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Summary

Damage-associated molecular patterns are signalling molecules involved in inflammatory 

responses and restoration of homeostasis. Chronic release of these molecules can also promote 

inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the 

role of damage-associated molecular patterns as danger signals in liver injury. We consider the role 

of reactive oxygen species and reactive nitrogen species as inducers of damage-associated 

molecular patterns, as well as how specific damage-associated molecular patterns participate in the 

pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic 

steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-

associated molecular patterns in ischaemia reperfusion injury and liver transplantation and 

highlight current studies in which blockade of specific damage-associated molecular patterns has 

proven beneficial in humans and mice.
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Introduction

Detection of threats such as pathogens and cellular damage is critical to organismal survival. 

One mechanism of detection is the secretion of endogenous molecules to the extracellular 

environment, which cell-surface receptors recognise as a danger signals or “alarmins”, 

requiring initiation and persistence of innate immune responses. These relocated host cell-

derived activators, called damage-associated molecular patterns (DAMPs), are a key aspect 

of inflammation.1

Dying cells passively release DAMPs following injury, trauma, ischaemia or infection-

induced necrosis. In the liver, passive release occurs mostly in lipid-laden, damaged, 

apoptotic, necroptotic or necrotic hepatocytes.2–4 DAMPs are also actively released via 

secretory lysosomes in immune cells5–7 or in stressed parenchymal and non-parenchymal 

cells.8 These molecules are sensed via pattern recognition receptors (PRRs) and the NOD-

like receptor protein 3 (NLRP3) or inflammasome, all of which trigger release of 

chemokines and other mediators to provoke initial proinflammatory responses that fight 

infection and cellular damage.2,9–17 While this response can be beneficial (i.e., resolving 

danger), sustained release of DAMPs has adverse effects in chronic liver disease.

Indeed, further injury can result when DAMPs are activated by reactive oxygen species 

(ROS) and reactive nitrogen species (RNS), which are also released in response to injury and 

inflammation.18–23 The second wave of cell injury and death enhances release of second-line 

DAMPs, triggering a more complex and pronounced reaction. In the liver, inflammatory 

responses such as activation of Kupffer cells (KCs) and extravasation and activation of 

monocyte-derived macrophages (MFs) and neutrophils24 prompt release of tumour necrosis 

factor-α (TNFα) and other proinflammatory cytokines that activate the NF-κB pathway in 

hepatocytes to exacerbate damage.25 Thus, while physiological levels of ROS, RNS and 

DAMPs contribute to liver homeostasis, their uncontrolled production and release activate 

signalling cascades that, if left unchecked, exacerbate liver damage.

The rapid increase in circulating levels of DAMPs reflects the severity of liver injury; 

therefore, these molecules could be promising biomarkers and/or potential therapeutic 

targets to prevent liver damage. However, the number of clinical trials targeting DAMPs, 

some of which are disease-specific, is still very limited; hence, a careful review of the main 

DAMPs that contribute to chronic liver disease is warranted.

ROS and RNS induce DAMPs and events involved in chronic liver disease

ROS and RNS are typically generated by healthy cells during biological and metabolic 

processes.26 The liver generates and is exposed to free radicals via mitochondrial 

metabolism27 and activation of membrane-bound NADPH oxidase (NOX),28–30 cytoplasmic 

inducible nitric oxide synthase (iNOS)31,32 and microsomal cytochrome P450.33,34 

Maintaining a balance between free radical production and antioxidant defence is crucial in 

the regulation of cellular homeostasis.26,35 Likewise, physiological levels of free radicals are 

indispensable to preserve the immune response against pathogens and to regulate cell 

proliferation in response to growth factors.26,35
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Yet, the production of free radicals can also promote inflammatory disease. In the liver, 

excessive oxidative and nitrosative stress not only contributes to increased production of 

DAMPs, but also correlates with pathogenesis of chronic liver diseases such as alcohol-

related liver disease (ALD), non-alcoholic steatohepatitis (NASH), fibrosis and 

hepatocellular carcinoma (HCC)36–49 (Table 1 and Fig. 1). Thus, an initial injury response 

can promote subsequent chronic inflammatory processes and further cell and tissue damage.

Mitochondrial dysfunction is a key factor in the pathogenesis of fatty liver diseases.43,50,51 

Acetaldehyde, the end-product of alcohol metabolism, causes structural and functional 

alterations in mitochondria that lower production of ATP and increase generation of ROS.52 

Further, diets enriched in fructose and fat, together with insulin resistance, enhance flux of 

free fatty acids (FFAs) to the mitochondria for β-oxidation. This flux increases 

mitochondrial membrane permeability, proton leakage and ROS production, lowering ATP 

levels.53 In NASH, CD4+ T cells have increased mitochondrial mass, facilitating production 

of mitochondrial ROS (mtROS), although treatment with antioxidants increases CD4+ T 

cells, delaying the progression of NAFLD and HCC.54

ROS increase production of DAMPs, such as osteopontin (OPN)55 and high-mobility group 

box 1 (HMGB1), and induce oxidative modifications that enhance immunostimulatory 

properties.56,57 In KCs and MFs, membrane-bound NOX is the major source of ROS and 

NOX-deficient (p47phox−/−) mice are protected from ALD.58,59 Alcohol stimulates 

cytoplasmic iNOS, the major source of RNS, and increases production of peroxynitrite 

(ONOO−) and, thus, oxidative and nitrosative stress.60,61 Indeed, iNos−/− mice are protected 

from ALD,59 while lack of iNOS decreases carbon tetrachloride (CCl4)-induced fibrosis.
62,63

