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Abstract

Protein-based therapeutics have unique therapeutic potential due to their specificity, potency, and 

low toxicity. The vast majority of intracellular applications of proteins require access to the 

cytosol. Direct entry to the cytosol is challenging due to the impermeability of the cell membrane 

to proteins. As a result, multiple strategies have focused on endocytic uptake of proteins. 

Endosomally entrapped cargo, however, can have very low escape efficiency, with protein 

degradation occurring in acidic endo-lysosomal compartments. In this review, we briefly discuss 

endosomal escape strategies and review the strategy of cell membrane fusion, a recent strategy for 

direct delivery of proteins into the cell cytoplasm.
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Effective intracellular protein delivery in protein therapeutics

Proteins play dynamic and diverse roles in virtually all aspects of cellular function, making 

proteins potential therapeutics [1, 2]. Recent developments in protein technology have 

enabled proteins to be engineered to perform complex functions. These engineered proteins, 

such as CRISPR/Cas9 (see Glossary), have created new possibilities in the field of protein 

therapeutics to treat several diseases (for example muscular dystrophy, cystic fibrosis) that 
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are ‘undruggable’ by conventional small molecule drugs [1]. Current protein therapeutics 

mainly focus on extracellular targets and a number of them such as Matuzumab [3], 

Nimotuzumab [4] and more have been successfully translated to the clinic [5]. Effective 

intracellular protein delivery would dramatically increase the potential for protein 

therapeutics, accessing the multitude of processes that occur inside of cells. However, 

cytosolic protein delivery is challenging, mainly due to the inherent impermeability of the 

cell-membrane to large, highly polar proteins and poor escape from vesicular compartments 

(endosomes) formed during endocytosis, the most common mode of biomacromolecule 

uptake by cells [1, 2].

Numerous approaches have been undertaken to transport proteins into cells, [6] including 

physical techniques such as electroporation, microinjection and acoustics [7], decoration of 

proteins with cell penetrating peptides (CPPs) [8–13] or other ligands, and using 

nanocarriers [14, 15] such as lipids [16], inorganic nanoparticles (NPs) [17–19], and 

polymers [20–24]. Although mechanical methods provide direct access of the protein into 

the cytosol of the cells, they require specialized equipment that punctures the cell membrane 

and are not suitable for clinical applications. While CPPs have also gained substantial 

attention recently due to their direct penetration abilities, their mechanisms of uptake have 

been debated [25, 26] with endocytosis postulated as being the predominant pathway of 

uptake [27–30]. Among these approaches, nanocarriers have been widely used for 

intracellular protein delivery due to their easier tunability and variability.

Nanocarriers carrying protein therapeutics are predominantly taken up by the cells via 

several endocytic mechanisms including phagocytosis, macropinocytosis, clathrin- and 

caveolae-mediated endocytosis [31]. The protein delivery vehicles enter into the cells via 

endocytosis but then the cargo becomes entrapped in the endosomes (endosomal 

entrapment). Endosomallyentrapped [32, 33] proteins are eventually degraded by proteases 

in the acidic endo-lysosomal compartments without being able to access the cytosol (Figure 

1, Key Figure) [1, 2, 6]. This sequestration and degradation limits the efficacy of protein 

delivery systems that are internalized into the cells by endocytic pathways.

Access of delivered proteins to the cytosol is critical for intracellular activity, either directly 

for activity or as a gateway to the nucleus or subcellular organelles [6]. Despite continued 

efforts, the maximum reported efficiency of endosomal escape is < 10% [34], necessitating 

the need to develop new strategies for cytosolic protein delivery. Direct delivery of proteins 

into the cytosol has emerged as viable alternative and hold potential for future therapeutic 

applications. By circumventing the problems associated with inefficient endosomal escape, 

this route enables direct transport of proteins to the cytosol with highly increased therapeutic 

efficacies.

