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Abstract

Background: Substance use disorders (SUDs) are a major public health risk. However, 

mechanisms accounting for continued patterns of poor choices in the face of negative life 

consequences remain poorly understood.

Methods: We use a computational (active inference) modeling approach, combined with multiple 

regression and hierarchical Bayesian group analyses, to examine how treatment-seeking 

individuals with one or more SUDs (alcohol, cannabis, sedatives, stimulants, hallucinogens, and/or 

opioids; N = 147) and healthy controls (HCs; N = 54) make choices to resolve uncertainty within a 

gambling task. A subset of SUDs (N = 49) and HCs (N = 51) propensity-matched on age, sex, and 

verbal IQ were also compared to replicate larger group findings.

Results: Results indicate that: (a) SUDs show poorer task performance than HCs (p = .03, 

Cohen’s d = .33), with model estimates revealing less precise action selection mechanisms (p 
= .004, d = .43), a lower learning rate from losses (p = .02, d = .36), and a greater learning rate 

from gains (p = .04, d = .31); and (b) groups do not differ significantly in goal-directed 

information seeking.

Conclusions: Findings suggest a pattern of inconsistent behavior in response to positive 

outcomes in SUDs combined with a tendency to attribute negative outcomes to chance. 

Specifically, individuals with SUDs fail to settle on a behavior strategy despite sufficient evidence 
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of its success. These learning impairments could help account for difficulties in adjusting behavior 

and maintaining optimal decision making during and after treatment.
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1. Introduction

Substance use disorders (SUDs) are a major public health risk. In the United States, lethal 

drug overdose is the leading cause of accidental deaths (Jones et al., 2013; Rudd et al., 

2016). Risky behavior, and loss of career, relationships, and other sources of well-being in 

SUDs, is thought to derive in part from dysfunctional decision-making processes. 

Maladaptive decision-making has been associated with negative personal long-term 

outcomes in SUDs, including relapse (Passetti et al., 2008; Verdejo-Garcia et al., 2018). 

While evidence-based treatments are available, relapse rates are high, and patients often 

discontinue treatment (Connery, 2015; Hser et al., 2014). Consequently, it is crucial to better 

understand computational processes promoting maladaptive choices within SUDs to 

improve treatment retention/success and reduce relapse rates.

A growing behavioral literature suggests that SUDs show decision-making impairments 

associated with a number of factors, including a focus on short-term outcomes, poor choice 

flexibility, differential learning from rewards and punishments, and memory deficits. For 

example, opioid users are less likely to predict distal future events and more likely to 

continue selecting actions with short-term rewards but larger delayed punishments (implying 

impaired learning to avoid suboptimal choices; (Petry et al., 1998). When compared to 

healthy controls (HCs), opioid users also show reduced sensitivity to losses paired with 

greater responses to known risks (Ahn et al., 2014). Moreover, opioid users perform more 

poorly than HCs while learning to avoid punishment under high memory load (Myers et al., 

2017) and higher ambiguity tolerance predicts prospective opioid use (Konova et al., 2019). 

Both opioid and stimulant (cocaine and/or amphetamine) users are less likely than HCs to 

stick to successful decision strategies and instead: (a) choose to switch responses even when 

a previous response has been rewarding (Myers et al., 2016); or (b) perseverate on responses 

independent of outcomes (Kanen et al., 2019). Similar difficulties in flexibly adjusting 

behavior following punishments have also been reported in other stimulant user samples 

((Ersche et al., 2016; Ersche et al., 2011); but see (Kanen et al., 2019)). In contrast, stimulant 

users appear to exhibit heightened sensitivity to monetary reward (Ahn et al., 2014).

Individuals with multiple SUDs also show neuroimaging evidence of abnormalities during 

risky decision-making that appear consistent with behavioral evidence (Gowin et al., 2013). 

For example, a general blunting of neural responses in stimulant users has been observed 

across several brain regions (as well as consistent behavioral differences) in response to 

negative affective stimuli signaling threat and/or punishment (Hester et al., 2013; Stewart et 

al., 2014). These blunted responses could correspond to the reduced reflection on future 

outcomes and reduced sensitivity to action consequences observed behaviorally, and self-
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report measures also offer consistent evidence of lower sensitivity to punishment in 

stimulant users (as well as marijuana users; see (Simons and Arens, 2007; Simons et al., 

2008)). Jointly, extant behavioral, neural, and self-report evidence thus suggests a pattern of 

reduced future thinking and a reduced ability to learn from negative outcomes in SUDs.

While these studies exemplify progress in identifying potentially meaningful differences, 

current understanding of several aspects of aberrant decision-making in SUDs remains 

incomplete. One area in which further investigation may be useful is how individuals with 

SUDs solve what is known as the explore/exploit dilemma, which has recently been 

highlighted as of potential importance in psychiatric disorders (Addicott et al., 2017; Linson 

et al., 2020). This dilemma arises in cases where decisions must first be taken to gather 

information about the environment, before exploiting knowledge of the environment to 

maximize reward. If an individual “over-exploits,” they will fail to learn better behavioral 

strategies (especially in a changing environment) – and subsequently develop strong habits 

for less adaptive choices. Over-exploration instead reflects an inefficient use of past 

experience to inform subsequent decision-making, and thus a suboptimal preference for 

information-seeking behavior. One factor determining the efficiency in using past experience 

is the rate at which individuals learn (i.e., update beliefs) about their environment after 

making a new observation. A higher learning rate will facilitate learning from negative and 

positive outcomes and induce a faster switch to exploitative behavior in a stable 

environment. One additional distinction concerns different explorative strategies. 