Alcohol is oxidised in hepatocytes by the microsomal cytochrome P450 2E1 (CYP2E1) and 

generates 1-hydroxyethyl radical, a major driver of alcohol-induced liver injury.64,65 Mice 

lacking Cyp2e1 display less alcohol-induced liver injury.64,66 Moreover, ROS and RNS bind 

to proteins and generate neo-antigens that elicit immune responses.52,67 In NASH and ALD, 

lipid peroxidation end-products such as 4-hydroxynonenal and malondialdehyde bind DNA 

and proteins68,69 to form carcinogenic exocyclic etheno-DNA adducts70,71 and protein-

adducts,67,72,73 both of which enhance injury. ROS also regulate proangiogenic and 

profibrogenic responses in hepatic stellate cells (HSCs).20,74–78

Importantly, peroxisomal ROS and kinases are implicated in HCC. The deacetylase sirtuin 5 

suppresses activity of peroxisomal acetyl-CoA oxidase-1 (ACOX1), lowers generation of 

H2O2 and reduces oxidative DNA damage in in vivo models of HCC.79 In addition, liver-

specific ablation of the stress-activated protein kinase p38α enhances ROS, whereas its re-

introduction prevents fibrosis and HCC by limiting ROS.80

ROS and RNS do not bind receptors; instead, most cells react to them by transmitting 

signals to organelles including the nucleus.81–85 In MFs, the adaptor Kelch ECH associating 

protein 1 (KEAP1) senses ROS and transduces signals to nuclear factor erythroid 2-related 

factor-2 (NRF2) to regulate production of cytokines.81,84 In myeloid and lymphoid cells, I-

kappa-B kinase (IKK) senses ROS and transduces signals to activate NF-κB and regulate the 
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inflammatory response.85,86 The NLRP3 inflammasome, a key player in chronic liver 

disease, is also stimulated by ROS.82

Pre-clinical and clinical trials have investigated the efficacy of antioxidants in acute and 

chronic liver disease, as the antioxidant defence is usually depleted.87,88 Vitamin E alone or 

in combination with the lipid-lowering agent atorvastatin alleviates progression of steatosis 

to NASH in animal models.89–91 However, in a randomised clinical trial of patients with 

alcoholic hepatitis (AH), vitamin E alone or in combination with corticosteroids failed to 

confer a benefit.92,93 Nonetheless, a clinical trial (NCT01792115) is currently evaluating the 

most effective dose of vitamin E for the treatment of NAFLD. N-acetylcysteine, a precursor 

of glutathione, is the only FDA-approved antioxidant for treatment of acetaminophen-

induced hepatotoxicity.94 Another option to reduce oxidative stress is dietary restriction, as 

high-calorie intake is associated with increased mtROS and reduced activity of antioxidant 

enzymes.95

DAMPs in alcohol-related liver disease

In ALD, the type of cell death determines the release of DAMPs.96 Apoptosis is the most 

common and is associated with the release of DAMPs from hepatocytes.97 Necrosis is 

typically observed in severe acute AH,98 where hepatocytes undergo swelling, autolysis and 

death without significant signal transduction.99 Necroptosis, which resembles necrosis, is the 

regulated version of necrotic cell death through the RIPK1-RIPK3 heterodimer scaffold 

complex that leads to the release of intracellular contents.100 In both necrosis and 

necroptosis, multiple DAMPs are secreted into the extracellular space and initiate an 

inflammatory response100,101 (Table 2 and Fig. 2).

Mitochondrial DAMPs

Mitochondrial DNA (mtDNA) and ATP maintain the mitochondrial structure and aid in 

energy metabolism.102,103 Chronic alcohol abuse increases mtROS and causes mtDNA 

oxidation.104,105 Moreover, alcohol depolarises mitochondria, disrupts mitophagy and leads 

to the release of mitochondrial DAMPs (mtDAMPs) into the cytosol, before they are 

eventually secreted from hepatocytes into the extracellular space.105 Once released, 

mtDAMPs promote proinflammatory and profibrotic events that lead to ALD progression.
105

Metabolic DAMPs

Alcohol-induced hepatocyte damage leads to the release of metabolic DAMPs, such as uric 

acid (following the degradation of nucleic acids) and ATP.106 Uric acid acts as an 

antioxidant by scavenging ROS and ONOO− in the plasma.107–109 Uric acid and ATP levels 

are elevated in serum and liver tissue from alcoholic patients and alcohol-fed mice15; both 

uric acid and ATP mediate cross-talk between hepatocytes and immune cells, enhancing 

inflammation.15 Further, pharmacological depletion of uric acid and blockade of ATP 

protect against ALD,110 suggesting they are candidate targets to prevent disease progression.
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Stress-induced DAMPs

Cellular stress increases expression of heat shock proteins (HSPs), which act as chaperones 

for refolding, disaggregation and degradation of polypeptides.111 When the chaperone 

activity of HSP90 is abnormal, it promotes alcohol-induced injury by enhancing hepatic 

lipid accumulation, MF-mediated inflammation and cellular stress.112–114 Pharmacological 

inhibition of HSP90 promotes reversal of alcohol-induced liver injury.115

HMGB1 is an architectural protein that plays a physiological role. It binds chromatin to 

facilitate bending and participates in nucleosome formation, DNA replication and DNA 

repair.116,117 HMGB1 also acts as a DAMP, serving as a ligand for the receptor for advanced 

glycation end-products (RAGE) and for toll-like receptor 4 (TLR4).8,118 Liver biopsies from 

alcoholic patients show a robust increase in HMGB1 expression and translocation, which 

correlate with disease stage. Similar findings are observed in chronic ethanol-fed mice.8 