In this review, we will discuss the use of nanocarriers that employ endosomal escape 

strategies as well as vehicles that access cell membrane fusion, a recently discovered non-

endosomal and hence direct cytosolic delivery pathway (Figure 1). We will highlight key 

examples of efforts to effect cytosolic delivery and discuss how these protein delivery 

systems are moving towards clinical translatability.
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Endosomal escape strategies

The relative ease of inducing endosomal uptake of protein delivery vehicles has generated 

numerous approaches for endosomal uptake and escape [35, 36]. In this section we will 

focus on the three predominant strategies for endosomal escape: osmotic lysis using the 

‘proton sponge’ effect, endosomal membrane destabilization and endosomal membrane 

fusion (Figure 2).

Proton sponge effect (pH-buffering) with osmotic lysis

Endosomal escape induced by the proton sponge effect is mediated by agents with a high 

buffering capacity that can rupture the endosomal membrane through osmotic pressure 

(Figure 2A). This strategy is hypothesized to operate through influx of H+ into endosomes 

followed by counterions− and water molecules. This influx increases the internal pressure of 

the endosome, eventually lysing the endosome and releasing entrapped contents to the 

cytosol [6]. Agents that employ the proton sponge effect typically feature secondary and 

tertiary amines groups that become protonated at endosomal/lysosomal pH. 

Poly(ethylenimine) (PEI) and poly(amidoamine) (PAMAM) are commonly used as proton 

sponges [37, 38]. In 2015, Pitard and co-workers developed a liposome-based formulation 

that employs a proton sponge mechanism to deliver β-galactosidase (β-gal) enzyme and the 

anti-cytokeratin8 (K8) antibody into cytosol of HeLa cells [39]. Several other strategies have 

been developed for triggering endosomal escape by protonation, swelling and rupture of the 

membrane [38] but the efficiency of escape is generally relatively low, and subsequent 

cytosolic release is limited. Moreover, recent reports have raised concerns about the 

mechanistic aspect of this escape strategy [40]. A study by Braeckmans and co-workers [41] 

investigated mechanistic factors that impact on the endosomal escape, revealing that 

endosomal escape frequency varied with different cell lines. Furthermore, based on a 

mathematical model, they demonstrated that both endosomal size and endosomal membrane 

leakiness play a significant role in endosomal escape.

Endosomal escape through membrane destabilization

Endosomal membrane destabilization can allow cargo to escape from endosomal entrapment 

through membrane disruption (Figure 2B). This destabilization occurs via interaction of 

nanocarriers either by themselves or together with membrane-destabilizing agents, such as 

proteins/peptides [e.g. saporin [42], polyhistidine [43]) and chemicals (e.g. chloroquine [44], 

methylamine [45])] with the endosomal membrane, resulting in the release of cargo into the 

cytosol. Below we will discuss nanocarriers including inorganic NPs [46], lipids [47], and 

polymers [48–50] that effect endosomal escape by membrane destabilization.

Inorganic NP-based strategies for endosomal escape—Intracellular protein 

delivery using inorganic NPs including gold [51] and silica [52, 53] offer several useful 

qualities, including control over size and surface functionalization, long circulation time, 

efficient cellular uptake, targeting ability and minimal toxicity [54]. Notably, the choice of 

the inorganic core, size and surface functionality of the NP play a critical role to control the 

protein loading and uptake efficiency [8].
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Yu et al. reported the use of octadecyl-functionalized ‘rough’ silica NPs (C18-RSN) to 

deliver therapeutic protein ribonuclease A (RNase A), causing significant apoptosis in both 

human breast cancer (MCF-7) and squamous cell carcinoma (SCC-25) cell lines [55]. The 

hydrophobic modification with octadecyl group helped achieve endosomal escape by 

disrupting the endo-lysosomal membranes as compared to RSN without the hydrophobic 

modification. Murthy and co-workers employed gold NPs to develop a system they called 

‘CRISPR-Gold’ which delivers Cas9 ribonucleoprotein (RNP, protein and guide RNA) along 

with a donor DNA into the nucleus to induce a double stranded break in the targeted 

genomic region which is then repaired via homology directed repair (HDR). In this work, 

[51] 15 nm gold NPs were conjugated with donor DNA by thiol linkage and complexed with 

