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Compartmentalization of biochemical processes underlies all bio-
logical systems, from the organelle to the tissue scale. Theoretical
models to study the interplay between noisy reaction dynamics
and compartmentalization are sparse, and typically very chal-
lenging to analyze computationally. Recent studies have made
progress toward addressing this problem in the context of spe-
cific biological systems, but a general and sufficiently effective
approach remains lacking. In this work, we propose a mathemat-
ical framework based on counting processes that allows us to
study dynamic compartment populations with arbitrary interac-
tions and internal biochemistry. We derive an efficient description
of the dynamics in terms of differential equations which capture
the statistics of the population. We demonstrate the relevance of
our approach by analyzing models inspired by different biological
processes, including subcellular compartmentalization and tissue
homeostasis.
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Compartmentalization is inherent to all forms of life (1). By
separating biochemical processes from their surroundings,

compartments serve as spatial and functional building blocks
that govern biological organization at different scales. At the
subcellular level, for instance, networks of vesicles collectively
regulate the delivery, sorting, and breakdown of molecular cargo
(2, 3). At the tissue scale, cells themselves act as functional
units, each executing its internal biochemical program while
interacting with the surrounding cell population and environ-
ment. These and other forms of compartmentalization have in
common that an emergent behavior or function is achieved
through the collective dynamics of multiple interacting compart-
ments, which are in complex interplay with their environment
as well as the biochemical processes they carry. In many bio-
logical systems, the compartments as well as their molecular
contents are present in low numbers, such that random fluctu-
ations in their dynamics become important (4, 5). Thus, investi-
gating the dynamical properties of compartmentalized systems,
especially in the presence of random fluctuations, is an impor-
tant task toward understanding living systems across different
scales.

From a methodological perspective, stochasticity poses
formidable challenges in the analysis of biochemical processes.
Even in homogenous environments, the treatment of stochastic
reactions is demanding, and a large body of literature has been
devoted to addressing this subject (6–8). A few previous studies,
however, have attempted to study stochastic reaction dynam-
ics within compartmentalized systems. Notable examples include
the work from refs. 9 and 10, where compartments correspond
to fixed spatial entities (e.g., cells in a tissue), in which reactions
take place and which exchange material, for instance, through
diffusion. An advantage of these models is that they can be for-
mulated as a concatenation of multiple homogeneous reaction
systems and thus could be effectively analyzed using available
techniques. On the downside, however, they cannot account for
compartmental dynamics, for instance, due to cell division or
apoptosis.

Among the few available approaches to combine reaction
and compartmental dynamics, population balance equations
(PBEs) are among the most prominent (11–13). In this con-
text, PBEs describe the time evolution of the number density
of a compartment population due to compartment interactions
or internal compartment dynamics, which may stem from chem-
ical reactions or material exchange. Despite their popularity and
numerous applications across various fields of science (14–16),
PBEs are most commonly found as integro-partial differential
equations in mean-field form: Rather than the actual num-
ber density, they describe the expected number density in the
thermodynamic limit (17). Correspondingly, information about
mesoscopic fluctuations is necessarily lost.

The relevance of noise in biological systems has led to an
increased interest in stochastic population balance modeling (12,
18, 19). A few recent elegant studies, for instance, show how cell
proliferation can be coupled with stochastic cell internal dynam-
ics (20, 21). Since the adoption of a stochastic number density
severely complicates the mathematical treatment, results can be
often achieved only by imposing tailored approximations and
simplifying assumptions, or using costly Monte Carlo simulation.
In summary, while stochastic population balance has gener-
ated important insights into different biological applications, a
sufficiently general yet effective framework remains lacking.

