates for violent offenders who are incarcerated for repeat violent offenses are 

similar to the relapse rates of individuals who take addictive drugs (Anthony et al. 1994; 

Ducrose et al. 2014). Such cardinal features have been reverse-translated from the clinic to 

create animal models of addiction-like behavior. Deroche-Gamonet (2004) used a 

combination of operant procedures including fixed and progressive ratio tasks, as well as 

fixed ratio with cue-contingent shock punishment, within a rodent model of cocaine 

addiction that has high face validity to the DSM IV criteria (Deroche-Gamonet 2004). In a 

cohort of rats that initially showed equal levels of cocaine self-administration and 
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sensitization, 17% of animals went on to show addiction-like indicators including difficulty 

stopping or limiting intake, high motivation for access, and continued use despite negative 

consequence. These measures also correlated with relapse propensity (Deroche-Gamonet 

2004; Piazza and Deroche-Gamonet 2013). Based on the above considerations, we have 

developed a modified operant chamber to test relapse to aggression seeking following (i) 
home-cage forced abstinence (Pickens et al. 2011), (ii) voluntary choice-based abstinence 

(Caprioli et al. 2015), and (iii) punishment-induced abstinence (Krasnova et al. 2014; 

Marchant et al. 2019).

Using this approach, we have shown that preclinical addiction models can be used to 

identify the neural mechanisms controlling appetitive aggression and relapse, as well as 

pathological or compulsive manifestations of aggression (Golden et al. 2017b). About 70% 

of aggressive mice learn to lever-press for aggressive interactions, and using several gold-

standard models derived from the preclinical addiction literature, we observed aggression 

relapse after forced abstinence, punishment-induced abstinence, or choice-based voluntary 

abstinence that persists long after the last aggressive act. Through cluster analysis of the 

aggression-related measures we also identified a subset of mice that met criteria previously 

developed to denote compulsive addiction in rodent models (Deroche-Gamonet 2004). 

Specifically, the cluster analysis identified a subset of compulsive addiction-like aggressive 

mice (~19%) that exhibited intense operant-reinforced attack behavior, decreased likelihood 

to select an alternative palatable food reward over aggression, heightened relapse 

vulnerability and progressive ratio responding, and resilience to punishment-induced 

suppression of aggression-reinforced operant responding.

Importantly, this study found that contingent punishment is effective for suppressing 

aggression-seeking behavior in the majority of aggressive mice, but not in those exhibiting 

compulsive aggression-seeking behaviors, and ultimately fails to prevent spontaneous 

recovery of aggression-seeking following extended abstinence in nearly all aggressive mice. 

These data are especially interesting in light of reports that, in rodents, footshock elicits both 

unconditioned aggression (O‟kelly and Steckle 1939; Azrin et al. 1967) and Pavlovian 

conditioned aggression to a footshock-paired tone (Vernon and Ulrich 1966). However, work 

in non-human primates (Ulrich et al. 1969; Azrin 1970) and rats (Baenninger and Grossman 

1969; Roberts and Blase 1971) have shown that mechanical pain or shock-induced 

aggression is suppressed by contingent, but not non-contingent, shock punishment. Further, 

non-contingent footshock inhibits aggression in dominant but not subordinate mice 

(Frischknecht et al. 1985). Together, and within the common context of „punishment as a 

tool to prevent aggression‟, these data suggest greater nuance and present areas for future 

study within the context of adaptive and maladaptive compulsive aggressive behavior.

2E. Conclusions

The recent renaissance in aggression research has been assisted by the integration of 

carefully designed behavioral assays, derived from animal models traditionally used to study 

compulsive drug use and relapse in the addiction field, and modern neuroscience techniques 

such as chemogenetics (Coward et al. 1998; Armbruster et al. 2007) and optogenetics 

(Boyden et al. 2005). These manipulations have begun to help us understand the neural 
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regions driving attack behavior and aggression salience (Miczek et al. 2001; Falkner et al. 

2016; Han et al. 2017; Stagkourakis et al. 2018; Golden et al. 2019a), but the timescale of 

neural manipulations and recordings necessitate higher resolution behavioral scoring than 

hand-scoring is able to consistently and reliably provide. Both aggression seeking and 

consumption phases of behavioral assays will benefit from more rapid, reliable and non-

subjective quantification of behavior. Within the field of pharmacology, real-time 

quantification and behavioral prediction are necessary for closed-loop manipulations that 

can causally differentiate the behavioral sequence constituents of reactive and appetitive 

aggressive behavior. Specific to current operant procedures, such approaches will allow a 

detailed understanding of the sequala of behavioral events that occur after an operant action 

is contingently reinforced with an intruder. All of these time locked events, at previously 

unfeasible time scales and objectivity, may provide additional information on the 

motivational state of the aggressor and the neural mechanisms guiding this behavior.