Cas9 RNP, and an endosomal disrupting polymer, poly(N-(N-(2-aminoethyl)-2-aminoethyl) 

aspartamide) (PAsp(DET)), which was crucial for triggering endosomal disruption and 

causing the release of CRISPR–Gold into the cytoplasm. Once in the cytoplasm, glutathione 

released the thiol-linked DNA from the gold core of CRISPR–Gold, which causes the rapid 

release of Cas9 RNP and donor DNA. This system achieved about 10% gene editing 

efficiency in vitro in the fluorescent reporter BFP-mGFP-HEK cells that expressed 11.3% of 

the BFP-HEK cells to express GFP via HDR. Sequencing studies further confirmed that the 

GFP sequence in the edited cells exactly matched the donor DNA sequence. In vivo, the 

system achieved 5.4% gene editing in Duchenne muscular dystrophy murine model.

Lipid-based strategies for endosomal escape—Endosomal membranes are 

phospholipid bilayers, enabling lipid-based strategies for intracellular protein delivery. In 

one example, Liu, Xu and co-workers used bioreducible lipid NPs to facilitate intracellular 

delivery of functional proteins such as Cre recombinase (a topoisomerase I like enzyme that 

carries out sit- specific DNA recombination) and CRISPR/Cas9 [16]. In this work, twelve 

bioreducible lipids molecules featuring disulfide functional groups and long hydrophobic 

alkyl carbon chains were synthesized. Cationic protein Cre recombinase was fused to GFP 

variants with very high net negative charge to impart overall negative charge and anionic 

Cas9 protein and single guide RNA (sgRNA) were complexed with the positively charged 

lipids. Electrostatic attraction facilitated self-assembly as well as efficient cargo loading. The 

disulfide groups of the bioreducible lipids facilitated the escape of proteins from endosomes 

into the cytosol in response to the reductive acidic environment of end/lysosomes, enabling 

gene recombination and genome editing with efficiencies greater than 70% in vitro. 

Additionally, the strategy demonstrated functional protein delivery into the mouse brain for 

gene recombination in vivo to treat neurological diseases.

In a recent study, Jiang and co-workers developed a vehicle based on lipid/gold NPs to 

deliver Cas9 protein and sgRNA for cancer gene therapy where the sgRNA was designed to 

target Plk-1(polo-like kinase 1) gene, a master regulator of mitosis that is overexpressed in 

cancer cells. [56]. Cationic gold nanoclusters (GNs) were modified with HIV-1-

transactivator of transcription peptide (TAT peptide), collectively called (TAT-GNs). The 

positively charged TAT-GNs were co-assembled with the negatively charged Cas9 proteins 

and sgRNA plasmids to form a ternary complex [TAT-GNs/Cas9 protein/sgRNA plasmid 

(GCP)] through electrostatic interactions. GCP was further encapsulated in an anionic lipid 

shell (1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP)/dioleoyl-phosphatidylethanol-
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amine (DOPE)/cholesterol), followed by post-modification with polyethylene glycol-

phospholipids (DSPE-PEG) on the surface of the lipid shell to form lipid-coated GCP, 

LGCP. The ion pairs formed between the cationic DOTAP and the anionic lipids on the 

endosome membrane facilitated the formation of the inverted hexagonal phase in the binding 

lipids, triggering proposed membrane fusion between LGCP and endosome membrane. This 

interaction eventually led to destabilization of endosome membrane, allowing for the 

disassembly of LGCP and subsequent release of the complex of TAT-GNs/Cas9 protein/

sgPlk1 plasmid from LGCP. Their studies revealed that ~26 % gene editing efficiency was 

achieved in vitro and ~5% inhibition of the melanoma progression was induced in melanoma 

mice model.