Specifically, individuals can simply act more randomly (“random exploration”) to sample 

the outcomes of different choices; or they can strategically seek out observations that are 

expected to provide the most useful information (“goal-directed exploration”; (Wilson et al., 

2014)). Importantly, goal-directed exploration implies future-oriented cognition, in that 

behaviors are strategically chosen to gather information that would benefit future choices 

one will need to make.

There is a small, but emerging literature on explore/exploit dynamics in addiction. For 

example, nicotine smokers make fewer exploratory choices and evidence a higher learning 

rate (Addicott et al., 2012); moreover, more ingrained smoking habits are associated with 

greater cognitive effort when making exploratory choices (Addicott et al., 2014). Stimulant 

users make choices based primarily on recent outcomes (e.g., which could follow from an 

overly high learning rate (Harle et al., 2015)), while individuals with alcohol use disorders 

show fewer strategic exploratory decisions than HCs (Morris et al., 2016). This is consistent 

with current models of dopaminergic function suggesting that increases in dopamine 

promote (energetic) exploratory behavior, and that the chronic use of dopaminergic drugs 

reduces dopaminergic efficacy, therefore reducing exploration (Beeler et al., 2012). While 

informative, this body of work on addiction remains in its infancy, with only one or two 

studies for a given substance. Replication will be necessary, and it remains unclear whether 

effects are substance-specific or common across SUDs. Further, the distinction between 

directed and random exploration has not been thoroughly addressed. Reduced future 

thinking and learning from negative outcomes in SUDs both suggest reduced directed 

exploration, but this remains to be established.
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Recent work in one area of computational neuroscience, active inference, has focused on 

how individuals make decisions to actively infer and learn about the structure of their 

environment, distinguishing different mechanisms that affect the explore/exploit trade-off 

(Schwartenbeck et al., 2019). These mechanisms include differences in random exploration, 

goal-directed exploration, separate learning rates for wins and losses, and sensitivity to 

information. Because this computational framework allows testing for differences in each of 

these separate mechanisms, we chose to employ this modeling approach to investigate 

potential differences in these computational mechanisms between HCs and SUDs when 

solving the explore/exploit dilemma – with the aim of better distinguishing the mechanisms 

that best account for sub-optimal exploratory behavior.

Participants from the Tulsa 1000 project (Victor et al., 2018), a prospective longitudinal 

cohort study of HCs and treatment-seeking individuals with substance, mood/anxiety, and 

eating disorders, completed a three-armed bandit task designed to assess explore/exploit 

behavior. The Tulsa 1000 has pre-specified exploratory and confirmatory subsamples; SUDs 

(N = 147) and HCs (N = 54) from the exploratory subsample were here extracted for 

analysis based on the presence versus absence of one or more SUD diagnoses (alcohol, 

cannabis, sedatives, stimulants, hallucinogens, and/or opioids). Based on the evidence for 

poor learning and future thinking in SUDs, we expected that, relative to HCs, SUDs would 

solve this dilemma sub-optimally and obtain less reward. Model-based analyses could 

disambiguate whether suboptimal performance in SUDs was due to greater random or 

directed exploration, greater learning rate for wins, lower learning rate for losses, and/or less 

sensitivity to new information – which could inform novel interventions more specifically 

targeting active learning strategies in SUDs. Between-group analyses were performed with 

all SUDs and HCs as well as subgroups propensity-matched on age, sex, and a measure of 

pre-morbid intelligence quotient (IQ) (SUDs: n = 49; HCs: n = 51). Based on prior work, we 

predicted that SUDs would exhibit lower directed exploration and lower learning rate for 

losses than HCs.

2. Methods

2.1 Participants

Participants were identified from the exploratory subsample (i.e., first 500 participants) of 

the Tulsa 1000 (T1000) (Victor et al., 2018), a prospective longitudinal cohort study 

recruiting subjects based on the dimensional NIMH Research Domain Criteria framework. 

The T1000 study included individuals 18–55 years old, screened on the basis of dimensional 

psychopathology scores: Patient Health Questionnaire (PHQ-9 (Kroenke et al., 2001)) ≥ 10, 

Overall Anxiety Severity and Impairment Scale (OASIS (Norman et al., 2006)) ≥ 8, and/or 

Drug Abuse Screening Test (DAST-10 (Bohn et al., 1991)) score > 3. HCs did not show 

elevated symptoms or psychiatric diagnoses. Participants were excluded if they: (a) tested 

positive for drugs of abuse via urine screen, (b) met criteria for psychotic, bipolar, or 

obsessive-compulsive disorders, or (c) reported history of moderate-to-severe traumatic 

brain injury, neurological disorders, severe or unstable medical conditions, active suicidal 

intent or plan, or change in medication dose within 6 weeks. Full inclusion/exclusion criteria 

are described in (Victor et al., 2018). The study was approved by the Western Institutional 
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Review Board. All participants provided written informed consent prior to completion of the 

study protocol, in accordance with the Declaration of Helsinki, and were compensated for 

participation. clinicaltrials.gov identifier: #NCT02450240.