Currently, aggression consumption outcome measures are typically restricted to latency to 

first attack, or proportion of attack versus non-attack behaviors. Such simplifications leave 

valuable ethological data unexplored, but these analytical omissions have been necessary 

due to the complexity of aggression behavior and the length of time and training required to 

accurately manually score assays. Species typical attack behavior in mice generally includes 

bites directed toward the back and flanks of intruder mice, and decreased attack behavior 

upon displays of submission by an intruder. Additionally, shifts toward more damaging bite 

locations or continued attack despite submission can both be indicative of escalated 

aggression (Takahashi and Miczek 2014; Newman et al. 2018). Automated behavioral 

classifiers can simultaneously measure these and other behaviors, of both the resident and 

intruder animal, allowing for a richer ethological continuum. The classifiers - once validated 

– can be curated and disseminated through online repositories, which can eliminate observer 

variability and present significant opportunities for cross-site standards within behavioral 

analyses. Accessible classifiers, that are fast, operational across labs - and interpretable and 

explainable (Table 1) - also has obvious benefits for transparency and scientific rigor.

We and others propose that open source machine learning techniques will allow for rapid, 

high-throughput explorations of the incredible nuance of these behaviors without sacrificing 

accuracy. The integration of these automated behavioral classifiers will overcome the hurdle 

of hand scoring which has bottlenecked the field since its emergence.

3. Machine learning

3A. Embracing machine learning

Automated video assessments can exceed human performance (Gris et al. 2017), and 

behavioral classifiers increase throughput and consistency (Schaefer and Claridge-Chang 

2012) in addition to reducing human bias and anthropomorphism in scoring (Robie et al. 

2017). The development of specialized machine learning behavioral classifiers have 

uncovered previously unknown behavioral repertoires in animals including mice, drosophila, 

bats, and C. elegans (Vogelstein et al. 2014; Wiltschko et al. 2015; Rudolf et al. 2019; Zhang 

and Yartsev 2019). Markerless pose estimation and behavioral classification algorithms are 

rapidly improving, and many of the requisites are met for expanding machine learning 
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approaches to classify complex social behavior. A key component to the adoption and 

success of these efforts is promoting open source packages that can be easily and widely 

adopted throughout the behavioral neuroscience community.

There are several requirements for the ready adoption of machine learning approaches:

1. Ease of use: The field of computational neuroethology is advancing at rapid 

pace, such that the ability of many behavioral neuroscientists to take advantage 

of these pipelines are curtailed by their skill behind a command line. Many of the 

recent additions to the field such as DeepLabCut (Mathis et al. 2018) and 

DeepPoseKit (Graving et al. 2019), however, provide graphic user interphases 

(GUIs) that allow the user to avoid setting hyperparameters or organizing 

projects via command line entries. Programs with easy installation and 

approachable graphical user interfaces will open doors for labs without easy 

access to computationally inclined individuals.

2. Generalizability: Behavioral assays within and between labs can often be filmed 

under different lighting conditions, with animals and backgrounds shifting in 

hues, using variable hardware and acquisition parameters such as frame rate, 

resolution, color scales, and video format. Many current implementations of 

machine learning for animal behavior (Table 2) require specialized hardware 

setups that can be prohibitively expensive or challenging to implement and scale-

up for high-throughput behavioral assays, and often do not generalize well from 

one preparation to another (Anderson and Perona 2014). Machine learning 

approaches that can use standard, readily accessible recording hardware without 

the need for specialized builds are vital for generalizability and comprehensive 

implementation.

3. Cost management. Current pose estimation and behavioral classifier programs 

benefit from the use of depth cameras, multiple filming angles, specialized 

acquisition hardware, and proprietary software. Access to high-end analytical 

platforms, either in the form of cloud-based or local solutions, are a requirement 

for generating both tracking and classifier models. These costs propel 

computational neuroethology out of the reach of many behavioral neuroscience 

labs. However, the behavioral assays commonly utilized for the study of 

aggressive behavior are well defined and often recorded with a single camera, 

making it possible to generate and share „base‟ tracking and classifier models 

that preclude the need for individual labs to heavily invest in specialized 

hardware or commercial software.