Polymer-based strategies for endosomal escape—Recently, several novel polymers 

have been designed to respond to environmental changes including pH [57] and the presence 

of reactive oxygen species (ROS) [58, 59] to induce endosomal escape via membrane 

destabilization. Chang and co-workers synthesized guanidinobenzoic acid-based polymer 

consisting of three parts- a dendrimer scaffold, a hydrophobic membrane-disruptive region, 

and a multivalent protein binding surface [60] to increase the protein binding efficiency, 

endocytosis, and endosomal membrane disruption respectively, for the delivery of several 

biomacromolecules such as bovine serum albumin, p53, saporin, R-phycoerythrin, β-

galactosidase and peptides in vitro. The dendrimer modified with guanidyl and phenyl 

groups were shown to provide efficient intracellular protein delivery. However, the 

dendrimer with only phenyl or guanidyl ligand failed to form complexes or provide effective 

endosomal escape, respectively. They also investigated the delivery efficiency in vivo in lung 

tumor bearing mice and found a decrease in the tumor volume following intratumoral 

injection of saporin, a ribosome deactivating protein that is membrane impermeable.

Dhal et al. recently demonstrated endosomal escape and protein delivery using cross-linked 

micron- and sub-micron-sized hyaluronic acid (HA) hydrogels [61]. They hypothesized that 

these hydrogels fuse with the endosomal membrane after protonation in the acidic 

environment of glucuronic acid units on the HA backbone, leading to membrane 

destabilization and eventual endosomal disruption. Cheng et al. demonstrated relatively 

efficient endosomal escape and cytosolic delivery of therapeutic proteins using 

fluoropolymer vectors both in vitro and in vivo [62]. The hydrophobic and lipophobic 

fluoroalkyl chains modified on these vectors facilitated endosomal escape through 

membrane destabilization due to the fluorophilic effect [63]. Higher delivery efficiency was 

achieved by polymers with longer fluorous chains and higher fluorination degrees. They also 

showed in vitro protein delivery in breast cancer cells, and in vivo protein delivery in 

mammary tumor bearing mice model using a modified complex consisting of a polymer 

coated with an anionic HA shell and saporin. The HA coating enhanced stability of the 

system for in vivo application by shielding the positive surface charge and the fluoroalkyl 

chains induced endosomal escape by destabilizing the endosomal membrane.

Thayumanavan et. al. recently generated functional polymer-protein conjugate 

nanoassemblies responsive to reactive oxygen species (ROS), reducing environment and 

varying pH, using rapid and reversible click reaction between salicylic hydroxamic acid and 

boronic acid moieties [64]. The use of this approach was demonstrated by successful 
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cytosolic delivery of several proteins with different isoelectric points and sizes ranging from 

14 kDa to 400 kDa, into different cancer cell lines.

Endosomal membrane fusion

Cytosolic protein delivery by endosomal escape can be aided by fusion of a nanocarrier with 

the endosomal membrane only when the NP itself is enveloped by a fusogenic membrane 

[65] (Figure 2C). This mechanism has been majorly adopted by liposomal nanocarriers 

where the lipid bilayer of the vehicle protects complexed proteins from degradation and 

fuses with the endosomal membrane during endosome maturation. This can enable the 

efficient endosomal escape of cationic, lipid-delivered cargo into the cytosol. Although this 

approach has been majorly applied for delivery of nucleic acids, proteins can also serve as a 

good candidate. Recently, Liu et al. reported an endocytotic proteoliposome-mediated 

membrane fusion approach using cationic lipid nucleic acid transfection reagents to achieve 

~90% Cre-mediated recombination and ~20% Cas9-mediated genome modification in hair 

cells of mouse ear in vivo.[18]

Delivery of protein therapeutics via cell membrane fusion

While strategies to escape endosomes have been developed to deliver protein therapeutics 

that utilize the process of endocytosis to enter the target cells, other strategies have also been 

developed in parallel that seek to deliver protein therapeutics directly into the cells and do 

not involve the process of endocytosis. Direct delivery of proteins to the cytosol can greatly 

enhance the efficacy of protein-based therapeutics. Cell membrane fusion is an emerging 

strategy that provides direct entry of the proteins to the cytosol, bypassing endocytosis 

(Figure 1). In this route, the vehicle and cargo assemblies fuse with the cell membrane, 

allowing direct transfer of the protein cargo to the cytosol [66]. By evading the endosomal 

pathway entirely, the approach avoids issues associated with degradation of cargo and 

limited cytosolic release, ultimately enhancing delivery efficiency [67]. Membrane fusion is 

facilitated by nanocarriers such as fusogenic liposomes, NPs and polymers (Figure 3). 

