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Many countries have passed their first COVID-19 epidemic peak.
Traditional epidemiological models describe this as a result of
nonpharmaceutical interventions pushing the growth rate below
the recovery rate. In this phase of the pandemic many countries
showed an almost linear growth of confirmed cases for extended
time periods. This new containment regime is hard to explain by
traditional models where either infection numbers grow explo-
sively until herd immunity is reached or the epidemic is completely
suppressed. Here we offer an explanation of this puzzling observa-
tion based on the structure of contact networks. We show that for
any given transmission rate there exists a critical number of social
contacts, Dc , below which linear growth and low infection preva-
lence must occur. Above Dc traditional epidemiological dynamics
take place, e.g., as in susceptible–infected–recovered (SIR) models.
When calibrating our model to empirical estimates of the trans-
mission rate and the number of days being contagious, we find
Dc ∼ 7.2. Assuming realistic contact networks with a degree of
about 5, and assuming that lockdown measures would reduce
that to household size (about 2.5), we reproduce actual infection
curves with remarkable precision, without fitting or fine-tuning
of parameters. In particular, we compare the United States and
Austria, as examples for one country that initially did not impose
measures and one that responded with a severe lockdown early
on. Our findings question the applicability of standard compart-
mental models to describe the COVID-19 containment phase. The
probability to observe linear growth in these is practically zero.

compartmental epidemiological model | mean-field (well mixed)
approximation | social contact networks | network theory | COVID-19

Textbook knowledge of epidemiology has it that an epidemic
event comes to a halt when herd immunity in a population

is reached (1, 2). Herd immunity levels depend on the disease.
For influenza it is within the range of 33 to 44% of the pop-
ulation (3), for Ebola it is 33 to 60% (4), for measles it is 92
to 95% (5), and for the Severe Acute Respiratory Syndrome
(SARS) levels between 50 and 80% are reported (6). For the
current COVID-19 outbreak it is expected to be in the range of
29 to 74% (7, 8). On the way toward herd immunity, textbook
knowledge teaches, the number of infected increases faster than
linear (in early phases even exponentially) as long as the effec-
tive reproduction number is larger than 1. Once this threshold
is passed, the daily increments in the number of infected start
to decrease until they drop to zero (1, 9). Combining these two
growth phases yields the characteristic S-shaped infection curves.

The COVID-19 outbreak shows a very different picture, how-
ever. Several countries have clearly passed a first maximum of
the epidemic and are converging toward zero new cases per day.
None of these countries are even close to herd immunity. In
Austria at the first peak of the pandemic so far, a population-
wide representative PCR study showed that only about 0.3%
of the population tested positive (10). Similarly, in Iceland in a
random-population screening the prevalence of positively tested
was found to be 0.8% (11). Clearly, at this time the COVID-19
outbreak has been far from the uncontrolled case as many coun-
tries have implemented nonpharmaceutical interventions (NPIs)
to reduce infection rates (12).

Maybe the most striking observation in the COVID-19 infec-
tion curves is that they exhibit linear growth for an extended time
interval quite in contrast to the S-shaped curves expected from
epidemiological models. For a wide range of countries regardless
of size, demographic and ethnic composition, or geolocation, this
linear growth pattern is apparent even by a plain-eye inspection
of the number of positive cases, e.g., ref. 13. In Fig. 1A we show
infection curves (number of confirmed positive cases) for the
United States, the United Kingdom, Sweden, Finland, Poland,
Indonesia, and a province of Canada. Clearly, after a short ini-
tial exponential phase, infection curves are practically linear for
several weeks. For many other examples, see ref. 13. Many coun-
tries that implemented NPIs in response to the COVID-19 crisis
(12) show a different pattern. They also show an extended lin-
ear growth; however, infection curves tend to bend and level
off in response to the implemented measures (Fig. 1B). The
extent of the linear regime depends on the onset of the measures
(12). Many countries that are still in the early phase of the pan-
demic (8 May 2020) show the initial almost exponential growth
(SI Appendix, Fig. 1). According to basic epidemiological con-
cepts, growth patterns with extended linear regions are not to
be expected. They can be observed only if the infection growth
rate equals the recovery rate, giving an effective reproduction
number, R(t), of 1. Chances of observing such a behavior over
an extended period in a country are extremely tiny, let alone
in several countries. Mathematically speaking, linear growth is
basically a measure zero solution in compartmental models.