4. Accuracy. At a minimum, automated classifiers need to meet the accuracy of 

manual annotation conducted by highly trained observers. Regardless of the 

adoption of machine learning techniques, the ability to consistently recognize 

behaviors of interest in model species is integral to behavioral research, and the 

experimenter aptitude to recognize significant behavioral events determines the 

success in machine model generation, tuning and validation. We have found, 

however, that even observers trained to high rates of interrater reliability on strict 

operational definitions of behaviors (Table 3) may occasionally miss shorter 
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behavioral bouts when scoring long video recordings (e.g., 20k+ video frames). 

Machine learning approaches provide the advantage of never tiring, and in our 

experience, classifiers consistently detect shorter behavioral bouts missed by 

human observers. While ideal algorithms for specific tasks are typically 

dependent on data structure and the computational knowledge within a lab, we 

and other labs have found that supervised approaches (Nilsson et al. 2020), such 

as random forest machine learning algorithms, provide an appropriate balance of 

ease of use, interpretability, explainability, and accuracy that often exceeds 

human annotation accuracy.

5. Easy expansion of training sets. Ethological datasets provide an interesting 

challenge for machine learning. Training data provided to algorithms must be 

representative of the testing data, but behavioral assays are often conducted in 

discrete cohorts with unique properties. Training sets should contain a balanced 

mix of control and treatment videos, and diverse and unstable environmental 

influences (cage change schedules, seasonally noisy HVAC systems, etc.) must 

be considered as potential confounds if not represented in the original classifier 

training data. Specific to pharmacological research, when individual animal 

movement characteristics and social behaviors may be are altered by 

pharmacological interventions, it is not feasible to create representative training 

sets from the outset. We and others have approached this challenge by creating 

the ability to easily add additional hand annotated videos (several short videos 

are typically sufficient) to training sets, which can then rapidly be used to create 

updated, iterative, behavior classifiers and animal tracking models.

6. Interpretability. Interpretable methods are of outmost importance for 

reproducibility, transparency and rigor (Table 1). Methods for creating accurate 

classification algorithms in behavioral neuroscience should provide transparent 

processes allowing for clear understanding of how classifications are made and, 

ideally through GUI control, the capacity to titrate model parameters to 

operationalized standards. This may include the ability to visualize decision 

paths and the importances of individual independent variables or features for the 

classification result and how the data and features are balanced within the model. 

These concepts have however – traditionally – not always been favored within 

computer and data sciences (Rudin, 2019) and may introduce additional 

challenges when creating accessible methods within preclinical social behavior 

and aggression research.

Aggression behavioral assays provide excellent insight into the current capabilities and 

limitations of machine learning algorithms due to the numerous technical challenges they 

present. Behavioral components often include a very rapid succession of bites, lunges, 

pursuits, anogenital sniffing, tail rattles, lateral threats, boxing, and occasionally head shakes 

and prosocial behaviors such as grooming, among many others. These sequences can be 

further reduced to levels of granularity which may or may not convey important information 

(e.g., face bite versus flank bite). Furthermore, on video, animals frequently occlude each 

other and significantly change their body shapes as they aggress, creating difficulties for 

pose estimators. To our knowledge, two groups have published work using automated 
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classifiers for evaluating aggression behaviors. Hong et al., 2015 was able to classify attack 

behaviors in male mice of different colors using a multi-camera apparatus, and Burgos-

Artizzu et al., 2012 achieved accuracy rates of ~61% using a multi-camera apparatus with 

two unmarked mice of the same color. Our lab has recently released Simple Behavioral 

Analysis (SimBA) (Nilsson et al. 2020), an automated behavioral classification technique for 

aggressive, submissive, and social behaviors, that was built upon pose-estimation and the six 

principles outlined above.

The remainder of this review will discuss the current state of machine learning for social 

behavior classification in rodents in terms of aggression behavior, and the progress of the 

field toward meeting the goals discussed above.

3B. Supervised versus unsupervised learning

Many machine learning techniques for behavioral analysis first identify the position of 

animals frame-by-frame in a video via pose estimation or background subtraction. In 

particular, accurate and rapid pose-estimation via recently developed and generalizable 

convolutional neural network architectures - accessible through packages such as 

DeepLabCut (Mathis et al. 2018), DeepPoseKit (Graving et al. 2019), and LEAP (Pereira et 

al. 2019) - provide a platform for generating the pose-estimation data needed to create rich 

feature sets required for machine classification of complex social behavior. For example, the 

predicted poses may be used to estimate distances between animals, their velocities, angles 

and accelerations across rolling windows and this may correlate with human annotated 

instances of aggressive behavior and used in further modelling techniques (Table 4). These 

positional data are then analyzed to cluster statistically similar images that the program 

either identifies as a predefined behavior (supervised learning), or the cluster is studied by 

the experimenter who then adds behavioral labels post-hoc (unsupervised learning).