Below we discuss each via examples.

Liposome-based membrane fusion

Liposomes are vesicular structures that can encapsulate polar cargo such as proteins cargo in 

their aqueous core. Fusogenic liposomes constitute a promising carrier system [68] that can 

fuse with the plasma membrane. [69, 70] These fusogenic liposomes efficiently deliver the 

encapsulated cargo to the cytosol, circumventing the usual low-efficiency endocytic routes 

of conventional liposomes [71, 72]. In 2017, Csiszar et al. developed fusogenic 

proteoliposomes (FPLs) to deliver water soluble proteins to the cytosol without degradation 

[73]. Electrostatic interactions between the negatively charged protein cargos and positively 

charged carriers induced proteoliposome formation. Fluorescent proteins such as enhanced 

green fluorescent protein (EGFP), Dendra2, and R-phycoerythrin were successfully 

delivered into mammalian cells with high efficiency using this approach. Colocalization 

studies using fluorescence microscopy of plasma membrane and protein-loaded FPLs 

suggested membrane-fusion as the mechanism of uptake. However, positively charged 
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proteins cannot be delivered by this system because the repulsion between the proteins and 

similarly charged liposomes prevent FPL formation.

Recently, Kros et al. reported cuboidal mesoporous silica NPs (MSNs) coated outside with a 

fusogenic lipid bilayer for improved protein loading efficiency and membrane fusion-

mediated cytosolic protein delivery (Figure 3A) [74]. A pair of complementary coiled-coil 

(CC) lipopeptides (CP4K4 and CP4E4) (highlighted in red and blue respectively in Figure 

3A) was inserted into the lipid bilayer of both liposomes and live cells resulting in fusion 

between opposing membranes. Mechanistic studies revealed that the driving force for this 

fusion is the coiled-coil formation between the complementary peptides E4/K4. The MSNs 

were generated with disk - shaped cavities having a large pore diameter (10 nm) to 

accommodate the positively charged CytC that induces apoptosis on cytosolic localization. 

The protein was loaded at pH 7.4 via electrostatic interactions with the negatively charged 

silanol groups on the surface of NPs. The fusogenic lipid bilayer further strengthened the 

colloidal stability of the MSNs and prevented premature release of CytC. Mechanistic 

studies with endosomal inhibitors suggested a membrane-fusion type mechanism induced by 

this coiled-coil, resulting in efficient cytosolic delivery of CytC with concomitant apoptosis 

of cells.

NP-mediated membrane fusion

In recent years, the Rotello group has developed NP-stabilized capsules (NPSCs) that 

provide direct cytosolic delivery of functional proteins. Tang et al. have demonstrated the 

use of NPSCs featuring gold NPs with 2 nm core, functionalized with a cationic tetrapeptide 

bearing a guanidinium moiety (HKRK-AuNPs), as efficient, non-toxic and stable delivery 

vehicles for direct cytosolic delivery of anionic proteins including GFP as well as fully 

functional caspase-3 (CASP3) [75] to HeLa cells (Figure 3B). The CASP3 induced 

apoptosis, and in later studies showed synergistic activity on co-delivery with paclitaxel (a 

known anti-cancer drug and an inhibitor of cell division), resulting in increased cancerous 

cell death in vitro. [76]. These NPSCs are formed and stabilized through hydrogen bonding 

and electrostatic interaction between guanidinium moieties of the HKRK-AuNPs and the 

carboxylate groups of the oil at the center of the capsule. Additional lateral stability in this 

system is provided by the interaction between the cationic HKRK-AuNPs and anionic cargo 

proteins, allowing for construction of stable NPSCs as small as 130 nm. The utility of the 

NPSC-based protein delivery system was further demonstrated by intracellular targeting of 

proteins to different subcellular compartments such as peroxisomes and the nucleus [77, 78]. 

Another study reported an effective intracellular delivery strategy for proteins of high 

molecular weight such as like β-Gal (464 kDa) by tuning the supramolecular chemistry of 

these NPSCs [79]. GIPA (1-guanidino-2-(4-imidazole) propionic acid) instead of 

guanidinium moiety, was used as the terminal group of the AuNP ligand for optimal 

cytosolic delivery of payload proteins and their subsequent dissociation from the NPSC. 