Participants were grouped based on DSM-IV or DSM-5 diagnosis using the Mini 

International Neuropsychiatric Inventory (MINI) (Sheehan et al., 1998). This analysis 

focuses on treatment-seeking individuals with SUDs (alcohol, cannabis, sedatives, 

stimulants, hallucinogens, and/or opioids) with or without comorbid depression and anxiety 

disorders (N = 147), and HCs with no mental health diagnoses (N = 54). Most SUDs were 

currently enrolled in a residential facility or maintenance outpatient program after 

completion of more intensive treatments (mean days abstinent = 92; SD = 56). Table 1 lists 

group demographics and symptom severity, whereas Table 2 lists diagnosis frequency within 

SUDs.

2.2 Procedure

Participants underwent an intensive assessment for demographic, clinical and psychiatric 

features. Here we focused on the clinical measures indicated above, as well as the Wide 

Range Achievement Test (WRAT), a common measure of premorbid IQ (Johnstone et al., 

1996). This measure was included to account for group differences in task performance due 

to general cognitive ability. The complete list of assessments and references supporting their 

validity and reliability are provided in (Victor et al., 2018).

To assess our hypotheses about reduced information-seeking and altered learning rates in 

SUDs, we employed a commonly used three-armed bandit task to assess decision dynamics 

in the context of the explore/exploit dilemma (Zhang and Yu, 2013). This task consists of 20 

blocks of 16 trials. Within each block, participants were informed that they could choose one 

of three bandits (slot machines), and that each bandit had a different probability of reward 

that was stable throughout the block. They were further informed that the probabilities 

changed at the start of each new block. They were not informed about the probabilities. 

Thus, with each block the participant started with no knowledge of these probabilities, and, 

to maximize reward, they needed to decide how many times to observe the outcomes of 

selecting each bandit (explore) before concluding they had sufficient information to 

consistently choose the bandit believed to have the highest reward probability (exploit). 

Reward rates were fixed for all bandits in each block, and were generated from a Beta (2,2) 

distribution prior to the start of data collection. Identical reward rates were used across 

participants, with pseudorandomized block order (see Figure 1).

2.3 Computational Modeling

To model task behavior, we adopted a Markov decision process (MDP) model commonly 

used within the active inference framework; for more details about the structure and 

mathematics of this class of models, see (Friston et al., 2017a; Friston et al., 2017c; Parr and 

Friston, 2017). We selected this approach because these models can test for differences in 

learning rates, random exploration, goal-directed exploration, and sensitivity to information 

(Schwartenbeck et al., 2019), each of which can contribute to explore/exploit decisions in 

distinct ways. Estimating these parameters for each individual is therefore useful to address 
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how decision processes can lead to suboptimal behavior in SUDs as a result of suboptimal 

model parameter settings (Schwartenbeck et al., 2015).

For full modeling details and example simulations, see Supplementary Materials. The model 

is outlined in Table 3; important vectors, matrices, and equations are shown in Figure 1 and 

described in the legend. As described there, the model was defined by the choices (states and 

state transitions) available at each time point in the task, the observable outcomes of those 

choices (wins/losses), the choice-dependent reward probabilities, and the value of each 

possible outcome. There are several free model parameters that influence behavior: action 

precision (α), reward sensitivity (cr), learning rate (η), and insensitivity to information (a0). 

The action precision parameter controls the level of randomness in behavior. Those with 

lower values show less consistency in their choices when repeatedly placed in the same 

decision context. Put another way, they appear to be more uncertain about the best action to 

take. In explore-exploit tasks, this corresponds most closely to the construct of random 

exploration (i.e., choosing actions more randomly as a means of gathering information in the 

context of high uncertainty). The reward sensitivity parameter reflects how much an 

individual values a win. Importantly, as described in Supplementary Materials, because 

decision-making is based on a weighted tradeoff between reward value and the value of 

information, lower reward sensitivity values will lead individuals to place more value on 

information-seeking and promote greater goal-directed exploration. Learning rates quantify 

how much an individual’s beliefs about action outcomes change when experiencing each 

new win/loss. (i.e., influencing how quickly the value of information decreases over time). 

Insensitivity to information reflects baseline levels of confidence in beliefs about the 

probability of wins vs. losses for each choice (i.e., before making any observations). Higher 

insensitivity leads to reduced goal-directed exploration, because an individual sees less need 

to seek information a priori.

We estimated 10 different nested models, illustrated in Table 4, each with different choices 

of which model parameters were estimated. Based on our interest in goal-directed 

exploration, cr was always estimated. We then performed Bayesian model comparison 

(based on (Rigoux et al., 2014; Stephan et al., 2009)) to determine the best model. 

Variational Bayes (variational Laplace; (Friston et al., 2007)) was used to estimate parameter 

values that maximized the likelihood of each participant’s responses, as described in 

(Schwartenbeck and Friston, 2016).