Unsupervised learning has successfully classified behaviors in tunicates, drosophila, 

individual mice, and pairs of mice after cropping the animals into individual videos 

(Vogelstein et al. 2014; Wiltschko et al. 2015; Klibaite et al. 2017; Rudolf et al. 2019; 

Dolensek et al. 2020). These techniques can be tremendously powerful in identifying the 

inherent structure present in behavior. Because the user does not predefine behaviors of 

interest, these algorithms have been proposed to be less biased than supervised techniques. 

Thus far, unsupervised techniques have resulted in important advances in mouse ethology 

including the identification of facial expressions corresponding to neuronally separable 

emotion states (Dolensek et al. 2020), and novel sub-second behavioral structures 

(Wiltschko et al. 2015). The program B-SOiD has also combined unsupervised t-SNE 

clustering and Support Vector Machines to great success in classifying naturally occurring 

behaviors in single mice, within a pipeline that is readily accessible to non-specialists (Hsu 

and Yttri 2019). The power to identify new behavioral repertoires is alluring and has the 

potential to significantly advance the field of ethology. Unsupervised machine learning tools 

are notoriously difficult to tune and interpret, however, and we propose that they should not 

be a first line option for generalization to labs without significant computational experience.

Training an unsupervised behavioral classifier generally involves feeding many unlabeled 

video frames into a user-defined algorithm which then identifies and separates images into 
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behavioral clusters based on user-defined mathematical requirements for differences and 

similarities. The de Bivort lab has conducted one of the only large-scale direct comparisons 

of unsupervised learning techniques in classifying animal behavior (the leg movement of 

flies) and provides an excellent overview of unsupervised learning techniques (Todd et al. 

2017). A typical pipeline for clustering often involves data pre-processing, dimensionality 

reduction, and cluster assignment (Todd et al. 2017; Datta et al. 2019), though see 

(Wiltschko et al. 2015).

Each of these steps are modular and can be performed using any of several different 

algorithms. Pre-processing can include transformations such as time frequency analysis, 

vector normalization, and wavelet transformation, while dimensionality reduction is often 

accomplished via techniques such as principal component analysis (PCA) or t-distributed 

stochastic neighbor embedding (t-SNE). The final clustering algorithms, such as k-means 

clustering or Gaussian mixture modeling, are used to group the data into clusters that 

researchers can apply behavioral labels towards (Todd et al. 2017). The flexibility of 

unsupervised learning approaches at each step makes them very powerful in adapting to 

different datasets, but tuning parameters requires careful consideration.

Importantly, unsupervised learning techniques do not have built in performance metrics. 

Tuning them to high perceived accuracy (e.g., all user defined attacks are also defined by the 

algorithm as an attack) is in essence training the model to meet particular output 

benchmarks, i.e., creating a supervised algorithm (Brown and de Bivort 2018). Some classes 

produced by an unsupervised approach may also be difficult for users to define as 

recognizable behaviors. Todd et al., 2017 propose evaluating networks via parameters such 

as minimum dwell time within a behavior class and the reliability of the algorithm when 

trained multiple times on the same data set (Todd et al. 2017; Brown and de Bivort 2018). 

These parameters acknowledge the real-world constraints on behavior and the need for 

replication while imposing less bias onto the model in terms of expected output. We propose 

that any implementation of algorithmic features during unsupervised training should be 

accompanied by a description of the experimental objectives driving their necessity.

Supervised learning algorithms require greater user oversight in that users are required to 

annotate training data that the classification system can use to learn to correctly label 

images. Several pose estimators are validated for use in drosophila (Branson 2014; Berman 

et al. 2014; Günel et al. 2019), and tools such as DeepLabCut (Mathis et al. 2018), LEAP 

(Pereira et al. 2019), and DeepPoseKit (Graving et al. 2019) have been validated in mice and 

other non-human mammals. DeepLabCut and LEAP use variations on the supervised 

learning technique of deep neural networks to estimate animal pose, while the DeepPoseKit 

uses a novel Stacked DenseNet algorithm. For in-depth explanations of these estimators, see 

(Mathis et al. 2018; Graving et al. 2019; Pereira et al. 2019; Nath et al. 2019; Mathis and 

Mathis 2019). In many of these packages, users label body-parts at set coordinates, and these 

training labels are used to generalize computed labeling rules to future images. Pose 

estimators are powerful tools in identifying finer points of animal activity, and are able to 

identify phenotypes not detected with simply trajectory tracking (Hong et al. 2015). Notably, 

new packages can include project management and image annotation GUIs, which greatly 

enhances the user experience and has resulted in more widespread adoption.
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Supervised learning techniques can be used for both pose estimation and behavioral 

classification, but unlike unsupervised algorithms, can only classify predetermined behaviors 

and cannot identity novel behavioral repertoires. Training accurate supervised machine 

learning classifiers requires the careful, frame-by-frame annotation of a behavior of interest. 