Further, ablation of Hmgb1 in hepatocytes protects mice from alcohol-induced liver injury 

by elevating LDL and VLDL export and increasing the levels of carnitine 

palmitoyltransferase-1, phosphorylated 5′ AMP-activated protein kinase-α and 

phosphorylated peroxisome proliferator-activated receptor-α.8

Non-parenchymal cells also release DAMPs in ALD. For instance, hyaluronic acid (HA) 

produced by HSCs and hepatocytes is abundant in the extracellular matrix (ECM) of 

alcoholic patients.119,120 Individuals with ALD have increased serum HA levels, which 

correlate with progression of ALD and fibrosis.121,122 In addition, lipocalin-2 (LCN2), an 

acute-phase protein increased in patients with AH,123 acts as an alarmin by recruiting 

neutrophils to the liver.124–126

Prostaglandin E2 (PGE2) is a potent vasodilator. In patients with advanced AH, upregulation 

of cyclooxygenase-2 (COX2) in MFs and KCs elevates plasma levels of PGE2, which causes 

immunosuppression and thus increased susceptibility to infection.127–129 Moreover, KC-

derived PGE2 increases cAMP in hepatocytes and triglyceride accumulation in livers from 

alcoholic patients.130

DAMPs in non-alcoholic steatohepatitis

NASH is characterised by increased steatosis, lobular inflammation and the presence of 

chicken-wire fibrosis.131,132 During NASH progression, excessive lipid accumulation, ROS 

generation and endoplasmic reticulum (ER) stress damage hepatocytes. This damage 

triggers regulated cell death primarily through apoptosis and pyroptosis, which involves the 

formation of plasma membrane pores by the gasdermin family of proteins, largely induced 

by activation of proinflammatory caspases.36,99,133,134 Regulated cell death results in 

secondary necrosis and release of intracellular materials into the extracellular space, where 

they act as DAMPs recognised by PRRs.135 TLRs and NLRs sense multiple DAMPs (Table 

2 and Fig. 3) that mediate inflammation and fibrosis during NASH progression.136–140

Intrahepatic DAMPs

Mitochondrial damage and subsequent cell death release immunogenic mtDNA.141 TLR9, a 

mtDNA receptor, is internalised in intracellular organelles such as endosomes and 
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recognises phagocytosed unmethylated CpG DNA fragments,138,141 which are rare in host 

genomic DNA but abundant in mtDNA.141 Unmethylated CpG DNA fragments are elevated 

in serum from obese patients, together with upregulated TLR9 expression.141 Mice with 

global or myeloid cell-specific ablation of Tlr9 fed either a high-fat (HF) diet or a high-fat, 

fructose and cholesterol (HFHC) diet show reduced liver steatosis, inflammation and 

fibrosis.138,141 Likewise, treatment with the TLR9 antagonist IRS954 attenuates NASH, 

suggesting a possible therapeutic avenue.141 Further, single-stranded RNA (ssRNA) binds 

TLR7 and triggers an inflammatory response in MFs and dendritic cells.142 Ablation of Tlr7 
attenuates progression of NASH in a methionine and choline-deficient diet mouse model by 

suppressing TNFα and interferon-γ (IFNγ) production and CD4+ T cell recruitment.142,143

mtROS also act as DAMPs and contribute to NASH progression. Hepatocyte-specific 

ablation of Nox4 attenuates inflammation and fibrosis in the HF and choline-deficient L-

amino acid-defined (CDAA) murine models.144 In MFs, NOX4 accelerates β-oxidation of 

long-chain FFAs causing oxidative stress and polarisation toward a more proinflammatory 

phenotype.145 NLRP3 is the intracellular PRR that responds to these ROS145; it is 

upregulated in the livers of patients with NASH and ablation of Nlrp3 prevents NASH 

progression in mice.140 Likewise, treating mice with GKT137831, a NOX1/4 inhibitor 

currently being tested in clinical trials, reduces ROS and activation of NLRP3 in palmitate-

treated bone marrow-derived MFs and decreases inflammation in the CDAA murine model 

of NASH.144,145 Notably, MCC950, an NLRP3 inhibitor, improves NAFLD and fibrosis in 

obese diabetic mice.140

ECM-derived DAMPs

The ECM is dynamic and supports tissue homeostasis.146,147 Active ECM remodelling is 

observed in both patients with NASH and mouse models of NASH.146,148 The deposition of 

fibrin and fibrinogen into the ECM occurs in the liver of patients with NASH and mice fed a 

HF diet. Additionally, mice overexpressing mutated fibrinogen are protected from fatty liver 

disease.149 Although no functional studies were performed, proteomics analysis revealed a 

sustained increase in biglycan, a potential ligand for TLRs, in hepatic ECM from mouse 

models of NASH.146 Further, galectin-3, a secreted lectin regulating matrix-to-cell 

interactions, promotes progression of NASH by interacting with the interleukin-33 

(IL33)/ST2 axis.150 Although a clinical trial (NCT02462967) of belapectin, an inhibitor of 

galectin-3, did not improve fibrosis in patients with NASH, a significant decrease in 

hepatocyte ballooning was observed.151

Extrahepatic DAMPs

Cholesterol species act as surfactants to maintain the plasma membrane and excessive 

cholesterol intake and hypercholesterolemia are risk factors for NASH.152 Cholesterol 

crystals are delivered by oxidised LDLs through CD36 and activate the NLRP3 

inflammasome in MFs.153 Moreover, the cholesterol-lowering drugs ezetimibe and 

atorvastatin suppress NLRP3 expression and inflammation in an HFHC mouse model of 

NASH, while targeting CD36 protects mice from NASH.154,155
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Advanced glycation end-products (AGEs) are generated via the non-enzymatic Amadori 

reaction between a reducing sugar (e.g., glucose) and proteins, lipids or nucleic acids.156 

Diabetic patients have increased AGEs due to hyperglycaemia.156 In addition, population 

genetics suggest that a polymorphism in the AGE receptor (RAGE) gene and circulating 

soluble RAGE (encoded by AGER) are associated with the risk of NASH.157 In addition, a 

HFHC mouse model shows that dietary supplementation with AGEs aggravates 

inflammation and ROS production in KCs, exacerbating NASH-induced liver injury.158 

However, global knockout of Ager in Ldlr−/− mice minimally affects progression of NASH 

under short- or long-term HFHC diet feeding.159 The role of RAGE in NASH remains 

inconclusive as these studies used mice of different sex.158,159

DAMPs in liver fibrosis

Chronic liver injury leads to pathological scarring and fibrosis.160,161 DAMPs such as 

HMGB1, OPN, HSPs, IL33 and ATP activate HSCs, the main source of fibrillar collagen, 

the main ECM component in fibrosis162,163 (Table 2 and Fig. 4).