The goal of the present work is to develop a versatile and
efficient approach to study stochastic biochemical processes in
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populations of dynamically interacting compartments. In particu-
lar, we consider both the compartments and the molecules inside
them as discrete objects that can undergo arbitrary stochastic
events, captured by a set of stoichiometric equations. This allows
us to include interactions among distinct compartments such as
compartment fusion or fission as well as chemical modifications
inside each compartment (Fig. 1A). In contrast to population bal-
ance approaches, we describe the time evolution of a finite-size
population of compartments and their molecular constituents in
terms of counting processes. Based on this formalism, we then
show how the population dynamics can be compactly expressed
in terms of population moments. The obtained moment dynam-
ics are themselves stochastic and therefore carry information not
only about the average behavior of the population but also about

A
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D

Fig. 1. Compartment population exhibiting chemical and compartmental
dynamics. Compartment events alter the number of compartments in the
population and, in general, also their content. Chemical events act only on
the compartment contents, without changing the compartment number.
(A) Schematic illustration of a simple example. This system is driven by an
influx of compartments containing green molecules. The compartments can
then randomly undergo binary fusion events. At the same time, the con-
tent of each compartment is subject to chemical modifications of two types:
a bimolecular conversion of two green molecules into a yellow one, and a
constant degradation of yellow molecules. (B–D) Output of one stochastic
simulation of this specific model. (B) The marginals of the joint number dis-
tribution n(x1, x2) are shown at three time points. (C) Stochastic trajectory of
the total number of compartments in the population. The positive and neg-
ative updates are caused by intake and fusion events, respectively. (D) The
trajectories of the total amount of molecules in the population are affected
by the chemical events and compartment influx, but not by compartment
fusion.

its variability, as opposed to mean-field models. Using moment
closure approximations, we derive a set of ordinary differential
equations (ODEs), which reveal means and variances of these
population moments in a very efficient manner. We demonstrate
our approach using several case studies inspired by biological
systems of different complexity.

1. Theoretical Results
A. Stochastic Compartment Populations. We define a compartment
population as a collection of N distinct entities, each being
associated with its own molecular state. The state of compart-
ment i is described by a discrete-valued, D-dimensional variable
xi = (x1,i , . . . , xD,i)∈X⊆ND

0 . A single state variable xd,i typi-
cally represents the copy number of a particular chemical species
present in compartment i , but may also be used to capture more
coarse-grained compartment attributes such as cell types or vesi-
cle identities. We consider the case where the population and
their compartments are characterized by their molecular state
only, while other physical properties such as location in space
or shape are not taken into account. Thus, two compartments
with the same molecular state x are identical and indistinguish-
able in our formalism. Correspondingly, we can characterize the
population in terms of the number distribution function n(x)∈
N0, which counts the number of compartments that have con-
tent equal to x (Fig. 1B). The full state of the population is
then given by the compartment number array n = (nx)x∈X with
nx =n(x), which enumerates all compartment numbers within a
single (and typically infinitely sized) structure of rank D . The
state n can be understood as a multidimensional matrix, where
the compartment number n(x) is found at index x.

We next allow the compartment population to exhibit tempo-
ral dynamics. On the one hand, changes in the population may
occur because compartments themselves undergo modifications
and interact with one another. For instance, two compartments
may fuse, or a compartment may exit the system. On the other
hand, a compartment’s state may change due to chemical reac-
tions among its molecules. Regardless of their specific nature,
all chemical or compartment modifications can be expressed in
terms of changes in the number compartment distribution n(x).
Formally, we can describe those changes using stoichiometric
equations of the form∑

x∈X

aj ,x[x]−⇀
∑
x∈X

bj ,x[x], [1]

where the symbol [x] denotes a compartment of content x, and
the nonnegative integers aj ,x and bj ,x are the stoichiometric reac-
tant and product coefficients of transition j . Furthermore, we
define the arrays aj = (aj ,x)x∈X and bj = (bj ,x)x∈X, such that the
population state n changes by ∆nj = bj − aj whenever transition
j occurs. We let J denote the set of all considered transi-
tions. Using these definitions, we can express the state of the
population at any time t > 0 as

n(t) = n(0) +
∑
j∈J

∆njRj (t), [2]

with Rj (t) as a counting process that counts the number of
occurrences of transition j up to time t and n(0) as the initial
configuration of the system. Note that, for compactness, time
dependencies are dropped in our notation in the following, but
the reader should keep in mind that both n(t) and Rj (t) vary
with time.