Human variability and annotation mistakes, such as erroneous labelling of aggression events 

as non-aggression events, can generate significant noise that propagate to future machine 

analyses (Frenay and Verleysen 2014). It is therefore important to have precise behavioral 

operational definitions that encompass and exclude the behavioral events and non-events, 

respectively, and we present examples of how such precise operational definitions may look 

in Table 3. While such precise descriptions are not current standard laboratory practice, and 

functionally translate to extra time hand-annotating videos, they can promote the 

introduction of standardized cross-laboratory definitions through shareable classifier 

repositories that ultimately increase replicability as discussed previously.

Several behavioral classifiers using supervised machine learning techniques have been 

validated in mice, including JAABA (Kabra et al. 2013), Autotyping (Jhuang et al. 2010), 

and SimBA (Nilsson et al. 2020). Each uses simple, single camera setups, with significant 

differences in underlying machine learning approaches to creating predictive classifiers. 

JAABA classifies walking and following behavior in groups of same colored mice using a 

boosting ensemble algorithm (Kabra et al. 2013), and Autotyping uses a combination of 

Hidden Markov Model and Support Vector Machines to classify a variety of home cage 

behaviors in single-housed mice (Jhuang et al. 2010). SimBA uses random forest classifiers 

to classify aggressive, defensive, and other social behaviors in mice following pose-

estimation (Nilsson et al. 2020). Some programs also use multiple cameras, depth cameras, 

or other specialized setups for behavioral classification. The Anderson Lab has developed a 

random forest classification technique which can identify attack, mounting, and investigation 

behaviors in differently colored mice using multiple depth sensing cameras (Hong et al. 

2015). Boosting ensemble algorithms have also been used to classify social movement, 

attack, copulation, exploratory, and drinking and eating behaviors with integrated top and 

side view filming (Burgos-Artizzu et al. 2012).

Whether implementing supervised or unsupervised machine learning techniques, there is a 

strong argument for using algorithms that are easily interpretable (Rudin 2019). Black box 

models have been helpful in image analysis and uncovering new behavioral patterns, but the 

inability to readily understand the underlying assumptions of algorithms is a detriment. 

Black box models - not unlike prevalent behavioral protocols - can appear to be valid and 

accurate (strong face validity) whilst measuring factors unrelated to the phenomenon it 

claims to measure (weak construct validity). Examples of such fallacies, with more trivial 

consequences, would include convolutional neural networks that „successfully‟ discriminate 

Husky dogs and wolfs based predominantly on only the presence or absence of snow in the 

image (Ribeiro et al. 2016), or networks generating „successful‟ gender classifications from 

iris texture images through the presence or absence of mascara (Kuehlkamp et al. 2017). 

More seriously, black box models are notorious for aggregated racial and social-economic 

biases (Mittelstadt et al. 2016; Rudin 2019; Obermeyer et al. 2019); while clearly a different 

class of concern than what is anticipated in preclinical behavioral computational 

neuroethology, the cautionary tale remains relevant and important. Explainable and 
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interpretable models should thus be adopted as best scientific practice (Rudin 2019) to allow 

for user oversight of the parameters guiding decision processes.

While supervised learning techniques require users to predefine behaviors of interest, they 

are often much easier to tune and interpret than unsupervised learning techniques, 

particularly for labs without statisticians or computer scientists on staff. In the spirit of ease 

of use, generalizability, and accuracy, we propose that supervised learning techniques are a 

good starting point for the automated examination of aggressive behaviors.

3C. Common classifying algorithms for supervised learning

Within supervised learning, there are many different algorithms from which to choose, and 

no method is universally superior to the others (Hand 2006). The appropriate selection 

depends on the structure, noise, and biases within each dataset, as well as the threshold for 

acceptable training duration and willingness to troubleshoot parameters (Hand 2006; 

Anderson and Perona 2014; Egnor and Branson 2016; Gris et al. 2017; Akay and Hess 

2019). Common techniques for behavioral and image classification include variations of 

Neural Networks, Support Vector Machines, Gradient Boosting Machines, Random Forests, 

and Hidden Markov Models. All of these algorithms have potential benefits and may 

outperform others on specific datasets, but we and others have found that random forest 

classifiers provide high accuracy classification (Breiman 2001; Liaw and Wiener 2002; 

Nilsson et al. 2020) with the added benefit of interpretability, being easy to tune, and robust 

against overfitting. Here we describe several of these algorithms and highlight the potential 

pros and cons they possess regarding the classification of aggression-related behaviors.