Hepatic expression and serum levels of HMGB1 correlate with fibrosis stage in patients with 

chronic HCV or HBV infection, primary biliary cirrhosis and AH, as well as in mouse 

models of fibrosis based on administration of CCl4 or thioacetamide and in the bile duct 

ligation model.118,164,165 HMGB1 activates HSCs166 and induces ER stress (unpublished 

observations). Our laboratory demonstrated that ablation of Hmgb1 in hepatocytes and 

myeloid cells as well as neutralisation of HMGB1 and RAGE protects mice from fibrosis.118 

In addition, HMGB1 signals through RAGE in HSCs to upregulate collagen type I 

expression via the pMEK1/2/pERK1/2/pc-Jun signalling pathway. We showed that 

pMEK1/2 is upstream of pAkt and enhances collagen type I as well.55 In addition, nilotinib, 

a tyrosine kinase inhibitor, ameliorates CCl4-induced fibrosis in rats by attenuating Hmgb1/
Rage expression and oxidative stress.167

OPN, a matrix-bound protein sensitive to oxidant stress and highly induced upon liver 

damage emerges as a key DAMP in the pathogenesis of fibrosis by increasing HMGB1 and 

collagen type I expression in HSCs through RAGE.55 OPN itself upregulates collagen type I 

through integrin αvβ3 engagement and PI3K/pAkt/NFκB signalling. Moreover, OPN drives 

ductular reaction and contributes to periportal scarring and fibrosis via TGFβ signalling.168

HSP90 is involved in the activation and survival of HSCs.169,170 The HSP90 inhibitor 17-

AAG induces apoptosis and reduces activation of HSCs in a thioacetamide model of fibrosis.
171 HSP47, a collagen-specific chaperone, plays a key role in the deposition of collagen 

around fibrotic areas and is thus involved in fibrosis.172,173 Moreover, inhibitors of HSP47 

such as lactoferrin and silymarin prevent HSC activation.174 Overexpression of heat shock 

factor 1 (HSF1) in HSCs activates them and increases cell proliferation by inducing HSP47 

and upregulating the TGFβ/SMAD4 signalling pathway. Notably, miR-455-3p alleviates 

HSC activation and fibrosis by suppressing its target gene, Hsf1.175

IL33 is constitutively present in the nucleus and binds DNA.176 Hepatic IL33 expression is 

increased in mice with portal fibrosis and in liver biopsies from fibrotic patients.177,178 In 
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chronic liver injury, IL33 binds the IL33 receptor (IL33R) and activates NF-κB and MAPKs 

to enhance profibrogenic responses.179 IL33 binding to its receptor also produces 

proinflammatory and T helper 2 (Th2) cytokines. Recombinant IL33 increases hepatic 

inflammation and activates HSCs – an effect abrogated by ablation of Il33r or 

pharmacological inhibition of MAPK signalling.177,180

To fuel various processes, cells transport ATP into the extracellular space via pannexin-1, 

converting ATP to AMP and adenosine. Extracellular ATP activates MFs through the P2X7 

receptor; activated MFs release IL1β and HMGB1 that trigger inflammation and 

fibrogenesis.181 Extracellular adenosine interacts with the A2A (A2AR) or A2B (A2BR) G-

coupled protein receptors to directly stimulate fibroblast production of ECM and increase 

fibrosis.182 Deletion of Cd73 or Cd9, involved in adenosine production and blockade of A2A 

or A2B prevents fibrosis in mice.183 In addition, mice lacking adenosine deaminase have a 

marked increase in extracellular adenosine and develop fibrosis, which is prevented by 

blockade of A2A and A2B.184

DAMPs in liver cancer

Liver cancer represents the common end-stage of chronic liver disease. About 90% of HCCs 

arise from cirrhosis185 and mouse models of liver cancer show greater tumour incidence 

when exposed to chemically induced fibrosis.186,187 DAMPs participate in both initiation 

and progression of liver cancer (Table 2 and Fig. 5).

Initiation of HCC

HMGB1 is increased in the liver188–190 and serum191 in human HCC and is associated with 

tumour stage and poor outcome (meta-analysis in192). In the diethylnitrosamine (DEN) 

murine model of HCC, HMGB1 expression correlates with tumourigenesis,193 yet 

hepatocyte-specific ablation of Hmgb1 only reduces tumour burden when combined with 

CCl4-induced liver injury194 or in the early stages of tumourigenesis.195,196 This effect is 

mediated by activation of Yes-associated protein 1 (YAP), a key driver of hepatocellular 

carcinogenesis, as HMGB1 binds to the transcription factor GABPα and enhances YAP 

signalling in vivo and in vitro.195

Further, OPN expression is significantly increased in patients with HCC, correlating with 

tumour stage and survival.197,198 However, the role of OPN in HCC initiation is not fully 

understood, as global ablation of Opn in the DEN model provided inconsistent results.
199–201

Proteins of the S100 family act as intracellular Ca2+ sensors and extracellular DAMPs that 

bind RAGE202 and are frequently dysregulated in various cancers.203 Ablation of S100a9 
decreases tumour burden in the DEN model,204 whereas ablation of S100a4 does not prevent 

HCC caused by hepatic deletion of Pten.205

To date, the role of RAGE in HCC initiation remains unknown but truncated soluble 

isoforms of RAGE negatively correlate with HCC risk in human HBV and HCV infection.
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206 In addition to RAGE, HMGB1 also interacts with TLR4. This receptor has a protective 

role in HCC initiation, as Tlr4 ablation increases tumour burden in the DEN model.207