We next equip the counting processes Rj (t) with instanta-
neous rate functions hj (t) for j ∈J , which govern how likely
each compartment transition happens within an infinitesimal
interval of time (t , t + dt ]. Throughout this work, we consider
the rate functions to depend only on the current configuration
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of the population n(t), consistent with Markovian dynamics.
It can then be shown that the counting processes Rj (t) can
be expressed as independent, time-transformed unit Poisson
processes Uj (t) such that

n = n(0) +
∑
j∈J

∆njUj

(∫ t

0

hj (n(s))ds

)
. [3]

Eq. 3 is known as the random time change representation (22).
We can also write the stochastic evolution [2] of the population
state in differential form as

dn =
∑
j∈J

∆njdRj , [4]

where dRj is the differential of the counting process Rj , and
takes value 1 whenever a transition of type j occurs at time t ,
and is zero otherwise.

B. Transition Classes. Eq. 4 represents a continuous time Markov
chain formalism for stochastic compartment populations whose
dynamics are governed by an arbitrary set of transitions J .
While this representation is very general, it is rather impracti-
cal, because, in most relevant situations, the set J encompasses
infinitely many transitions. For instance, if two compartments of
arbitrary size can fuse with each other, then an infinite number
of transitions has to be introduced to model the interaction of all
possible pairs of compartment contents. To address this problem,
we introduce a specification of the transitions in terms of a finite
set of transition classes, which represent generic rules by which
compartments of arbitrary content can interact. In the case of
compartment fusion, for instance, we could define a single tran-
sition class which transforms two compartments with content x
and x′ into a single compartment with content x + x′, regardless
of the specific value of x and x′.

Formally, we define a transition class in two steps. First,
we specify the general structure of a transition class c by fix-
ing the number of reactant compartments rc and the number
of product compartments pc that are involved. For instance,
in the case of compartment fusion, we would have rc = 2 and
pc = 1. Throughout this work, we will restrict ourselves to the
case rc , pc ∈{0, 1, 2}, but the following discussion holds true
also for transitions involving more than two reactant or product
compartments. We denote by Xc ∈Xrc and Yc ∈Xpc the par-
ticular choice of reactant and product compartment contents
that define a distinguishable instance of class c. Two transitions
within a class are called distinguishable if they are associated
with a different stoichiometry when expressed in the form [1].
In our settings, this practically means that, whenever rc or pc
take value 2, we will count only pairs of Xc or Yc that are com-
binatorially distinct, because the ordering of the compartments
is physically irrelevant. In order to formally enumerate the dis-
tinct transitions within a class, we introduce a bijective mapping
j =ϕc(Xc , Yc) that assigns to each distinguishable choice of Xc

and Yc a unique index j (and vice versa). This index j refers
to a specific stoichiometric equation of the form [1], whose sto-
ichiometric arrays ac

j and bc
j take entries ac

j ,x =
∑

z∈Xc
δx,z and

bcj ,x =
∑

z∈Yc
δx,z, with the symbol δ denoting a Kronecker delta.

In practice, the mapping ϕc can be made explicit by enumerating
all of the possible contents Xc and Yc without repeating indistin-
guishable instances. In the following, we will denote the image
of ϕc by Jc , which collects all of the transitions belonging to
class c.

The second step in defining a transition class is the specifica-
tion of a rate law that assigns a rate to each individual transition
within the class as a function of its particular compartment con-
tents Xc and Yc . This rate law can be defined in two parts. First,

we introduce a probability per unit time for the reactant com-
partment(s) with content Xc to participate in a transition of class
c, given the current state n of the population, that is,

P(Xc participating during dt | n) =

= kcgc(Xc)w(n; ac
j )dt , [5]

with kc ∈R+ being a content-independent rate constant and
gc(Xc) being a nonnegative function which tunes the rate in
terms of the reactant compartment content(s). Note that gc(Xc)
must be symmetric in its arguments when rc = 2. The term
w(n; ac

j ) is a population weight that takes into account all of
the possible ways the current state n could realize a transition
involving reactant compartments with content Xc . In this work,
we consider w(n; ac

j ) to be a combinatorial weight that reflects
the physical indistinguishability of compartments having equal
content. Thus, we set

w(n; aj ) =
∏
x∈X

(
n(x)

ac
j ,x

)
, [6]

which is akin to the mass action principle of standard stochastic
reaction kinetics. Note that the binomials in Eq. 6 take a value
different from 1 only when x∈Xc .