Neural Networks (Hopfield 1982; LeCun et al. 1989)—Neural networks or 

convoluted neural networks are typically used for large datasets with a high number (tens of 

thousands) of features and observations, as well as noise. Features may include the trajectory 

of individual body parts, Euclidean distances, body part movement over a small frame of 

time, etc. Users provide an input layer of data to the neural network and define the desired 

categories in the output layer. The network then computes additional hidden layers between 

the input and output layers to correctly classify input data into the appropriate output 

categories or classifiers. Hidden layers are advantageous as specific features are not user-

selected for inclusion within the algorithm, but the cost is an absence of information on what 

the resulting classifications are ultimately based on. Neural networks can be challenging to 

interpret and tune, and similar performance can be achieved with other methods (Lietman et 

al. 1999; Nitze et al. 2012; Liu et al. 2013). Many programs, including the pose estimators 

described above, successfully use deep neural networks for pose and/or behavioral 

classifications (Karpathy et al. 2014; Krizhevsky et al. 2017; Mathis et al. 2018; Pereira et 

al. 2019). Due to the lack of information regarding feature weights, we propose that more 

transparent algorithms which perform at similar levels are preferable for behavioral 

classification derived from tracked features.

Random Forests (Breiman 2001; Liaw and Wiener 2002)—Random forests are a 

type of ensemble algorithm. Ensemble algorithms are composed of many independently 

trained weak models which are combined to make strong predictions. Random forests rely 
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on the bootstrapping of both (i) subsets of data, and (ii) predefined features to make a 

powerful forest of decision trees than can then vote on the classification of a behavior. For 

example, a decision tree in a random forest starts with a subset of data (e.g., 500 frames of 

50,000) then uses a subset of the features (e.g., 10 out of 100 features) to split the data into 

yes/no classifications. Random forests are useful because each branch is created using the 

feature which provides the most information, and by combining these data from the forest, it 

is possible to determine which features were most important for creating the behavioral 

classification. This technique is computationally rapid as the trees are independent and can 

be built in parallel, and they are unlikely to overfit data based on noise (Breiman 2001).

One weakness of random forests is their inability to natively support biased datasets. These 

datasets are common in behavioral videos, in which most frames do not contain the behavior 

of interest. For example, in a five-minute video filmed at 80FPS with 10 total seconds of tail 

rattle, this would result in 23,200 frames with no tail rattle, and 800 frames with tail rattle. 

Constructing a random forest with these data as-is would mostly construct trees with no or 

very few instances of tail rattle frames. In order to train the random forests more robustly, 

over-sampling and/or under-sampling techniques (Chawla et al. 2002; Batuwita and Palade 

2013) can be used to balance the data.

Gradient Boosting Machines (Freund and Schapire 1997; Friedman et al. 2000; 
Friedman 2001)—Gradient boosting machines build decision trees iteratively, attempting 

to fix erroneous classifications after each node split by finding a different feature which 

better classifies incorrectly classified data. Gradient boosting can be more robust than 

random forests if tuned correctly but are more prone to overfitting data and incorrectly 

identifying noise, such as pose misestimation, as legitimate behavioral data. While pose 

estimation is often highly accurate, there are outliers that may cause overfitting when fed 

into a gradient boosting machine. With more accurate pose estimation and highly consistent 

filming conditions across labs, gradient boosting machines may provide superior 

classification than random forests, but it is difficult to currently meet these conditions and 

maintain generality of video recording conditions. While the use of gradient boosting 

machines is a good goal, their widespread adoption may depend on how well „base‟ models, 

and their underlying recording acquisition parameters, are standardized across laboratory 

recording environments.