Progression of HCC

HMGB1 induces proliferation, migration and invasion in HCC cells.190,208,209 In an 

orthotropic model, Hmgb1 ablation decreases tumour growth.190,195 Mechanistically, under 

hypoxic conditions HMGB1 translocates from the nucleus to the cytosol and binds 

TLR9208–210; in a mtDNA-mediated fashion.210 TLR9 activation helps tumour cells adapt to 

hypoxia, leading to mitochondrial biogenesis, tumour-associated MF invasion, tumour 

growth and metastasis.190,196,210–212 Two studies suggest that HMGB1 induces HCC 

progression by activating RAGE.208,209 In HCC cell lines, RAGE signalling triggers 

proliferation,213,214 angiogenesis,215 tolerance to hypoxia216 and migration.217

OPN induces tumour proliferation, invasion and metastasis in vivo and in vitro activating 

integrins and CD44.218,219 Importantly, OPN is associated with PDL1 levels in human and 

mouse HCC, suggesting a role in immune escape.200 Thus, targeting OPN in human HCC 

could be a promising approach as a second line of treatment after immunotherapy.

Among S100 proteins, S100A1 is upregulated in human HCC and correlates with poor 

survival and reduced apoptosis.220 S100A4 secretion by mesenchymal stromal cells induces 

HCC proliferation, invasion, epithelial-to-mesenchymal transition and metastasis in humans.
221,222 Further, S100A8 and S100A9 trigger ROS production and promote cell survival in 

HCC cells in vitro.223 S100A8 induces cell proliferation, migration, invasion and tumour 

growth in vivo and the extent of methylation decreases in human HCC and correlates with 

patient survival.224 S100A9 also induces cell proliferation and invasion through RAGE 

signalling.225

New emerging DAMPs are also thought to play a role in HCC progression. Extracellular 

ATP induces HCC cell migration through activation of the purinergic 2 (P2) receptor, whose 

expression correlates with worse patient outcome.226 Ablation of calreticulin decreases HCC 

cell growth and invasion.227 Histones, found in the nuclei of eukaryotic cells, are involved in 

gene regulation but can be released into the circulation under stress conditions and act as 

DAMPs.228 Histone secretion and subsequent activation of TLR4 induce HCC metastasis in 

an orthotopic mouse model.229

DAMPs in other liver cancers

Little is known about the role of DAMPs in other liver cancers, although HMGB1 is 

increased and associated with poor survival in intrahepatic cholangiocarcinoma230 and 

perihilar cholangiocarcinoma.231

DAMPs in ischaemia reperfusion injury and liver transplantation

Patients who progress to end-stage liver disease may require liver transplantation (LT); 

multiple steps during LT induce the release of DAMPs, which mediate graft injury. Damage 

to the liver graft results in early allograft dysfunction,232 rejection233 and even recurrence of 

HCC.234 Unfortunately, all these events negatively affect recipient outcomes and limit the 
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use of marginal organs that could increase the donor source. Consequently, DAMPs are not 

only early markers of graft injury but also potential therapeutic targets to prevent graft 

dysfunction. A list of DAMPs involved in ischaemia reperfusion injury (IRI) and LT is 

provided in Table 2 and Fig. 6.

Donor livers release DAMPs

Although IRI is the most common cause of injury during LT,235 release of DAMPs occurs 

before organ procurement and the IRI insult.236 The majority of deceased organs in the 

western world are donations after brain death.237 Experimental studies on the response to 

brain death show that DAMPs are released and stimulate secretion of proinflammatory 

cytokines by activating TLRs238; consequently, DAMPs affect distant organs and act as the 

first insult to the liver graft.239,240

Liver graft preservation releases DAMPs

LT involves cold ischaemia and warm IRI. Damage due to cold ischaemia occurs during 

organ perfusion and cold storage. This step is designed to protect parenchymal cells by 

slowing metabolism and stabilising them.241 However, KCs and MFs are more sensitive to 

cold ischaemia and release DAMPs when activated.242 For instance, clinical studies show 

high levels of HMGB1 in liver graft effluent after cold storage,243 which correlates with 

post-operative early allograft dysfunction.244

Normothermic machine perfusion aims to provide a more physiological environment to 

preserve liver grafts before implantation.245 However, despite promising clinical trial results, 

a recent study shows that HMGB1 and extracellular DNA increase during normothermic 

machine perfusion under different temperature conditions and correlate with TLR activation, 

suggesting that DAMPs act as inflammatory mediators during machine perfusion.16

Effects of DAMPs during liver graft reperfusion

Liver graft implantation requires a period of portal flow occlusion to allow anastomosis of 

vessels. Warm ischaemia arises when the liver graft returns to normothermic conditions.246 

When blood flow is re-established, the subsequent oxidative burst directly damages 

hepatocytes that then release DAMPs, which are also secreted by KCs and MFs.247 As the 

major player in graft injury, IRI is inevitable during LT. DAMPs, such as HMGB1,248 HSP,
249 extracellular ATP250 and extracellular DNA,16 are involved in IRI and mediate graft 

injury.

IRI in mice increases HMGB1 levels after 1 hour and lasts for 24 hours, indicating that 

HMGB1 is an early biomarker of graft injury.251,252 Indeed, neutralizing antibodies against 

HMGB1 or TLR4 lessen IRI,252,253 whereas Hmgb1ΔHep show aggravated hepatic IRI and 

DNA damage.254 These findings indicate that HMGB1 is essential for intracellular 

homeostasis and acts as a danger signal when it is released into the circulation.