Finally, the second part of the rate law is a conditional proba-
bility πc(Yc |Xc) that describes how likely the reacting compart-
ments of content Xc result in product compartments of content
Yc . While this step might be generally of probabilistic nature, it
can also be used to encode deterministic outcomes. For instance,
coming back to the example of compartment fusion, the content
of the product compartment is uniquely determined by fixing the
contents of the two reactant compartments. Similarly to gc(Xc),
we require πc to be symmetric in Xc or Yc whenever either of
those involves two compartments. In summary, Eq. 5 and the
outcome distribution πc determine the propensity function of a
specific transition j of class c, that is,

hc,j (n) = kcgc(Xc)w(n; ac
j )πc(Yc |Xc), [7]

which involves contents {Xc , Yc}=ϕ−1
c (j ). The rate law [7] pro-

vides a versatile definition, which allows us to equip a transition
class with different physical properties, constraints, or selectiv-
ity. We emphasize that Eq. 7 can be parameterized entirely in
terms of the involved contents Xc and Yc , such as illustrated for
the examples in Table 1. Additional information on how chemi-
cal reactions can be described as compartment transition classes
can be found in SI Appendix, section S1.

We can now reformulate the general counting process model
from Eq. 4 using the concept of transition classes. In particu-
lar, we associate a counter Rc,j (t) with each transition j ∈Jc

within class c. Moreover, we introduce the total class transi-
tion counter R̄c(t) =

∑
j∈Jc

Rc,j (t), which corresponds to the
cumulative number of events associated with class c that hap-
pened until time t . The rate function of R̄c(t) is given by the
total propensity function Hc(n) =

∑
j∈Jc

hc,j (n), which follows
from the superposition theorem for Poisson processes (23). The
propensity Hc(n) represents the probability per unit time of any
event in class c occurring, given the current state n. Based on
this, we can rewrite Eq. 4 as

dn =
∑
c∈C

∑
j∈Jc

∆nc
j dRc,j , [8]

=
∑
c∈C

∆ncdR̄c , [9]

where C is a finite set of transition classes. Whenever a tran-
sition in class c occurs (dR̄c = 1), the state n changes by a
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Table 1. Several examples of population transition classes and the structure of their rate laws

Description Stoichiometry Propensity function

Compartment intake ∅ hI (n;y)−−−−⇀ [y] hI(n; y)= kIπI(y)

Compartment exit [x]
hE (n;x)−−−−⇀ ∅ hE(n; x)= kEgE(x)n(x)

Binary coagulation [x] + [x′]
hC (n;x,x′ ,y)−−−−−−−⇀ [y] hC (n; x, x′, y)= kCgC (x, x′)

n(x)(n(x′)−δ
x,x′ )

1+δ
x,x′

δy,x+x′

Binary fragmentation [x]
hF (n;x,y,y′)−−−−−−⇀ [y] + [y′] hF (n; x, y, y′)= kFgF (x)n(x)πF (y|x)δy′ ,x−y

Chemical reaction [x]
hl (n;x,y)−−−−−⇀ [y] hl(n; x, y)= klgl(x)n(x)δy,x+∆xl

random state update ∆nc with distribution P(∆nc = ∆nc
j | n) =

hc,j (n)/Hc(n). The jump process representation in Eq. 9 is ana-
lytically convenient and, moreover, entails a natural strategy
to perform stochastic simulations similar to Gillespie’s stochas-
tic simulation algorithm (SSA) (24). Further details on how
to perform stochastic simulations of the considered model are
provided in SI Appendix, section S2.