However, the NPSC platform is limited to proteins with pI < 7, and the relative complexity 

of fabrication makes clinical translation challenging.

In 2017, a novel protein–particle co-engineering strategy [80] was developed where proteins 

genetically engineered with a peptide chain comprised of different lengths of oligoglutamic 
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acid tags (E-tag, inserted into proteins to increase the membrane permeability and cytosolic 

delivery efficiency) at their N or C-terminus were self-assembled with 

argininefunctionalized gold NPs (ArgNPs) through carboxylate (from the E-tag of the 

proteins) – guanidinium (from the ArgNPs, highlighted in red in Figure 3B) electrostatic 

interactions to generate hierarchical superstructures. Self-assembled superstructures (250–

350 nm diameter) exhibiting multiple levels of structural hierarchy were generated through 

co-engineering of NPs and recombinant proteins with distinct charge, size, and function 

[81]. These supramolecular assemblies were shown by time-lapse confocal microscopy to 

fuse with cell membrane, presumably through interaction of ArgNPs ligands with the cell 

membrane. This interaction releases the E-tagged protein directly into the cytosol, bypassing 

endosomal entrapment. Live cell imaging videos were consistent with a membrane fusion-

like mechanism, and endocytosis inhibitors did not significantly alter uptake, all consistent 

with a direct delivery pathway. Notably, in another study, the authors demonstrated a direct 

cytosolic delivery (90%) of the Cas9 RNP using ArgNP-based supramolecular delivery 

vehicles with co-engineered Cas9 containing localized negative charge in the form of the E-

tag. A SV40 nuclear localization signal (NLS) was attached at the C-terminus of the Cas9 to 

provide nuclear localization of the relatively large protein. Cytosolic delivery of the RNP in 

mammalian cells facilitated efficient gene editing in the phosphatase and tensin homolog 

(PTEN) gene (30%) and the AAVS1 gene (29%) in vitro [82]. In vivo, the system achieved 

>8% gene editing efficiency of the PTEN gene in macrophages in the liver and spleen 

through systemic delivery of ArgNPs, Cas9 engineered with twenty E-tag residues 

(Cas9E20) and associated sgRNAs nanocomposite into mice [83], establishing this as an 

effective delivery system.

Polymer-mediated membrane fusion

Building upon the results using particle-protein co-engineering strategy, Rotello et al. very 

recently developed a more tunable and versatile polymeric delivery platform. 

Poly(oxanorborneneimide) (PONI) polymers featuring cationic guanidinium moieties were 

synthesized via ring opening metathesis polymerization (ROMP) (Figure 3C) [84]. The 

‘semi-arthritic’ (neither too rigid nor too flexible) oxanorbornene backbone feature 

conformational restrictions, which ensures flexible interaction with the cell membrane, 

while guanidinium (highlighted in red in Figure 3C) plays a pivotal role in fusing of the 

carrier with the membrane. The polymers self-assembled with E-tagged proteins such as Cre 

recombinase and delivered them directly to the cytosol of reporter HEK-loxP-dsRed-loxP-

GFP cells in vitro, similarly to the ArgNPs [80].

In a different approach, Francis et al. reported a bioconjugation-based strategy for 

intracellular protein delivery by site-selectively attaching amphiphilic polymers to the N-

terminal positions of proteins using 2-pyridinecarboxaldehyde (PCA) groups [85].The 

polymer system delivered GFP and functional protein RNase A, which promotes cell death 

through cytosolic RNA degradation, to cancer cells. Mechanistic studies demonstrated 

delivery being unaffected even after using endocytosis inhibitors amiloride and dynasore, 

suggesting the uptake to be via a membrane fusion-like process. However, the method is 

incompatible with proteins with proline residues in the second position (which inhibits the 
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cyclization reaction), proteins that are acylated or otherwise blocked at the N-terminus, and 

proteins that have N-termini that are not solution exposed.