The basic question of this paper is to clarify the mechanism
that keeps R(t)∼ 1. In classical susceptible–infected–recovered
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Fig. 1. Cumulative numbers of positively tested cases normalized to the
last day (8 May 2020). Countries, even though many followed radically dif-
ferent strategies in response to the pandemic, seem to belong to one of
three groups: (A) countries with a remarkably extended linear increase of
the cumulated number of positively tested cases, including the United States,
the United Kingdom, and Sweden, and (B) countries with an extended linear
increase that tends to level off and enter a regime with a smaller slope. B, Inset
shows an extended regime after the peak (cases per population size).

(SIR) (9) models there are no terms that explicitly peg R(t)
to 1 (SI Appendix). A simple explanation could be a limiting
capacity of availability of test kits. If the daily number of tests
is limited and assuming a fixed ratio of confirmed cases per test,
linear growth in the number of positively tested would be the
consequence. However, most European countries, even though
experiencing initial difficulty with testing capacity, have, by now,
enough tests available.

The rationale underlying social distancing efforts is that they
lead to a reduction of contacts which essentially makes the social
network sparser (12). Infections occur if 1) there is a social inter-
action between an infected and a susceptible person and 2) this
contact is intense enough to lead to a disease transmission. For
instance, given a basic reproduction number of R0∼ 3, we effec-
tively reach herd immunity if two of three contacts are avoided.
Still, this does not yet explain linear growth as a slight increase
or decrease in contact probabilities would again lead to a faster-
than-linear growth or suppression, respectively. Network density
alone cannot explain persistent linear growth.

In classic epidemiology network effects have long been ignored
in favor of analytical tractability (14). In that case epidemiologi-
cal models can be formulated as differential equations, assuming

that every person in principle can infect any other. This is called
the well-mixed or mean-field approximation (SI Appendix). How-
ever, that fact that networks matter in epidemiology has been
recognized for almost two decades and has led to extremely
relevant contributions, such as the dependence of vaccination
thresholds on network topology (15). Classic contributions such
as refs. 16 and 17 were able to incorporate network topology
into analytically solvable SIR models. There it is possible to
solve the SIR model in terms of outbreak size and epidemic
size; however, no focus was put on the details of infection curves
below the epidemic limit. When dealing with structured net-
works, it might well be that the mean-field approximation does no
longer hold, and details of the networks start to become crucial.

Since social networks are key to understand details of epi-
demic outbreaks, what do they look like? The answer is highly
nontrivial since social networks are hard to define. In terms of
network topology, it became clear that they are neither pure
random graphs, nor small-world networks, nor purely scale-free.
They are of a more involved structure, including multilevel orga-
nization (18); weak ties between communities (19); and temporal
aspects that suggest a degree of fluidity, however, with stable
social cores (20).

Here we try to understand the origin of the extended linear
regime in infection curves, as currently observed in the num-
ber of positively tested cases in the COVID-19 pandemic across
many countries. To this end we solve the SIR model on a sim-
ple social network and report a hitherto unobserved transition
from linear growth to S-shaped infection curves. We show that
for a given transmission rate there exists a critical degree below
which linear growth is expected and above which the model
reproduces the classical SIR results. Below the critical degree
the mean-field approximation starts to fail. For the underlying
social networks we use a Poissonian small-world network that
tries to capture several empirical facts, including a heteroge-
nous number of social links (degree), the small-world aspect,
the fact that people tend to live in small groups (families), that
these groups overlap, and that work and leisure relations can link
distant groups (Methods). The framework allows us to model a
lockdown as a change in social networks with a high degree to
one with a degree that characterizes the members of a household.
Based on data on household size in the European Union (21),
on empirical estimates on how long individuals are contagious,
and on transmission (or attack) rates we are able to calibrate
the model to real countries. In particular, we compare the sit-
uation in the United States and Austria. These countries differ
remarkably in size and the measures taken in response to the
COVID-19 pandemic (12). While Austria imposed a lockdown
relatively early on in combination with a number of other mea-
sures, the United States has implemented measures hesitantly
with the consequence that the situation was “not under control,”
as Dr. A. Fauci, an advisor to the Trump administration, stated
on 12 May 2020 (22). The model reproduces the real infection
curves to a remarkable degree. All parameters are empirically
motivated; there are no fitted parameters involved.