2.4 Statistical Analyses

All analyses were performed in R. We used multiple regression analyses with each model 

parameter as the outcome variable and included age, sex, premorbid IQ, and group (SUDs 

versus HCs) as predictor variables. As indicated above, our participant data was sampled 

from the first 500 participants of the T1000 dataset, which was pre-specified as an 

exploratory subsample within an exploratory-confirmatory framework (i.e., with the second 

cohort of 500 participants reserved for confirmatory replication analyses; see (Victor et al., 

2018)). As such, we set an exploratory p-value threshold of p ≤ .05, uncorrected. However, 

we note for reference that a Bonferroni corrected threshold for the 5 parameters in the 

winning model (see below) is p ≤ .01.
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Table 1 demonstrates that SUDs exhibited lower premorbid IQ and higher depression/

anxiety (PHQ/OASIS) symptoms than HCs. Table 2 illustrates that over half of SUDs met 

criteria for lifetime major depressive disorder (MDD), with almost half meeting criteria for 

two or more lifetime MDD, anxiety and/or stress disorders. We took three steps to help 

address these potential confounds. First, we reran analyses after propensity-matching 

(resulting in 51 HCs and 49 SUDs that did not differ significantly on age, sex or premorbid 

IQ; see Table 1). Second, we ran within-SUDs correlations between model parameters and 

each of the following to assess whether the direction of these relationships could provide an 

alternative interpretation of our results: (a) PHQ; (b) OASIS; and (3) premorbid IQ. Third, 

we ran post-hoc two-sample t-tests comparing individuals with vs. without MDD and with 

vs. without anxiety disorders.

We also ran a confirmatory parametric empirical Bayes (PEB) analysis (Friston et al., 2016), 

using standard MATLAB routines (see software note), computing group posterior estimates 

that incorporate posterior variances of individual-level parameter estimates when assessing 

evidence for group-level models with and without the presence of group differences. Aside 

from incorporating individual-level variance estimates, a further benefit of this type of 

hierarchical Bayesian analysis is that it is robust against concerns related to multiple 

comparisons (Gelman et al., 2012; Gelman and Tuerlinckx, 2000).

To assess relationships between model parameters and model-free metrics of task behavior, 

we calculated: (a) total number of wins and mean reaction times (RTs; trimmed using an 

iterative Grubbs test method to remove outliers until a distribution was found which 

contained no outliers at a threshold of p < .01; (Grubbs, 1969)); and (b) number of stays vs. 

shifts in bandit selection after win and loss outcomes. Next, we ran correlations between 

model parameters and each of these model-free metrics and performed two-sample t-tests to 

assess group differences. For strategy differences, we examined the first and second halves 

of the games separately (i.e., first 7 choices vs. final 8 choices) to assess periods wherein 

exploration vs. exploitation would be expected to dominate.

3. Results

Out of the 10 nested computational models we estimated (Table 4), the model including 

action precision, reward sensitivity, separate learning rates for wins and losses, and 

insensitivity to information was the best model (protected exceedance probability = 1). On 

average, this model accurately predicted true actions on 60% of trials (SD = 11%); SUDs = 

59% (SD = 10%), HCs = 62% (SD = 12%). Average probability assigned to true actions by 

this model was .53 (SD = .1); SUDs = .52 (SD = .09), HCs = .56 (SD = .12). Note that 

chance accuracy = 1/3.

Table 5 presents group descriptive statistics for both samples, while Figure 2 depicts 

significant group differences in computational model parameters for the entire sample. 

Software Note: All model simulations and parametric empirical Bayes analyses were implemented using standard routines 
(spm_MDP_VB_X.m, spm_dcm_peb.m, spm_dcm_peb_bmc.m) that are available as Matlab code in the latest version of SPM 
academic software: http://www.fil.ion.ucl.ac.uk/spm/. Matlab code specifying the generative model of the three-armed bandit task is 
included here in the supplementary material (TAB_task_model.m).
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Within the entire sample, SUDs exhibited (a) lower action precision (t = 2.9, p = .004), (b) 

higher learning rate for wins (t = 2.1, p = .02), and (c) lower learning rate for losses (t = 2.4, 

p = .02) than HCs. Groups did not differ in reward sensitivity or insensitivity to information. 

With respect to other predictors, higher age was linked to (a) higher reward sensitivity (t = 

3.2, p = .002), (b) lower learning rate (t = 2.8, p = .007), and (c) less sensitivity to new 

information (t = 2.7, p = .008). Higher IQ was also linked to lower learning rate for losses (t 
= 2.7, p = .007). Table 5 indicates that group difference results for action precision and win/

loss learning rates were also significant after propensity matching for age, sex, and 

premorbid IQ.

Bayesian (PEB) analyses indicated that, in the full sample, the winning model provided 

positive evidence for the group difference in action precision (posterior probability = .81) 

and learning rate for losses (posterior probability = .88); the effect was stronger for the 

difference in learning rate (illustrated in Figure 2). If age, sex, and IQ were included in the 

model, only the difference in learning rate for losses was retained, and the evidence for this 

group difference became stronger (posterior probability = 1). In the propensity-matched 

sample, the winning model retained the group difference in learning rate for losses, with 

strong evidence (posterior probability = .97). It also included the group difference in action 

precision (weak evidence; posterior probability = .45) and learning rate for wins (positive 

evidence; posterior probability = .75).

Table 6 lists group descriptive statistics in model-free behavioral measures for both samples. 

Figure 2 indicates that SUDs achieved fewer wins than HCs, although groups did not differ 

in RTs or their use of win-stay/lose-shift strategies. However, during early trials, when 

exploratory behavior would be expected to dominate, SUDs in the propensity-matched 

sample made more lose/stay choices than HCs (t(91) = 2.23, p = .03, Cohen’s d = 0.45).

Across all participants, faster RTs were associated with greater reward sensitivity (r = − .34, 

p < .001), higher learning rate for wins (r = −.26, p < .001), lower learning rate for losses (r 
= .30, p < .001), and less sensitivity to information (r = −.21, p = .003). A greater number of 

wins was associated with greater action precision (r = .27, p < .001) and greater reward 

sensitivity (r = .48, p < .001). For relationships between model parameters and win stay/shift 

vs. lose stay/shift strategies, see Supplementary Figure S2. As shown there: (a) higher action 

precision promoted greater numbers of stays in win trials; (b) higher learning rate for losses 

promoted shifts on loss trials (whereas learning rate for wins had the opposite influence); 

and (c) both higher reward sensitivity and lower sensitivity to information promoted stay 

behavior.