Concluding Remarks and Future Perspective

Protein-based therapies can address conditions that are difficult or impossible to treat using 

small molecule pharmaceuticals. Over 200 protein-based therapeutics have been approved 

by the Food and Drug Administration (FDA) to treat a wide range of diseases including 

cancer, diabetes, and inflammation [86]. Protein delivery using nanocarriers employing 

either endosomal escape strategies or cell membrane fusion have progressed immensely over 

the last decade. Both endosomal escape and cell membrane fusion can be facilitated by 

nanocarriers such as lipids, polymers, or inorganic NPs.

The major advantage of strategies relying on endocytosis is that it is the most common mode 

of uptake in cells has been very well studied. Endosomal escape can be effected by proton 

buffering, endosomal membrane destabilization or endosomal membrane fusion. However, 

inefficient endosomal escape of proteins remains a challenge for this approach. Cell 

membrane fusion is a promising alternative for direct cytosolic delivery, ensuring direct 

delivery of proteins to the cytosol with high efficiency and evading endosomal entrapment 

altogether. Although fusion-based approaches are new, they have the potential to 

revolutionize the field of protein delivery. The mechanisms employed in these systems, 

however, still require deeper understanding.

Clearly, there is enormous scope for further development in terms of protein delivery 

vehicles that address issues like efficiency, specificity, and toxicity. Equally important, these 

nanocarrier-based protein-delivery strategies need to be moved into clinical translation (see 

Outstanding Questions)[51, 84, 87]. One interesting question is how to increase the tissue/

organ/cell specificity of these nanocarriers. Nanocarriers can easily be tuned in terms of 

shape, size, and charge to influence their cell selectivity. Additionally, selectivity can be 

enhanced by decorating the nanocarriers with specialized ligands and/or targeting moieties 

to specific receptors present on the surface of the target cell of interest (for example, 

macrophages, hepatocytes, tumor cells and more) [88–90]. In terms of promise in vivo, both 

endosomal escape and cell membrane fusion strategies have exhibited immense potential. 

Notably, cytosolic delivery of therapeutic gene editing protein CRISPR-Cas9 [91]has been 

greatly explored by several research groups demonstrating excellent promise for gene 

editing in vivo, including diseases related to mononuclear phagocyte system [83] and genetic 

Duchenne’s syndrome [51]. Significant progress has also been made to deliver antigens into 

the cytoplasm of dendritic cells and activate CD8+ T cells [86] using nanocarriers such as 

polymers [92], dendrimers [60], and lipid NPs [93]. This is an important step forward in the 

field of intracellular protein delivery, as it provides an avenue for the development of 

protein-based vaccines. Therefore, based on the rapid progress made in the past few years 

with these nanocarrier-based intracellular protein delivery strategies, we are optimistic that 

with more extensive research these platforms will make their way into clinical applications 

in the coming years.
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GLOSSARY

Cas9
Cas9 is a protein that plays a vital role in the defense of certain bacteria against DNA viruses 

and plasmids (CRISPR, see below). Cas9 is an RNA-guided nuclease that induces double 

strand breaks by sequence when repaired by non-homologous end joining, creating 

insertions and deletions. The modular nature of the CRISPR process has made it an 

emerging tool for gene editing

Cell-penetrating peptides (CPPs)
Short peptides that facilitate cellular uptake of various molecular equipment

Click reaction
A one pot reaction between an azide and an alkyne, catalyzed by copper to form a five 

membered hetero-atom ring

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
A family of DNA sequences found in the genomes of prokaryotic organisms, used to detect 

and destroy DNA from similar bacteriophages during subsequent infections. The term is 

used colloquially to refer to gene editing strategies relying on these motifs

Donor DNA
DNA delivered along with Cas9 RNP into the cells to insert or change short sequences of 

endogenous genome target region

Endocytosis
An energy-dependent cellular uptake processes in which materials are brought into the cell. 

In this process, the cell membrane invaginates around the material to be internalized 

followed by budding off inside the cell to form a vesicle containing the ingested material. 