IL33 is a nuclear protein released into the extracellular space during cell injury. IL33 

promotes neutrophil infiltration, migration and formation of neutrophil extracellular traps 

(NETs) by binding to its receptor, suppression of tumorigenicity 2 (ST2).255 Although it was 
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reported that NETs formation is beneficial for the host defence against pathogens,256 recent 

studies found that IL33 secreted by liver sinusoidal endothelial cells promotes NETs 

formation and eventually exacerbates inflammation and liver injury.257 Other DAMPs such 

as HMGB1 and histones induce NETs through TLR signalling. In addition, HMGB1 and 

histones reside in NETs and can recruit more neutrophils to further aggravate IRI.258

Further, ATP released from injured or stressed cells acts as a DAMP by binding to P2, 

activating the inflammasome in MFs via pannexin-1 and contributing to liver damage during 

IRI.259

Circulating histones significantly elevate and exacerbate liver damage following IRI 

signalling through TLR9. However, histone neutralisation and Tlr9 ablation ameliorate 

injury in vivo.260 During IRI, histones activate the NLRP3 inflammasome in KCs by 

generating ROS in a TLR9-dependent manner.261

Although HSP90 and HSP47 participate in the pathogenesis of ALD and fibrosis, HSP70 

protects rat livers from IRI by reducing hepatic inflammatory and oxidative damage.262 

Overexpression of HSP27 in mice protects from hepatic IRI by reducing necrosis, apoptosis 

and neutrophil infiltration.263 Likewise, PGE2 levels are significantly higher in the plasma 

of LT recipients with good graft function.264 Although HSP70 and PGE2 are considered 

danger signals, their protective effects against liver IRI and graft injury suggest a re-

evaluation of their role as DAMPs in the setting of LT 265,266

Role of DAMPs in immune rejection

DAMPs induce innate and adaptive immune responses that result in immune rejection.258 

After organ reperfusion, in addition to accumulated DAMPs generated by cold storage and 

IRI, alloantibodies from recipients lead to non-infectious injury and release of DAMPs, 

which persist after resolution of IRI.236 Many of these DAMPs bind to TLRs and drive the 

immune reaction toward the allograft. Further, lung and heart transplantation demonstrate a 

link between the release of DAMPs and acute rejection.267,268 Although the liver is an 

immunotolerant organ, the effect of DAMPs in LT rejection has been reported.269

CD39 is essential to maintain homeostatic levels of ATP. Cd39−/− mice exhibit increased 

liver-infiltrating CD8+ T cells, stronger response to donor alloantigens and reduced recipient 

survival rates after major histocompatibility complex mismatched LT.269 This outcome 

reinforces the involvement of extracellular ATP in post-transplant rejection.

HSPs also protect against LT rejection. Indeed, a retrospective clinical analysis shows 

significantly lower HSP70 mRNA levels in graft biopsy samples from LT recipients who 

developed graft dysfunction caused by rejection.270

Resolving the effects of DAMPs

Reducing release, promoting clearance and inhibiting DAMP signalling have been proposed 

to reduce graft injury and improve recipient outcomes. Treatment with recombinant soluble 

thrombomodulin attenuates liver graft injury by binding to HMGB1 and preventing the 

proinflammatory response.271 A similar effect is achieved by inhibiting TLR4, an HMGB1 
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receptor.252,253 In addition, preconditioning with low concentrations of HMGB1 before LT 

protected against hepatic IRI.272 Enhancement of extracellular ATP clearance by activating 

the P1 receptor A2A on bone marrow-derived cells also protects livers from IRI.273 Further, 

since NETs play a role in IRI, studies have examined inhibition of NETs during IRI. 

Peptidylarginine-deiminase-4 (PAD4) is required for formation of NETs and inhibition of 

PAD4 alleviates liver IRI in mice.274 However, considering the role of NETs in host defence, 

inhibition of NETs should be given special consideration due to the risk of infection in LT 

recipients.

Along with reducing harmful DAMPs, enhancing protective DAMPs holds promise for 

reducing hepatic IRI. Activation of HSP70 protects against hepatic IRI,249 an effect 

attributed to iNOS. Although nitrosative stress promotes ALD, fibrosis and HCC,22,32,59 it 

protects against hepatic IRI by activating HSP70. While specific HSPs are pathogenic in 

some liver diseases, the protective effect of HSP70 reported in these studies262 suggests that 

the role of HSPs as DAMPs during hepatic IRI should be re-evaluated. HSPs could provide a 

potential target to attenuate liver injury after LT.

Concluding remarks

Overall, these studies suggest that DAMPs induced by ROS and RNS, as well as DAMPs 

that signal through receptors and are produced by injured hepatocytes or non-parenchymal 

cells during ALD, NASH, fibrosis and HCC drive liver injury by increasing oxidative stress, 

lipid accumulation, inflammation and fibrosis. To our knowledge, there are not many 

existing clinical trials successfully targeting DAMPs to prevent onset and progression of 

chronic liver diseases. Blocking specific DAMPs alone or in combination could be a 

promising strategy to improve patient survival in the future, as HCC is the second leading 

cause of cancer-related deaths worldwide.275,276 While LT aims to rescue patients with end-

stage liver disease, this surgical procedure is associated with significant release of DAMPs 

along with DAMP-induced graft injury and immune rejection. A thorough understanding of 

the role of each DAMP in LT is essential to improve graft quality and recipient outcomes, 

which could eventually be achieved by targeting specific DAMPs or controlling their 

signalling.
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Abbreviations

A2AR adenosine A2A receptor

A2BR adenosine A2B receptor
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ACOX1 acetyl-CoA oxidase

AGE advanced-glycation end-products

AH alcoholic hepatitis

ALD alcoholic liver disease

CCl4 carbon tetrachloride

CDAA choline-deficient amino acid-defined

COX2 cyclooxygenase-2

CYP2E1 cytochrome P450 2E1

DAMP(s) damage-associated molecular pattern(s)

DEN diethylnitrosamine

ECM extracellular matrix

eNOS endothelial nitric oxide synthase

ER endoplasmic reticulum

FFA(s) free fatty acid(s)