Support Vector Machines (Cortes and Vapnik 1995)—Support vector machines are 

frequently used, and work best with, small datasets containing few outliers (Chih-Wei Hsu 

and Chih-Jen Lin 2002; Xu 2006). Using multiple tuning parameters (kernel, regularization, 

gamma, and margin), support vector machines identify clusters of similar and dissimilar data 

in multidimensional space and find the regression line that best separates clusters based on 

the training data. Understanding linear algebra and principle component analysis, in addition 

to having appreciable patience with tuning parameters, is helpful when using support vector 

machines. Like random forests, support vector machines do not work well natively with 

biased data sets, which can similarly be overcome through re-balancing and over- and under-

sampling techniques.
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There are few comparative studies of classification algorithms due to lack of generalization 

to other datasets, but in those that exist, support vector machines do not typically perform as 

well as random forests or gradient boosting machines (Caruana and Niculescu-Mizil 2006; 

Caruana et al. 2008). Due to the larger number of tuning parameters involved in support 

vector machines, and the similar or superior classification performance by random forest 

classifiers, we suggest that random forests may be a better starting point for creating 

generalizable and easily adopted classifiers.

Hidden Markov Models (HMM) (Rabiner and Juang 1986)—HMMs can be 

integrated with supervised or unsupervised techniques and excel at finding patterns in small 

sequences of data. These models have recently been extended for use in behavioral 

classifications due to the similarities from frame to frame of video, and the inherent structure 

of behavior (Carola et al. 2011; Wiltschko et al. 2015; Arakawa et al. 2017). HMMs use 

hidden weights to predict the probability of a transition from one state to another. For 

example, if a resident is biting the flank of an intruder in one frame, it is unlikely to be 

grooming its face in the next frame. As indicated by the name of the algorithm, behavioral 

classifications depend on a hidden state. Anderson & Perona, 2014 raise an interesting point 

that HMMs may be valuable in objectively measuring behaviors resulting from the “emotion 

state” of an animal. HMMs have been used in rodent aggression studies to investigate the 

effects of context (intruder behavior) on the aggression behavior of a home cage resident to 

parse species typical versus escalated aggression phenotypes (Haccou et al. 1988; Natarajan 

et al. 2009), and may provide an interesting path forward for understanding contextual 

aggression. While the hidden states can potentially be found via maximum a posteriori state 

estimations (Allahverdyan and Galstyan 2009), we propose that more inherently 

interpretable algorithms are preferable for initial behavioral classification.

3D. Promising directions

We strongly reiterate that there is no single correct pipeline for machine learning 

classification of animal behavior, but rather that the most successful approaches will likely 

use multiple pipelines in parallel while taking advantages of their pros and attempting to 

diminish their cons. The powerful techniques discussed above are summarized in Table 5, 

and the choice between them often revolves around the applicable knowledge within a lab 

and which algorithm best classifies data during pilot testing (Table 5). To facilitate 

generalizability to new labs, however, random forests seem like an excellent option due to 

their relatively few input parameters, robustness to noise, relative interpretability and 

explainability, and high performance on a wide array of data. A future goal of automated 

behavioral analysis is long-term real-time tracking of individuals within groups in a 

naturalistic setting, and many groups are currently working with these and other techniques 

to solve parts of this problem.

Distinguishing similarly looking animals has historically been a challenge for automated 

pose estimators, and ultimately problematic for the computational study of social behavior 

as many experiments require the use of nearly identical looking animals. Although not a 

problem when using outbred CD-1 mice as residents and C57 mice as intruders, due to their 

difference in coat color, this does preclude the generality of machine learning approaches to 
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many rodent social behavioral assays. There are several recent programs that work to track 

the identity of individual and similarly appearing animals in groups over time, including 

ToxID, MoST, and idTracker.ai (Thanos et al. 2017; Rodriguez et al. 2017; Romero-Ferrero 

et al. 2019). Additionally, social tracking extensions of the program LEAP (sLEAP) and 

DeepLabCut have recently been released, and provide pose estimation for multiple 

interacting animals (Mathis et al. 2018; Pereira et al. 2019) by taking advantage of 

algorithms such as optical flow (Brox et al. 2006), part affinity fields (Cao et al. 2017), and 

deep-learning. The program idTracker uses separate segmentation and identification 

networks to individually identify animals and their trajectories and back propagation 

techniques that identify animals during partial occlusions (Pérez-Escudero et al. 2014).

Beyond image detection, there are several groups working to integrate RFID tracking and 

video tracking (Weissbrod et al. 2013; de Chaumont et al. 2019; Peleh et al. 2019). Live 

Mouse Tracker (de Chaumont et al. 2019) uses a combination of RFID tracking and depth 

imaging and has been validated with groups of up to 4 mice in a semi-natural environment 

over time. These programs are highly influential in allowing for the long-term study of 

group dynamics in large, enriched home cage environments and currently provide the state-

of-art tracking solutions for mice of similar appearance. A commercial version of this 

program, RFID-Assisted SocialScan, is also available and integrates a large behavioral arena 

with attached nest boxes (Peleh et al. 2019). Together, these programs can track the identity 

of individuals while examining social hierarchies over long periods of time without 

excessive manual oversight or behavioral scoring. However, these approaches require 

significant investments in highly specialized hardware.