Model Dynamics. We assume that there are N individuals con-
nected by social links. If i and j are connected, Ai,j =1; if they
are not, Ai,j =0. As a toy model for social networks we use a
so-called small-world network with average degree D and short-
cut probability ε (Methods). The small-world aspect allows us
to model transmission between local groups and “superspread-
ers” (23). As in a SIR model, every individual is in one of three
possible states, susceptible (S), infected (I), and recovered (R).
If an individual is infected, the individual will infect susceptible
neighbors with a per-day transmission probability, r . This means
that on every single day the probability of passing the infection
to a susceptible neighbor is r , which is sometimes called the
microscopic spreading rate (17). Once a person is infected that
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person stays infectious for d consecutive days. After this the per-
son can no longer infect others and is called recovered. Once
recovered the state will no longer change. The update rules of
the corresponding model are as follows: Initialize all nodes as
susceptible; select Nini nodes randomly and change their state to
infected. At every timestep t , find all infected and infect their
susceptible neighbors with probability r . Set all infected nodes
that have been infected for more than d timesteps to recovered.
And proceed to the next timestep until the dynamics come to a
halt. All nodes are now either recovered or susceptible.

At every timestep (day), t , we count the number of new cases,
C (t); the infection curve of positive cases, P(t), is the cumu-
lative sum of C (t). The model parameters are related to those
of the SIR model (SI Appendix) by γ=1/d , and β= rD/N . If
the underlying network fulfills the conditions necessary for the
mean-field approximation, C (t) corresponds to R(t) up to a
timeshift of d .

Results
Infection Dynamics. We demonstrate the model schematically in
Fig. 2 A–C. In the limit of large degree D and large ε the model
should approximately fulfill the mean-field conditions and should
be close to a classical SIR model. This is seen in Fig. 2D where
the trajectory of an infection curve, P(t), is shown (blue dots) for
a network of 1,000 nodes with a degree of D =8, ε=0.1, a period
of contagiousness of d =6 d, and a transmission rate of r =0.1;
10 nodes were infected at the start. The situation closely resem-
bles the solution of the recovered, R(t), the SIR model with
γ=1/d , and β= rD/N , shown as the dotted green line. Note
that a timeshift of −d days is necessary to compare P(t) and
R(t). The daily cases (red) increase, reach a peak, and decrease.
The typical exponential initial phase in P(t) is seen, immediately
followed by a quick relaxation of growth until the plateau forms
at the herd immunity level (in this example at 98%).

The infection curve, P(t), changes radically when the degree
of the network is lowered to D =3 (all other parameters kept
the same) (Fig. 2E). Clearly, it increases almost linearly for a
remarkable timespan, which is in marked contrast to the SIR
expectation (green line). The situation already resembles the sit-
uation of many countries. Once the system converged to its final
state, only about 17% of nodes were infected, which is far from
the expected (SIR) herd immunity level of about 77%.

The change of the infection curve from the S-shaped to a
linear behavior is clearly a network effect and indicates that
the mean-field assumptions might be violated. To understand
this better we next study the parameter dependence more
systematically.