GABPα GA binding protein transcription factor subunit-α

HA hyaluronic acid

HCC(s) hepatocellular carcinoma(s)

HF high-fat

HFHC high-fat, fructose and cholesterol

HMGB1 high-mobility group box-1

HSC(s) hepatic stellate cell(s)

HSF1 heat shock factor-1

HSP heat shock protein

IFNγ interferon-γ

IKK I-κappa-B kinase

IL33R IL33 receptor

iNOS inducible nitric oxide synthase

IRI ischaemia reperfusion injury

KEAP1 Kelch ECH associating protein-1
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KC(s) Kupffer cell(s)

LCN2 lipocalin-2

LT liver transplantation

MAPK mitogen-activated protein kinase

MF(s) macrophage(s)

mtDAMP(s) mitochondrial DAMPs

mtDNA mitochondrial DNA

mtROS mitochondrial ROS

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NET(s) neutrophil extracellular trap(s)

NLRP3 NOD-like receptor protein-3

NO nitric oxide

NOD nucleotide-binding oligomerisation domain

NOX NADPH oxidase

NRF2 nuclear factor erythroid 2-related factor-2

ONOO− peroxynitrite

OPN osteopontin

P2 purinergic-2

P2RX7 purinergic receptor P2X7

PAD4 peptidyl-arginine-deiminase-4

pAKT phosphorylated protein kinase-B

pc-Jun phosphorylated c-Jun

pERK1/2 phosphorylated extracellular signal-regulated kinase

PGE2 prostaglandin E2

PI3K phosphoinositide 3-kinase

pMEK phosphorylated mitogen-activated protein kinase

PRR(s) pattern recognition receptor(s)

RAGE receptor for advanced glycation end-products
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RNS reactive nitrogen species

ROS reactive oxygen species

ssRNA single-stranded RNA

ST2 suppression of tumourigenicity-2

TGFβ transforming growth factor-β

Th2 T helper-2

TLR(s) toll-like receptor(s)

TNFα tumor necrosis factor-α

YAP1 Yes-associated protein-1
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Key point

Damage-associated molecular patterns are signalling molecules involved in inflammatory 

responses and restoration of homeostasis.

Chronic release of these molecules promotes inflammation in the context of liver disease.

Reactive oxygen species and reactive nitrogen species induce damage-associated 

molecular patterns.

Specific damage-associated molecular patterns participate in pathogenesis of chronic 

liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver 

fibrosis and liver cancer.

Damage-associated molecular patterns play a role in ischaemia reperfusion injury and 

liver transplantation.

Blockade of specific damage-associated molecular patterns has proven beneficial in 

humans and mice.
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Fig. 1. ROS and RNS induce DAMPs and events involved in chronic liver disease.
ROS are produced mostly in hepatocytes and MFs by CYP2E1, mitochondrial injury and 

NOX. ROS participate in progression of chronic liver disease, causing hepatocyte damage, 

inflammation, HSC activation and CD4+ T cell apoptosis. Peroxisomal ROS and kinases 

contribute to HCC development and resolution, respectively. RNS are generated in 

hepatocytes and MFs due to activation of iNOS. Excess NO reacts with ROS to generate 

damaging RNS such as ONOO−. Enzymatic and non-enzymatic antioxidant defence systems 

balance the generation of ROS and play an important role in resolution of liver disease. 4-
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HNE, 4-hydroxynonenal; ACOX1, acetyl-CoA oxidase; CYP2E1, cytochrome P450 2E1; 

DAMP(s), damage-associated molecular pattern(s); EtOH, ethanol; FFAs, free fatty acids; 

GPx, glutathione peroxidase; GSR, glutathione-disulfide reductase; GST, glutathione S-

transferase; HCC, hepatocellular carcinoma; HSC(s), hepatic stellate cell(s); iNOS, 

inducible nitric oxide synthase; MDA, malondialdehyde; MF(s), macrophages; mtROS, 

mitochondrial ROS; NLRP3, NOD-like receptor protein-3; NO, nitric oxide; NOX, NADPH 

oxidase; [O]HMGB1, disulfide High-mobility group box-1; ONOO−, peroxynitrite; RNS, 

reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase.
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Fig. 2. DAMPs promote inflammation, steatosis and hepatocyte injury in ALD.
Ethanol-induced hepatocyte injury causes release of DAMPs, including mitochondrial 

DAMPs (mtDNA and ATP), uric acid, HSPs and HMGB1 from damaged hepatocytes. Most 

of these DAMPs are recognised by MFs through RAGE, TLRs and P2RX7 and activate NF-

κB and the NLRP3 inflammasome. These result in release of proinflammatory cytokines 

that trigger cellular injury and steatosis. HSCs release HA and are responsive to mtDNA 

which activates them. MFs produce PGE2 that causes steatosis via cAMP activation. 

Neutrophils produce LCN2 and respond to it by infiltrating the liver to exacerbate cellular 

injury by releasing proinflammatory cytokines. cAMP, cyclic adenosine monophosphate; 

COX2, cyclooxygenase-2; DAMP(s), damage-associated molecular pattern(s); EtOH, 

ethanol; HA, hyaluronic acid; HMGB1, high-mobility group box-1; HSC(s), hepatic stellate 

cell(s); HSPs, heat shock proteins; LCN2, lipocalin-2; MF(s), macrophage(s); mtDNA, 

mitochondrial DNA; mtROS, mitochondrial ROS; NFκB, nuclear factor kappa B; NLRP3, 

NOD-like receptor protein-3; P2RX7, purinergic receptor P2X7; PGE2, prostaglandin E2; 

RAGE, receptor for advanced glycation end-products; ROS, reactive oxygen species; TLR9, 

toll-like receptor 9.
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Fig. 3. Intrahepatic and extrahepatic DAMPs contribute to NASH.
Damaged hepatocytes are the major source of intrahepatic DAMPs (mtDNA and ssRNA). 