Within SUDs, we observed negative correlations between: (a) reward sensitivity and OASIS 

(r = −.19, p = .02); and (b) insensitivity to information and both OASIS (r = −.17, p = .04) 

and PHQ (r = −.18, p = .03). However, we note that these results did not survive correction 

for multiple comparisons. No relationships were observed between other parameters and 

clinical measures in SUDs, although premorbid IQ showed significant associations with 

learning rate for wins (r = .22, p = .01) and losses (r = −.25, p = .004). T-tests comparing 

SUDs with vs. without MDD (N = 78 vs. 69) revealed lower reward sensitivity in those with 

MDD (t = 3.17, p = .002), and marginally higher sensitivity to information in those with 
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MDD (t = 2.0, p = .05). No differences were observed for other parameters. Comparisons 

between SUDs with vs. without anxiety disorders (N = 50 vs. 97) did not reveal any 

significant group differences.

4. Discussion

We used a computational framework that dissociated between goal-directed information 

seeking and random exploration, alongside differences in learning rates, to examine whether 

differences in these parameters could shed light on which of several possible computational 

failure modes best accounts for poor decision-making in SUDs when solving the explore/

exploit dilemma. While SUDs won less often than HCs, reward sensitivity and insensitivity 

to information – both of which influence goal-directed exploration – did not differ between 

groups. In contrast, SUDs exhibited lower action precision, greater learning rate for rewards, 

and lower learning rate for losses than HCs – with Bayesian analyses finding the strongest 

evidence for the group difference in learning rate for losses.

Our finding that lower action precision was associated with fewer wins, and a greater 

number of shifts to a new choice after a win, suggest a failure of SUDs to settle on a 

behavior strategy despite sufficient evidence. This appears consistent with previous work 

suggesting that substance users are less likely than HCs to stick to successful decision 

strategies (Kanen et al., 2019; Myers et al., 2016). Future work will be necessary to better 

understand the possible bases of this difference (e.g., underconfidence, distractibility, 

reduced awareness, etc.). Our finding that, relative to HCs, individuals with SUDs show 

attenuated learning rate for losses also appears consistent with neural and self-report results 

suggesting diminished responses to negative stimuli in SUDs (i.e., under the assumption that 

learning about a stimulus is facilitated by stronger affective or salience-based responses to 

that stimulus; (Hester et al., 2013; Simons and Arens, 2007; Simons et al., 2008; Stewart et 

al., 2014)). This result, as well as the greater learning rate we observed for wins, also 

supports previous work in SUDs demonstrating a lower impact of large losses on future 

choices (opioid users; (Petry et al., 1998)), reduced sensitivity to losses (opioid users; (Ahn 

et al., 2014)), and difficulty avoiding punishment (opioid users; (Myers et al., 2017)).

Unlike our model-based results, standard model-free analyses of RTs and behavioral strategy 

revealed few significant group differences, which may be due to the fact that different 

computational strategies can lead to similar summary statistics. For example, if lose/stay 

behaviors decrease slowly over time – because learning after losses still occurs, but at a 

slower rate for some individuals than others – averaging lose/stay choices over trials may not 

capture this because the high early and low late trial values may cancel out (i.e., this is what 

motivated our further analysis restricted to early trials, which did reveal significant 

differences in lose/stay choices between groups). This contrasts with estimates of learning 

rate, which capture more complex dynamics in behavior over time that also account for other 

influences (e.g., exploratory drives). This highlights the potential utility of our 

computational approach in its ability to pick up on potentially important differences in the 

mechanisms whereby individuals with SUDs differ in decision-making from HCs. As 

discussed above, aside from fewer wins, the only significant model-free finding was that 

SUDs showed a greater number of lose/stay choices in early trials. This is consistent with 
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our finding that individuals with SUDs learn more slowly from losses – hindering the ability 

to “lock on to” the most optimal choice during exploration. Together, our findings could be 

taken to suggest that, in the face of uncertainty, individuals with SUDs persist in making 

poor choices (at least in part) because they do not appropriately update their beliefs when 

drug use leads to negative consequences – and that, even in the face of positive outcomes, 

they fail to reliably adopt the actions that produce them.

While supportive of previous findings, this study was also distinct in using an active 

inference (active information-seeking) model to disambiguate different possible mechanisms 

that may be affected while solving the explore/exploit dilemma. In our computational model, 

lower reward sensitivity values and higher sensitivity to information both promote goal-

directed exploration in different ways (i.e., sensitivity to information is more prominent in 

cases of high uncertainty), whereas low action precision promotes random exploration 

(which can reflect several factors, including simple computational noise; (Findling et al., 

2019)). SUDs and HCs did not differ on either reward sensitivity or information sensitivity, 

suggesting no difference in the use of goal-directed information seeking. Random 

exploration may therefore be of greater relevance.

If our results can be replicated, it may be useful to explore the potential utility of designing 

interventions focused on facilitating attention to, and learning from, negative outcomes. 