Parameter Dependence and Phase Transition. We are interested to
see whether there is a critical degree, Dc , below which the infec-
tion curve is (quasi)linear, whereas for D >Dc it assumes the
S shape. For this we define an appropriate “order parameter,”
O, able to distinguish linear from S-shaped growth, namely the
SD of daily increments of infected people (Methods). In Fig. 3A
we show this order parameter as a function of the degree, D , of
the network for three transmission rates r =0.05, 0.1, and 0.2
(obtained as averages over 10 independent realizations with ran-
domly selected 10 initially infected). It is clear that at specific
(critical) degrees, Dc , the order parameter switches from (close
to) zero to larger values. The position of the critical degrees
depends on the parameter settings (Fig. 3A, arrows). It decreases
with the transmission rate r ; while for r =0.05 we find Dc =6.6,
for r =0.1 it is Dc =3.8, and for r =0.2, we have Dc =2.3. The
critical degree also decreases with the parameters ε and r . For
more parameter settings, see Table 1 and SI Appendix, Fig. 2.
The asterisks in Fig. 3A denote the degree, Dsir, at which the SIR
model would show a linear curve, Dsir =1/dr . Colors correspond
to the respective r .
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Fig. 2. Schematic demonstration of the model. Nodes are connected in a Poissonian small-world network. Locally close neighbors resemble the family
contacts, and long links to different regions represent contacts to others, such as people at work. (A) Initially, a subset of nodes is infected (blue), and most
are susceptible (green). (B) At every timestep, infected nodes spread the disease to any of their neighbors with probability r. After d days infected nodes
turn into “recovered” and no longer spread the disease. (C) The dynamics end when no more nodes can be infected and all are recovered. (D) Infection
curve P(t) (blue dots) for the model on a dense Poissonian small-world network, D = 8. The daily cases (red) first increase and then decrease. For comparison,
we show the recovered cases, R(t), of the corresponding SIR model with γ= 1/d, and β= rD/N (green). The mean-field conditions are obviously justified
to a large extent. (E) Situation for the same parameters except for a lower average degree, D = 3. The infection curve now increases almost linearly; daily
increases are nearly constant for a long time. The dynamics reach a halt at about 17% infected. The discrepancy to the SIR model (green) is now obvious.
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Fig. 3. (A) Order parameter for the transition from linear to S-shaped
infection curves as a function of degree, D, for transmission rates r = 0.05
(blue), 0.1 (red), and 0.2 (orange). The transition happens at the critical
points, Dc, where the order parameter starts to diverge (arrows) (Table 1).
The asterisks in Fig. 3A denote the degree, Dsir, at which the SIR model
would show a linear curve, Dsir = 1/dr. Colors correspond to the respective
r. (B) Infection curves (20 realizations) for three scenarios for a network
with D = 10. Red scenario: At a transmission rate of r = 0.1 we see S-
shaped curves reaching herd immunity at about 75%. Black scenario: For
the same network with a lower transmission rate, r = 0.05, we fall below
the critical degree Dc and consequently observe linear growth; note the con-
vergence of infected at levels of 1 to 4%, which are very much below herd
immunity (75%). Turquoise scenario (lockdown): We start with the same net-
work with r = 0.1, as in the red scenario. After 5% of the population (black
bar) is infected there is a lockdown that changes the network to one of
degree D2 = 3, from one day to the next. The S-shaped growth immediately
stops and levels off at about 10% infected. Other parameters: d = 2, ε= 0.3,
and N = 10, 000; 10 initially infected.

We checked that the position of the critical degrees is rel-
atively robust under the size of the network and variations in
topology. We find that for N =1,000 and 10 initially infected, the
critical degrees are practically at the same locations. Regarding
the topology, we implemented a standard small-world network
with a fixed degree. Also here, results are practically identical
(SI Appendix, Fig. 3).

For the Poissonian small-world network we are able to
estimate the critical degree analytically by a “fuse model”

Dc ∼ 1+2/(rd(1+ ε)). [1]

For the derivation, see SI Appendix, Text S6. This result slightly
overestimates the simulation results (Table 1). However, for

large values of r and ε, theoretical predictions and simulation
results are in remarkable agreement. Indeed, the used second-
order approximation systematically underestimates the spread-
ing velocity, i.e., overestimates the number of infected in active
regions of the network, which in turn leads to an overestima-
tion of Dc (SI Appendix, Text S6). Also finite size effects in the
simulation may add to the observed deviations.