ECM components such as biglycan, fibrinogen and galectin-3 can also act as DAMPs to 

active TLRs. MFs and dendritic cells recognise DAMPs through RAGE, TLRs and NLRP3 

signalling. Extrahepatic DAMPs (AGE, FFAs and oxidised LDLs) are delivered via 

circulation and can bind RAGE and CD36, contributing to steatohepatitis. AGE, advanced 

glycation end-products; CHO, cholesterol; DAMP(s), damage-associated molecular 

pattern(s); ER endoplasmic reticulum; FAO, fatty acid oxidation; FFA(s), free fatty acid(s); 

IRF, interferon-regulatory factor; MF(s), macrophage(s); mtDNA, mitochondrial DNA; 

mtROS, mitochondrial ROS; NFkB, nuclear factor kappa B; NLRP3, NOD-like receptor 

protein-3; NOX4, NADPH oxidase 4; oxLDL, oxidized low-density lipoproteins; ssRNA, 

single-stranded RNA; RAGE, receptor for advanced glycation end-products; ROS, reactive 

oxygen species; TLR(s), Toll-like receptor(s).
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Fig. 4. DAMPs activate HSCs and contribute to fibrosis.
In addition to being a significant source of ROS, hepatocytes produce adenosine, OPN and 

HMGB1, which target HSCs through A2AR/A2BR, αvβ3 integrin and RAGE, respectively 

and activate HSCs to promote scar deposition. MFs are also a significant source of ROS due 

to NOX activation and they produce HMGB1, OPN, IL33 and HSPs, which signal through 

RAGE, αvβ3 integrin, IL33R and TLRs, respectively, in HSCs to magnify the fibrogenic 

response. The contribution of biliary epithelial cells to HSC activation is significant as they 

produce TGFβ, which enhances collagen type I synthesis. HMGB1, OPN, IL-33, HSPs, ATP 
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and adenosine, through interaction with their receptors on HSCs, signal via MEK1/2/c-Jun, 

PI3k/pAKT/NF-κB and TGFBR/Smad4 pathways to enhance collagen type I. Ab, antibody; 

DAMP(s), damage-associated molecular pattern(s); HMGB1, high-mobility group box-1; 

HSC(s), hepatic stellate cell(s); HSF, heat shock factor; HSPs, heat shock proteins; IL1, 

interleukin-1; IL33R, IL33 receptor; MF(s), macrophage(s); NOX, NADPH oxidase; OPN, 

osteopontin; RAGE, receptor for advanced glycation end-products; ROS, reactive oxygen 

species; TGFβ, transforming growth factor β; TGFBR, transforming growth factor beta 

receptor; TLR(s), Toll-like receptor(s).
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Fig. 5. Role of DAMPs in initiation and progression of HCC.
HMGB1 participates in initiation of HCC by GABPα-mediated activation of YAP 

signalling, while TLR4 represses it. In tumour cells, intracellular HMGB1, through mtDNA 

and TLR9 signalling as well as S100A8 and S100A9 via ROS production, contributes to 

tumour growth and metastasis. Extracellular DAMPs such as HMGB1, OPN, S100A1, 

S100A4, ATP, histones and calreticulin contribute to tumour progression. DAMP(s), 

damage-associated molecular pattern(s); GABPα, GA binding protein transcription factor 

subunit-α; HCC, hepatocellular carcinoma; HMGB1, high-mobility group box-1; mtDNA, 

mitochondrial DNA; OPN, osteopontin; RAGE, receptor for advanced-glycation end-

products; ROS, reactive oxygen species; sRAGE, soluble RAGE; TLR(s), Toll-like 

receptor(s); YAP, Yes-associated protein.
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Fig. 6. The role of HMGB1 in hepatic IRI and LT.
Multiple steps during LT release DAMPs that, in turn, are involved in graft injury and 

immune rejection. First, methods for preserving liver grafts, such as cold storage and 

machine perfusion, induce release of DAMPs into the perfusate, which then become flushed 

into circulation after perfusion. Second, the oxidative burst during graft reperfusion damages 

hepatocytes and actives Kupffer cells and MFs to release various DAMPs, which mediate 

graft injury and immune response through selective receptors. Third, in addition to DAMPs 

that induce a harmful response, HSP and PGE2 protect the liver graft from injury and inhibit 

immune rejection. DAMP(s), damage-associated molecular pattern(s); HMGB1, high-

mobility group box-1; HSP(s), heat shock proteins; IL, interleukin; IRI, ischaemia 

reperfusion injury; LSEC, liver sinusoidal endothelial cell: LT, liver transplantation; MF(s), 

macrophages; NETs, neutrophil extracellular traps; NLRP3, NOD-like receptor protein-3; 

PGE2, prostaglandin E2; RAGE, receptor for advanced glycation end-products; ROS, 

reactive oxygen species; ST2, suppression of tumorigenicity 2; TLR(s), Toll-like receptor(s).
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Table 1.

ROS and RNS induce events involved in chronic liver disease.

Effect(s) Reference(s)

ALD

 ROS Mitochondrial dysfunction; Proinflammatory; Profibrogenic 51,76,77

 RNS ONOO− induced liver injury 22,60,61

NASH

 ROS Lipid peroxidation; Proinflammatory 43,44,69,71

 RNS De novo lipogenesis; Proinflammatory 45

Fibrosis

 ROS TGFβ signalling; HSC activation 46,78

 RNS iNOS induces MMP9; DNA damage; Profibrogenic 62,63

HCC

 ROS Oxidative DNA damage; DNA adducts; Proinflammatory; Oncogenic; Increase telomerase activity, telomere length 
and HCC tumour growth; Protein oxidation

47–49

 RNS iNOS promotes HCC stem cell phenotype 32

ALD, alcohol-related liver disease; NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma.
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