Endocytic mechanisms including phagocytosis, macropinocytosis, clathrin- and caveolae-

mediated endocytosis

Endosomal entrapment
A common bottlenecks in several delivery approaches. The vector/cargo complex is taken up 

by the cells via an endocytic mechanism. This complex remains trapped in the endosome 

unable to escape and eventually gets degraded by the lysosome

Endosomal escape
Ability of delivery systems to trigger escape of cargo from the endosome into the cytosol, 

the site of their action

E-tag

Goswami et al. Page 10

Trends Pharmacol Sci. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://biorender.com/


Glutamic acid tag (E-tag) is inserted into proteins to induce self-assembly with cationic 

carriers that increase the membrane permeability and cytosolic delivery efficiency

Donor DNA
DNA delivered along with Cas9 RNP into the cells to insert or change short sequences of 

endogenous genome target region

Homology directed repair (HDR)
A mechanism in cells to repair or insert sections of DNA to modify double-strand DNA 

lesions

Isoelectric point
The pH at which a molecule is electrically neutral or carries no net electric charge

Nuclear Localization Signal (NLS)
An amino acid sequence that tags a protein for import into the cell nucleus by nuclear 

transport. The signal usually consists of one or more short sequences of positively charged 

lysines or arginines exposed on the protein surface

Phosphatase and tensin homolog (PTEN)
A protein that is encoded by the PTEN gene. This gene is identified as a tumor suppressor so 

that mutations of this gene are a step in the development of many cancers

Ring Opening Metathesis Polymerization (ROMP)
A type of olefin-metathesis chain growth polymerization reaction

Single guide RNA (sgRNA)
An sgRNA is a single RNA molecule that contains both the custom-designed short crRNA 

sequence fused to the scaffold tracrRNA sequence. The CRISPR-Cas9 system is directed by 

sgRNA
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Outstanding questions

• How can the delivery vehicles be rationally designed for delivery of 

therapeutic proteins to address delivery issues including efficiency, specificity, 

and toxicity?

• Can cytosolic delivery strategies be developed for targeting different cell 

types/tissues?

• How could the protein delivery strategies be pushed towards clinical trials?
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Highlights

• Intracellular protein delivery is a powerful tool for development of protein-

based therapeutics and is a challenging task due to cell membrane 

impermeability to large biomolecules and endosomal entrapment.

• Most delivery strategies rely on endosomal uptake of the carrier. Endosomally 

entrapped cargo generally exhibit low escape efficiency leading to eventual 

degradation.

• Numerous nanocarriers such as lipid, inorganic and polymeric nanoparticles 

have been developed to induce endosomal escape and deliver therapeutic 

proteins intracellularly. However, there remains considerable room for 

improvement in release efficiency.

• Development of non-endosomal uptake strategies including nanocarrier-

mediated cell membrane fusion provides a promising alternative for 

delivering proteins directly to the cytosol.

• Improvements in protein delivery efficiency have enabled the translation of 

intracellular protein therapeutics towards the clinic.
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Figure 1, Key Figure. Delivery of proteins using nanocarriers through two different pathways: 
endocytosis and cell membrane fusion.
In endocytosis, nanocarriers containing cargo are taken up by the cells into endosomes. The 

cargo must escape out of the endosomes to gain access to the cytosol. Cell membrane fusion 

is an alternative non-endosomal delivery strategy, where the nanocarrier and cargo 

assemblies fuse with the cell membrane, allowing direct transfer of the protein cargo to the 

cytosol.
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Figure 2. Mechanisms of endosomal escape.
After endocytosis, the entrapped proteins can escape out of the endosomes in three major 

pathways: (A) osmotic swelling due to the proton sponge effect, (B) endosomal membrane 

destabilization or (C) endosomal membrane fusion.

Goswami et al. Page 19

Trends Pharmacol Sci. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Nanocarriers mediating cell membrane fusion.
Cell membrane fusion is a non-endosomal delivery strategy facilitated by nanocarriers such 

as (A) fusogenic liposomes, (B) gold nanoparticles and (C) polymers. The highlighted red 

and blue portion in (A) represents the pair of fusogenic lipopeptides causing membrane 

fusion. The red bonds in (B) and (C) represent guanidinium moiety, playing a key role in cell 

membrane fusion.
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