The existence of critical degrees signals the presence of a hith-
erto overlooked transition between linear and S-shaped growth
that is most likely due to the fact that the well-mixed or mean-
field assumption breaks down below Dc . To illustrate the depen-
dence of this transition on the transmission rate, Fig. 3B shows
20 realizations of model infection curves for a network with
D =10 at a rate of r =0.1 (red). The curves were obtained for
20 different initial conditions in the choice of the 10 initially
infected nodes. One observes typical S-shaped curves reaching
herd immunity at about 75%. Note that R(t→∞) of the SIR
model reaches about 80%. For the same network with a lower
transmission rate of r =0.05, which is well below the critical
degree, we are in the linear growth domain (turquoise). The
maximum of infected reaches levels of only 1 to 4%, which are
drastically lower than SIR herd immunity with R(t→∞)∼ 15%.
The 20 black infection curves depict a “lockdown” scenario:
We start with the same network with r =0.1 (red). On the day
when 5% of the population is infected (black bar) a lockdown is
imposed which means that effectively the social network changes
from one day to the next. We model this by switching to a Pois-
sonian small-world network with a low degree, D2 =3. All other
parameters are kept identical. S-shaped growth stops and final
infection levels of about 10% are obtained.

We confirm that the mechanism to obtain linear infection
curves is present also for more realistic social contact networks
(20, 24, 25), by running the algorithm on networks derived from
actual contact networks that are publicly available (26). For the
situation where the degree of these networks falls below Dc , we
typically observe linear infection curves. Details are presented in
SI Appendix, Fig. 7.

Calibration. We calibrate the model to the COVID-19 infection
curves of two countries, the United States and Austria, to demon-
strate its potential applicability for estimating the effects of NPIs.
For this we have to make the following assumptions on the model
parameters:

The viral dynamics of COVID-19 are highly heterogenous
(27). Motivated by evidence that people carry viral loads and thus
can be contagious for more than 20 d after disease onset (most
people are contagious for shorter periods) (28, 29) and given that
infectiousness can start 2 to 3 d before showing symptoms (28),
we use d =14 d.

Table 1. Critical degree, Dc , for a range of parameter values for
the transmission rate, r, rewiring probability, ε, and duration of
infectiousness, d

d r = 0.015 r = 0.05 r = 0.1 r = 0.2

ε= 0.1 d = 2 12.5 (19.2) 7.4 (10.1) 4.3 (5.5)
d = 4 7.9 (10.1) 4.8 (5.5) 3.0 (3.3)
d = 6 5.7 (7.1) 3.5 (4.0) 2.4 (2.5)

ε= 0.3 d = 2 12.2 (16.4) 6.3 (8.7) 3.3 (4.8)
d = 4 6.6 (8.7) 3.8 (4.8) 2.3 (3.0)
d = 6 4.7 (6.1) 2.9 (3.6) 1.9 (2.3)
d = 14 7.2 (8.3) 2.7 (3.2) 1.9 (2.1) 1.5 (1.5)

ε= 0.5 d = 2 11.7 (14.3) 5.9 (7.7) 3.2 (4.3)
d = 4 6.0 (7.7) 3.3 (4.3) 2.2 (2.7)
d = 6 4.4 (5.4) 2.7 (3.2) 1.8 (2.1)

N = 10, 000. Numbers in parentheses refer to the theoretical results from
Eq. 1.
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In 2019 the average household size in the European Union
was 2.3 people (21). If we assume that at work and during leisure
activity on average one meets 3 to 4 people more per day, we
decide to use an average degree of D =5 in our Poissonian
small world for normal conditions. If we assume that on aver-
age about 30% of all of our social relations are outside of our
household, we set ε=0.3. This is a somewhat arbitrary choice;
however, note that deep in the linear regime, ε is found to
be an almost irrelevant parameter that does not influence the
outcome in significant ways. To model the lockdown that was
imposed in Austria on 16 March 2020 as an NPI we assume
that its effect is basically to reduce social contacts to within
households and eliminate any other contacts. For this scenario
we assume D =2.5 and ε=0. Finally, for the daily transmission
rate we set r =0.0149. This choice is motivated by estimates
of the COVID-19 individual-level secondary attack rate (SAR)
in the household setting, which is reported at about 19% (30),
and the relation r =1− (1−SAR)1/d . Note that these esti-
mates of the parameters are based on recent estimates (not yet
peer reviewed) and might change in the future. Also note the
SIR limit for this case is at R(t→∞)∼ 20%, which is some-
what lower than what is expected in refs. 7 and 8. With these
parameters we find a critical degree of Dc =7.2. For a detailed
discussion of the model parameters in the context of NPIs and
how they change under different strategies, see SI Appendix,
Text S7.