Learning rates are thought to be modulated by estimates of environmental volatility – such 

that learning rates should be lower in more stable environments to avoid learning from 

random outcomes (Lawson et al., 2017; Mathys et al., 2014; Sales et al., 2019; Sutton and 

Barto, 1998). A lower learning rate for losses may indicate that SUDs believe losses are 

explained more by chance, as opposed to by a consistent relationship with their past 

behavior (i.e., unexpected losses are treated as noise instead of signal). As such, it would be 

helpful to test whether interventions focused on helping substance users more explicitly see 

poor outcomes as reliable consequences of their actions could help address this. One 

potential example could be treatments targeting poor emotion regulation strategies in SUDs 

(Gold et al., 2020; Kober, 2014; Richmond et al., 2020; Suzuki et al., 2020). For instance, in 

some cases a failure to learn from losses could be due to avoidant attention strategies in 

which negative outcomes tend to be ignored as a means of regulating negative affect. If so, 

interventions helping individuals to directly face negative affect and develop more adaptive 

emotion regulation strategies could be beneficial in targeting this mechanism.

This study is not without limitations. While we chose a particular modeling framework – 

motivated by the natural distinction between different forms of exploration and learning 

afforded by the active inference approach – other models could also be used to examine 

behavior. It is worth noting here that, if the goal-directed information-seeking component 

were removed from active inference, the resulting model would become a simple model-

based reinforcement learning model. While we compared several nested models, we were 

also required to choose prior parameter values. However, correlations between parameters 

and RTs, as well as the model’s accuracy in predicting behavior, both support its validity. 

Finally, our SUD group was heterogenous – including various, often comorbid drugs of 

choice and combinations of lifetime emotional disorders. Through propensity-matching sub-

groups and examining within-group depression/anxiety symptoms, we believe that this issue 
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has been adequately addressed. Notably, while no differences in action precision or learning 

rates were seen in SUDs with vs. without comorbid depression/anxiety, those with MDD did 

show reduced reward sensitivity compared to those without MDD (consistent with previous 

literature, e.g., see (Katz et al., 2020); although note that, in this context, this could also be 

interpreted as indicating greater goal-directed information seeking).

In summary, sub-optimal explore/exploit decisions in SUDs appear to be due to both 

inconsistent choices (especially in the face of positive outcomes) and sub-optimal learning 

rates for rewarding vs. non-rewarding outcomes. These results may help explain the 

difficulty in adjusting to more adaptive patterns of behavior in SUDs. Future work should 

examine ways of facilitating substance users’ abilities to learn the relationships between 

poor choices and negative outcomes and perhaps ways of increasing consistency in healthy 

behaviors after reinforcing outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Decision-making mechanisms in substance use disorders (SUDs) remain poorly 

understood

We used computational modeling to better understand these mechanisms

SUD patients showed less precise action selection mechanisms than healthy subjects

SUD patients also learned slower from negative than positive outcomes

This could help explain continued patterns of maladaptive choices in SUDs
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Figure 1. 
(A) Illustration of the task interface (for each of three choices, green circle = win; red circle 

= loss). This task is designed to quantify how individuals switch between an “exploration” 

and “exploitation” strategy. Participants had to sample from 3 different choice options 

(lotteries) that had unknown probabilities of winning/losing, with the goal of maximizing 

reward. The optimal strategy is to start by “exploring” (trying all possible options) to gain 

information about the probability of winning for each lottery, and then begin “exploiting” 

after a few trials by repeatedly choosing the lottery with highest reward probability. 

Participants performed a total of 20 games with a known number of trials (16) per game – 

corresponding to 16 tokens that had to be assigned to one of the three lotteries of their 

choice (white panels on the left, middle and right sides of the interface). After placing each 

token, they earned 1 point if the token turned green or zero points if the token turned red. 

Each token decision lasted about 2 sec. After the button press, the chosen lottery became 

highlighted for 250ms, after which the token turned green or red to reveal the decision 

outcome. Participants were instructed to find the most rewarding lottery and maximize the 

points earned in each game. Participants were paid an additional $5 or $10 based on task 

performance. (B) Graphical depiction of the computational (Markov decision process) 

model used to model the task. Here, arrows indicate dependencies between variables such 

that observations (o) depend on hidden states (s), where this relationship is specified by the 
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A matrix, and those states depend on both previous states (as specified by the B matrix, or 

the initial states specified by the D vector) and the sequences of actions (policies; π) 

selected by the agent. Here, D = [1 0 0 0]’, such that the participant always started in an 

undecided state at the beginning of each trial. The probability of selecting each policy in turn 

depends on the expected free energy (G) of each policy with respect to the prior preferences 

(C vector) of the participant. These preferences are defined as a participant’s log-
expectations over observations. These C values are passed through a softmax function and 

correspond to log probabilities. For example, if cr = 4, this would indicate the expectation 

that observing reward is exp(4) ≈ 55 times more likely than observing no reward, exp(0) = 1. 