C. Stochastic Moment Dynamics. Eq. 8 describes the stochastic
evolution of the population state n, under a considered set C
of transition classes. Our goal is now to analyze the statisti-
cal properties of the population. In the context of stochastic
population balance, compartment populations are typically stud-
ied based on the expected number distribution 〈n(x)〉, which
reveals the average number of compartments in the population
with content equal to x. In principle, the dynamics of 〈n(x)〉
can be readily derived from Eq. 8 by taking the expectation on
both sides of the equation. Unfortunately, however, this gen-
erates an infinite-dimensional system of equations which, in
general, involves higher-order cross-correlations of the num-
ber distribution such as 〈n(x)n(x′)〉 (14). As mentioned ear-
lier, this problem is typically addressed either by neglecting
these cross-correlations based on mean-field arguments or by
resorting to approximate numerical schemes and Monte Carlo
estimation.

To circumvent these problems, we use an alternative strategy
to study the dynamics of the population. In particular, we focus
on population moments, which capture summary statistics of the
full population state n, such as the total number of compartments
in the population or the total number of molecules of a given
type. Importantly, this will allow us to effectively access fluctu-
ations in the dynamics of the population, while bypassing the
difficulties encountered when dealing with the expected number
distribution.

A moment associated with the population state n can be
defined as

M γ =
∑
x∈X

xγn(x), [10]

with xγ =
∏D

i=1 x
γi
i and γ as a vector of nonnegative integer

exponents. The sum
∑

i γi sets the order of the moment M γ .
For instance, if

∑
i γi = 0, then the moment corresponds to the

total number of compartments present in the population, that is,
N =M 0 =

∑
x n(x). Similarly, moments of order 1 represent the

total amount—or mass—of a particular species, and so forth. It is
important to keep in mind that the compartment number distri-
bution n(x) is stochastic, and therefore each population moment
will be stochastic as well (Fig. 1 C and D). In the following,
our goal is to derive an equation which captures the stochastic
moment dynamics.

We begin by studying how a single transition j ∈Jc of transi-
tion class c ∈C affects an arbitrary population moment. Assume
that, right before the transition, the population is in configura-

tion n−, and consider an associated moment M γ,−. When the
transition happens, the moment instantaneously changes to

M γ,+ =
∑
x∈X

xγ
(
n−(x) + ∆nc

j ,x
)

=M γ,−+
∑
x∈X

xγ∆nc
j ,x

=M γ,−+ ∆M γ
c,j , [11]

with ∆M γ
c,j as the net change of moment M γ due to transition j

of class c. Correspondingly, we can write the differential change
of any population moment in point process notation

dM γ =
∑
c∈C

∑
j∈Jc

∆M γ
c,jdRc,j , [12]

=
∑
c∈C

∆M γ
c dR̄c , [13]

where, in the second line, ∆M γ
c is a random jump update with

distribution P(∆M γ
c = ∆M γ

c,j | n) = hc,j (n)/Hc(n), analogous to
Eq. 9. Likewise, [13] is a continuous time jump process with
discrete increments.

We finally remark that a useful distinction between transi-
tion classes can be made based on the moment updates ∆Nc =
∆M 0

c = pc − rc related to the total compartment number N . In
particular, we will refer to any transition class that leaves the
total number of compartments N unchanged (i.e., ∆Nc = 0) as
a chemical event, since it exclusively modifies the compartment
contents. All other cases are referred to as compartment events,
since ∆Nc 6= 0 for those transition classes.

D. Calculating Mean and Variance of the Population Moments. To
effectively describe fluctuations in the population moments M ,
we derived ordinary differential equations that capture the time
evolution of their average and variance. We show, in SI Appendix,
section S3, that the expectation of an arbitrary population
moment satisfies the equation

d

dt
〈M γ〉=

∑
c∈C

〈∑
j∈Jc

∆M γ
c,jhc,j (n)

〉
, [14]

where 〈·〉 denotes the expectation operator. Note that, since the
moment change ∆M γ

c,j is a constant for each j ∈Jc , the expec-
tation could, in principle, be moved inside the second sum in
[14]. In the latter form, however, the right-hand side (r.h.s.) of
[14] involves infinite sums of moments of the number distribu-
tion n(x) itself, which defeats the purpose of a low-dimensional
description in terms of population moments. Instead, we show
that, under certain conditions, the sum