We use 100,000 nodes and 40 and 100 initially infected for the
United States and Austria, respectively. Since it is not possible
to compute every individual in the simulation, we decided to ini-
tiate the simulation at the point where 0.1% of the population
tested positive, that is, 7 April for the United States and 3 April
for Austria. For the respective population sizes we use United
Nations data from 2019 (31).

In Fig. 4 we show the model infection curves in comparison
to the number of positively tested persons (13) for the United
States (Fig. 4A) and Austria (Fig. 4B). Solid blue lines mark the
situation where more than 0.1% of the population tested posi-
tive; simulations are performed from that date on. Note that one
case in the model represents many in reality. In the simulations
relatively few cases are produced and the integer steps are still
visible. Obviously, the model produces infection curves of the
observed type.

Fig. 4. Model infection curves (red) when calibrated to the COVID-19 curves
of positively tested in (A) the United States and (B) Austria. Five realiza-
tions with different sets of initially infected are shown. The simulation starts
when more than 0.1% of the population tested positive. The situation in
the United States assumes a Poissonian small-world network with average
(daily) degree D = 5. The lockdown scenario in Austria that has been in place
from 16 March to 15 May 2020 is modeled with social contacts limited to
households, D = 2.5. For the choice of the other model parameters, see main
text. The model clearly produces the correct type of infection curves.

We discuss the role of superspreaders in two additional sim-
ulations, one where we introduce superspreaders defined as
individuals with a much higher degree than the population aver-
age and the other where superspreading comes from individuals
which are much more contagious but have similar degrees to the
rest of the population. Results are presented and discussed in SI
Appendix, Fig. 4. Both types of superspreaders do shift the critical
degree toward lower levels, as expected.

Finally, we performed a cross-correlation analysis of the actu-
ally measured Reff of Austria versus the fluctuations in mobility
reduction that we can obtain from mobile phone data of indi-
vidual Austrian states. We present the cross-correlations in SI
Appendix, Figs. 9 and 10. We can exclude the a priori possibility
(32) that mobility fluctuations influence Reff strongly enough to
explain why it fluctuates around 1. For details, see SI Appendix,
Text S9.

Discussion and Conclusions
Here we offer an understanding of the origin of the extended
linear region of the infection curves that is observed in most
countries in the current COVID-19 crisis. This growth pattern
is unexpected from mainstream epidemiological understanding.
It can be understood as a consequence of the structure of low-
degree contact networks and appears naturally as a hitherto
unobserved (phase) transition from a linear growth regime to the
expected S-shaped curves.

We showed that for any given transmission rate there exists
a critical degree of contact networks below which linear infec-
tion curves must occur and above which the classical S-shaped
curves appear that are known from epidemiological models. The
model proposed here is based on a simple toy contact network
that mimics features of a heterogenous degree, the small-world
property, the fact that people tend to live in small groups that
overlap, and the fact that distant groups are linked through work
and leisure activities. We showed how the model can be used to
simulate the effects of NPIs in response to the crisis by simply
switching to low-degree networks that do not allow for linking of
distant groups.

The model not only allows us to understand the emergence
of the linear growth regime, but also explains why the epidemic
halts much below the levels of herd immunity (given no in-flow of
infected). Further, it allows us to explain the fact that in countries
which are beyond the (first) maximum of the epidemic, a rela-
tively small number of daily cases persist for a long time. This
is because small alterations and rearrangements in the contact
networks will allow for a very limited spread of infections.

We find that for the empirically motivated parameters used
here, the critical degree is Dc =7.2, which is above the degree of
the contact networks for which we effectively assume D ∼ 5. This
means that linear growth must be expected. Note that countries
with larger family structures might be closer to the critical degree,
above which catastrophic epidemic spreading would occur.