When actions are sampled from the posterior distribution over policies, randomness in 

chosen actions is controlled by an inverse temperature parameter (α), as depicted in the 

equation shown in the top right. (C) Depicts the A matrix learned by the agent (encoding 

probability of reward given each choice) and the C vector encoding the preference 

magnitude (cr value) for reward. Here, a0 values indicate the strength of baseline beliefs 

about reward probabilities at time t = 0, before observing the outcomes of any action. Dir(A) 

indicates a Dirichlet prior over the state-outcome mappings in A, such that higher baseline 

Dirichlet concentration parameter values (a0 values) encode greater confidence in reward 

probabilities – reducing the estimated value of seeking information. (D) Learning involves 

accumulating concentration parameters (a) based on outcomes observed after each choice of 

action. Learning rate is controlled by η as depicted in the displayed equation. Here ⊗ 
indicates the cross-product. (E) Policies are evaluated by G (lower G indicates a higher 

policy value), which can in this case be decomposed into two terms. The first term 

maximizes reward (as in a reinforcement learning model), by minimizing the divergence 

between predicted outcomes and rewarding outcomes. The second term maximizes 

information gain (goal-directed exploration) by assigning higher values to policies that are 

expected to produce the most informative observations (i.e., the greatest change in beliefs 

about reward probabilities; based on a novelty term, W : = 1
2 a ⊙ ( − 1) − a0

⊙ ( − 1) , where ⊙ 

denotes element-wise power). For more details regarding the associated mathematics, see 

supplemental materials as well as (Da Costa et al., 2020; Friston et al., 2017b; Friston et al., 

2017c).
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Figure 2. 
Left: Means and standard errors for significant group differences in model-based and model-

free measures. HCs = healthy controls, SUDs = substance use disorders. Data displayed is 

based on the full sample of 54 HCs and 147 individuals with SUDs. Right: Results of 

parametric empirical Bayes (PEB) analyses, showing the posterior means and variances for 

group difference estimates in the full and propensity-matched samples. These Bayesian 

group comparisons largely confirmed the mean group difference effects found in frequentist 

analyses; they also indicated a particularly pronounced group difference in the learning rate 

for losses when taking the individual posterior variances of parameter estimates into 

account. The model with the most evidence only retained the difference in these parameters, 

which is why other parameters have 0 values. Action precision, Reward Sensitivity, and 

Information Sensitivity values are in log-space. Learning Rate values are in logit-space.
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Table 1.

Descriptive Statistics (Means and Standard Deviations) for Demographic and Clinical Measures by Group

Full Sample HCs SUDs p

N= 54 147

Age 32.27 (11.35) 34.05 (9.17) 0.26

Sex (Male) 0.44 (0.50) 0.49 (0.50) 0.57

DAST 0.11 (0.37) 7.54 (2.22) <0.001

PHQ 0.80 (1.28) 6.58 (5.70) <0.001

OASIS 1.35 (1.94) 5.84 (4.63) <0.001

WRAT 63.53 (4.93) 58.47 (5.85) <0.001

Regular nicotine smoker* 8 (15%) 54 (37%) <0.001

Propensity Matched HCs SUDs p

N= 51 49

Age 32.35 (11.40) 32.25 (7.72) 0.96

Sex (Male) 0.45 (0.50) 0.55 (0.50) 0.32

DAST 0.12 (0.38) 7.57 (2.36) <0.001

PHQ 0.78 (1.30) 7.12 (5.19) <0.001

OASIS 1.31 (1.92) 6.98 (4.55) <0.001

WRAT 63.53 (4.93) 61.76 (5.06) 0.08

Regular nicotine smoker* 8 (16%) 18 (37%) <0.001

*
defined as >3650 lifetime cigarettes. DAST = Drug Abuse Screening Test. PHQ = Patient Health Questionnaire. OASIS = Overall Anxiety 

Severity and Impairment Scale. WRAT = Wide Range Achievement Test.
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Table 2.

Lifetime DSM-IV/DSM-5 psychiatric disorders within SUDs

SUDs (n = 147) Propensity-Matched SUDs (n = 49)

Substance Use Disorders

Alcohol 56 (38%) 21 (43%)

Cannabis 58 (39%) 20 (41%)

Stimulants 105 (71%) 36 (73%)

Opioids 56 (38%) 25 (51%)

Sedatives 38 (26%) 14 (29%)

Hallucinogens 5 (3%) 2 (4%)

2+ Disorders 94 (64%) 34 (69%)

Alcohol Only 10 (7%) 4 (8%)

Cannabis Only 12 (8%) 7 (14%)

Stimulants Only 26 (18%) 7 (14%)

Opioids Only 8 (5%) 2 (4%)

Sedatives Only 0 (0%) 0 (0%)

Mood, Anxiety, Stress Disorders

Major Depressive 78 (53%) 30 (61%)

Generalized Anxiety 22 (15%) 9 (18%)

Social Anxiety 19 (13%) 8 (16%)

Panic 17 (12%) 7 (14%)

Posttraumatic Stress 23 (16%) 10 (20%)

2+ Disorders 46 (31%) 18 (37%)

Note:Stimulants = amphetamine, methamphetamine, and/or cocaine.
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Table 3.

Computational model description

Model 
element

General Description Model specification

ot One vector per category of possible observations. 
Each vector contains entries corresponding to 
possible p’bse, ablj stimuli for that category at time t.

Possible observations for reward:

1 Start

2 Reward

3 No reward

Possible observations for choice:

1 Start

2 Bandit 1

3 Bandit 2

4 Bandit 3

st A vector containing entries corresponding to the 
probability of each possible state that could be 
occupied at time t.

Possible choice states:

1 Start

2 Bandit 1

3 Bandit 2

4 Bandit 3

A
P(ot|st)

A matrix encoding the relationship between states 
and observations (one matrix per observation 
category).