Several groups pioneering pose estimation are also continually working to increase the speed 

of their algorithms to achieve real-time results (Graving et al. 2019; Mathis and Mathis 

2019). Currently, ToxID and Sensory Orientation Software are able to provide real time 

tracking of individual mice and their trajectories (Gomez-Marin et al. 2012; Rodriguez et al. 

2017), and DeepLabCut has recently been used for real-time pose estimation (Forys et al. 

2018). Extending these platforms for in depth real-time behavioral classification in mice will 

allow for the evaluation of behavior on the timescale of neural activity and allow fully 

“closed-loop” recording and manipulation studies. The Stytra package is currently validated 

in zebrafish larvae, and is able to both analyze pose and activity and rapidly provide stimuli 

to the experimental animal based on its activity (Stih et al. 2019).

These open source packages are continuing to improve and emerge, and integration between 

them is becoming easier. Pose estimators that can rapidly track individual animals despite 

multiple occlusions is an essential first step for the automation of aggression assays, and our 

lab has focused heavily on exploring random forest classifiers for the classification of 

aggression behaviors. Integrating the pose estimators above with high-accuracy and easy to 

use classifiers in an open source GUI allows for the generalization of these techniques across 

labs, while maintaining the ability to take advantage of newer tracking technologies as they 

emerge.

For example, our lab has recently developed an open-source graphical workflow (for more 

information, see the SimBA GitHub repository) for creating supervised decision ensembles 
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from body-part tracking data generated through convolutional neural networks in accordance 

with the considerations and principles discussed herein (Nilsson et al. 2020). The package 

incorporates accessible menus for pre-processing and annotating videos, generating / 

deploying classification algorithms, with advanced machine learning validation, tuning and 

visualization tools. The models created through this software – together with extensive 

documentation and tutorials - are available for the scientific community through online 

repositories and we hope that this can spur further data sharing efforts that boosts the 

accuracy and scope of machine classification techniques in pre-clinical aggression research.

4. Conclusion

Aggression is an immutable force that contributes to the suffering and death for millions of 

people around the world (Sumner et al. 2015). While aggression can be highly rewarding 

and pursued despite adverse consequences (Chester and DeWall 2016; Gan et al. 2019), as 

well as sought after lengthy abstinence (Ducrose et al., 2014), aggression is not generally 

viewed in the medical profession or by the public as a component of neuropsychiatric 

disease states (Golden et al., 2017a; Golden and Shaham, 2018). Indeed, in the recent 

formulation of Research Domain Criteria (RDoC) of NIMH the term aggression does not 

appear under any of the research domains. Not surprisingly, no progress has been made in 

the treatment of pathological aggression, and little progress has been made using aggression 

as a diagnostic tool for neuropsychiatric comorbidity (Martin et al. 2013). We believe that 

drawing greater attention to the neurobiological mechanisms of maladaptive appetitive 

aggression within the context of neuropsychiatric disease will both act to (i) de-stigmatize 

aggression comorbidity in a manner similar to current approaches to substance abuse 

treatments and (ii) support the identification of novel mechanistic therapeutic approaches, 

which have presently been relegated to neuroleptic dopamine antagonists like haloperidol 

(Ostinelli et al. 2017) that exert their clinical efficacy through the neuroleptic‟s sedative 

effects (Calver et al. 2015). Therefore, we propose that neurobiological and behavioral tools 

used to study drug seeking and relapse should be used to study brain mechanisms of 

appetitive aggression, both preclinically and clinically. Further, expanding beyond reactive 

aggression to incorporate the full spectrum of ethologically relevant aggressive behaviors is 

an essential step in increasing the utility and translation of ongoing preclinical research. 

Machine learning tools enabling high throughput automated behavioral analysis are key to 

pursuing these lines of inquiry at a pace and depth necessary for modern neuroscience 

methods.

Significant progress has been made in developing open source software packages that are 

capable of tracking social behavior over long periods of time and across diverse acquisition 

parameters (Table 5), and we propose that a focus on increasing ease of use, generalizability, 

cost-consciousness, accuracy, and easy expansion of training sets will allow for their wider 

adoption. Such automated scoring promises to remove long-standing bottlenecks within 

aggression research and allow for the high-throughput experiments required for mapping the 

nuance of aggression phenotypes while simultaneously building a common language of 

aggression phenotypes through shared machine models across labs.
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