The linear growth phase appears to be dominated by cluster
transmission of the disease, meaning that new infections primar-
ily appear in the “small-worlds” or local network neighborhood
(households, workplaces, etc.) of infected individuals. In the
superlinear (exponential) phase, sustained community transmis-
sion sets in where new cases cannot be traced to already known
cases in their neighborhood. In this regime, transmission across
the shortcuts in the network becomes more prevalent. This effec-
tive mixing of the population gives a dynamic that approaches the
mean-field case of SIR-like models.

Finally, we calibrated the model to realistic network param-
eters, transmission rates, and the time of being contagious
and showed that realistic infection curves (examples of the
United States and Austria are shown) emerge without any
fine-tuning of parameters. The onset of the NPI (lockdown)—
and the associated reduction of the degree in the contact
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networks—determines the final size of the outbreak which is
well below the levels of herd immunity. We demonstrate the
importance of timing of the interventions in SI Appendix, Fig. 6.
In SI Appendix, Text S7 we discuss the impact on the Austrian
infection curve if the same NPI would have been implemented
10 d later (SI Appendix, Fig. 6B). An increase of about 30%
of cases is observed. In the same spirit, in SI Appendix, Fig. 6A
we demonstrate what could have happened if NPIs, with simi-
lar effects to those that were implemented in Austria, had been
installed in the United States. The results indicate that about
half of the cases could have been avoided (at the beginning of
May 2020).

For a more detailed discussion of the applicability of the pre-
sented model in terms of modeling the effects of NPIs, refer to
SI Appendix, Text S7. In SI Appendix, Text S8 we discuss three
additional case studies of the infection curves of China (Hubei),
Singapore, and South Korea. We implement temporal sequences
of changes in the model parameters that roughly resemble the
effects of the NPIs implemented in reality. We recover the basic
features of the actual infection curves to a remarkable extent, at
least qualitatively (SI Appendix, Fig. 8).

The two types of superspreading, the network based and trans-
mission based, both lead to a clear finding that the presence
of superspreaders shifts the critical degree toward lower levels.
However, the presented mechanism to obtain linear infection
curves remains fully intact. The message for Austria and the
United States is that in both countries the density of superspread-
ers is not high enough in the considered observation period to
shift the critical degree toward exponential growth, given the
effective degrees in the populations.

Given the number of countries that entered linear growth
phases, our results raise serious concerns regarding the applica-
bility of standard compartmental models to describe the contain-
ment phase achieved by means of NPIs. SIR-like models show
linear growth only after fine-tuning parameters and linear growth
would be a mere statistical fluke. We argue that network effects
must be taken into account to understand postintervention
epidemic dynamics.

Methods
Poissonian Small-World Network. For the network A we use a Poissonian
small-world network, which generalizes the usual regular small-world net-
work in the sense that the degree is not fixed, but is chosen from a Poissonian
distribution, characterized by λ. The network is created by first imposing a
Poissonian degree sequence on all nodes. Assume that nodes are arranged
on a circle. Nodes are then linked to their closest neighboring nodes on the
circle. This creates a situation where every person is a member of a small
local community. As for real families, these communities strongly overlap.
Finally, as for the conventional small-world network, with probability ε we
relink the links of every node i to a new, randomly chosen target node
j, which can be far away in terms of distance on the circle. ε is the frac-
tion of an individual’s social contacts that are outside the local community
(family). These links can be seen as links to colleagues at work or leisure activ-
ities and allow us to model the existence of superspreaders (23). Note that
the actual average degree of the so-generated network is very close to the
λ of the Poisson distribution, D∼λ. We also implemented a conventional
small-world network with a fixed degree. When results are compared with
the Poissonian small-world network, only marginal differences are observed.

Order Parameter. To distinguish the linear from the sigmoidal growth, we
propose a simple “order parameter” as the standard deviation (SD) of all
new daily cases (after excluding all days where there are no new cases),

O= SD(C(t)). [2]

Clearly, for a linear growth of the infection curve, daily cases, C(t), are con-
stant, and the SD is zero. For the S-shaped growth, daily cases first increase
and then decrease over time, and the SD becomes larger than zero. Hence,
a SD deviating from zero signals the presence of a nonlinear increase of the
cumulative positive cases, P(t).

Data Availability. All study data are included in this article and SI Appendix.
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