1 A reward probability matrix:

P (oreward|schoice)

2 An identity matrix for observed choice (entailing that 
participants had no uncertainty about the choice they 
made):

P (ochoice|schoice)

a Dirichlet priors associated with the A matrix that 
specify beliefs about the mapping from states to 
observations. Learning corresponds to updating the 
concentration parameters for these priors after each 
observation, where the magnitude of the updates is 
controlled by a learning rate parameter q (see 
Supplementary Materials and Figure 1).

Each entry for learnable reward probabilities began with a uniform 
concentration parameter value of magnitude a0, and was updated after 
each observed win or loss on the task. The learning rate η and a0 

(which can be understood as a measure of sensitivity to new 
information; see Supplementary Materials) were fit to participant 
behavior.

B
P(st+1|st,π)

A set of matrices encoding the probability of 
transitioning from one state to another given the 
choice of policy (π). Here policies simply include the 
choice of each bandit.

Transition probabilities were deterministic mappings based on a 
participant’s choices such that, for example, P(sbandit 1|sstart’πbandit 1) = 
1, and 0 for all other transitions, and so forth for the other possible 
choices.

C
lnP(o)

One vector per observation category encoding the 
preference (reward value) of each possible 
observation within that category.

The value of observing a win was a model parameter cr reflecting 
reward sensitivity; the value of all other observations was set to 0. The 
value of cr was fit to participant behavior. Crucially, higher cr values 
have the effect of reducing goal-directed exploration, as the probability 
of each choice (based on expected free energy Gπ) becomes more 
driven by reward than by information- seeking (see Supplementary 
Materials and Figure 1).

D
P(st=1)

A vector encoding prior probabilities over states. This encoded a probability of 1 that the participant began in the start 
state.

π A vector encoding the probability of selecting each 
allowable policy (one entry per policy). The value of 
each policy is determined by its expected free energy 
(Gπ), which depends on a combination of expected 
reward and expected information gain. Actions at 

This included 3 allowable policies, corresponding to the choice of 
transitioning to each of the three bandit choice states. The action 
precision parameter a was fit to participant behavior.
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Model 
element

General Description Model specification

each time point are chosen based on sampling from 
the distribution over policies, π = σ(Gπ); the 
determinacy of action selection is modulated by an 
inverse temperature or action precision parameter α 
(see Supplementary Materials and Figure 1).
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Table 4.

Nested models

Parameter:
α
(action
precision)

cr
(reward sensitivity)

η
(learning rate)

α0
(insensitivity to information)

Default value if not estimated 4 (always estimated) (removed from model) 0.25

Prior means during estimation* 4 4 0.5 0.25

Model 1 Y Y N N

Model 2 Y Y Y N

Model 3 Y Y Y Y

Model 4 N Y Y Y

Model 5 N Y Y N

Model 6 N Y N N

Model 7 N Y N Y

Model 8 Y Y N Y

Model 9** Y Y Wins/Losses Y

Model 10 Y Y Wins/Losses N

Yindicates that a parameter was estimated for that model; Nindicates that a parameter was not estimated for that model.

*
Prior variance for all parameters was set to a precise value of 2−2 in order to deter over-fitting.

**
Winning model
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Table 5.

Model Parameters by Group (Means and Standard Deviations)

Full Sample HCs SUDs p* Cohen’s d

N= 54 147

Action Precision 2.59 (0.88) 2.18 (0.58) 0.004 0.43

Reward Sensitivity 4.43 (1.44) 4.26 (1.42) 0.85

Learning rate (Wins) 0.48 (0.12) 0.50 (0.13) 0.04 0.31

Learning rate (Losses) 0.42 (0.13) 0.38 (0.15) 0.02 0.36

Insensitivity to Information 0.76 (0.29) 0.81 (0.30) 0.27

Propensity Matched HCs SUDs p Cohen’s d

N= 51 49

Action Precision 2.60 (0.9) 2.17 (0.59) 0.005 0.57

Reward Sensitivity 4.38 (1.45) 4.37 (1.56) 0.98

Learning rate (Wins) 0.47 (0.12) 0.53 (0.12) 0.02 0.46

Learning rate (Losses) 0.41 (0.13) 0.34 (0.16) 0.01 0.52

Insensitivity to Information 0.77 (0.28) 0.84 (0.30) 0.26

*
within a linear model including Age, Sex, and WRAT scores
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Table 6.

Model-Free Measures of Task Behavior by Group (Means and Standard Deviations)

Full Sample HCs SUDs p Cohen’s d

N= 54 147

Wins 183.59 (12.08) 179.33 (13.01) 0.03 0.33

Reaction Time 0.62 (0.25) 0.57 (0.26) 0.29

Win/Stay 136.54 (32.46) 130.20 (36.44) 0.26

Win/Shift 35.41 (28.04) 37.48 (29.51) 0.70

Lose/Stay 42.17 (26.54) 45.89 (30.22) 0.43

Lose/Shift 85.89 (28.01) 86.43 (32.10) 0.91

Propensity Matched HCs SUDs p Cohen’s d

N= 51 49

Wins 183.25 (12.34) 178.16 (13.60) 0.05 0.39

Reaction Time 0.62 (0.25) 0.54 (0.27) 0.15

Win/Stay 136.24 (32.75) 131.10 (38.92) 0.48

Win/Shift 35.47 (28.00) 35.63 (32.46) 0.98

Lose/Stay 41.43 (27.00) 52.45 (33.87) 0.08*

Lose/Shift 86.86 (28.47) 80.82 (34.30) 0.34

*
When only examining early trials in each game (i.e., first 7 choices), this difference was significant at p = 0.03.
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