∑
j∈Jc

∆M γ
c,jhc,j (n) can

be expressed again as a function of a finite number of population
moments, so that, after applying the expectation operator, Eq.
14 reduces to a self-contained system of differential equations. A
sufficient condition for this to be the case is that 1) the function
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gc is a polynomial in Xc and 2) the conditional distribution πc has
moments which are polynomials in Xc too (SI Appendix, section
S4). In the present study, we will focus on systems which exhibit
those two properties.

Analogously to Eq. 14 for the expected moment dynamics,
we can derive differential equations for the expectation of a
squared moment using the rules of stochastic calculus for count-
ing processes (SI Appendix, section S5). In combination with [14],
this allows us to study the expected behavior of a population
moment as well as its variability across different realizations. This
is an important difference from mean-field approaches, in which
fluctuations in the number distribution and their corresponding
moments are neglected.

We finally remark that the coupled ODE system resulting from
Eq. 14 will not be closed, in general, since its r.h.s. may depend
on higher-order moments. This problem can be addressed using
moment closure approximations, where moments above a cer-
tain order are approximated by functions of moments up to that
order (25). These approximation schemes typically rely on cer-
tain assumptions on the underlying process distribution and may
give more or less accurate results depending on the details of the
considered system (26). In our analyses, we found the multivari-
ate Gamma closure as proposed in ref. 27 to give accurate results,
and we will adopt this choice of closure in our case studies when
needed (details in SI Appendix, section S6).

2. Case Studies
We next demonstrate our framework and the moment equa-
tion approach using several case studies inspired by biolog-
ical systems at different scales. All simulations have been
performed using the scientific computing language Julia (28).
The code is publicly available at https://github.com/zechnerlab/
StochasticCompartments.

A. Nested Birth–Death Process. We begin by considering a popu-
lation of compartments with univariate content x ∈ [0,∞) and
introducing a simplistic toy model defined by the four transition
classes

∅ hI (n;y)−−−−⇀ [y ] hI (n; y) = kIπPoiss(y ;λ)

[x ]
hE (n;x)−−−−−⇀ ∅ hE (n; x ) = kEn(x )

[x ]
hb(n;x)−−−−⇀ [x + 1] hb(n; x ) = kbn(x )

[x ]
hd (n;x)−−−−⇀ [x − 1] hd(n; x ) = kdxn(x ),

[15]

which are also illustrated in Fig. 2A. The first and second tran-
sition classes in [15] are, respectively, an intake transition class,
where a new compartment enters the population with a Poisson-
distributed content with mean-parameter λ, and a random-exit
transition class, for which any compartment can leave the pop-
ulation with the content-independent exit rate kE . According
to our terminology, these first two transitions classes are com-
partment events, since they affect the number of compartments
in the population, whereas the last two transition classes in
[15] account for chemical modifications. The total propensities
associated with [15] are found to be HI (n) = kI , HE (n) = kEN ,
Hb(n) = kbN , and Hd(n) = kdM

1. We start writing the stochastic
differential equation (SDE) for the number of compartments N
in the form [13],

dN = dR̄I − dR̄E , [16]

which is affected only by the occurrence of compartment events,
while the chemical birth–death events do not alter N . For the
total population mass M 1 =

∑∞
x=0 xn(x ), we can use [12] to find

A B C

D E F

Fig. 2. Expected moment dynamics of compartment number and total mass for the nested birth–death model and the coagulation–fragmentation case
study. Solutions obtained from moment equations (ODEs) are compared with Monte Carlo averages from stochastic simulations (SSA). Error bars and shaded
areas correspond to 1 SD above and below the mean. (A) Schematic illustration of the nested birth–death system. (B and C) Moment dynamics for parameters
kI = 1, kE = 0.01, kb = 1, and kd = 0.1. The content of new compartments is Poisson distributed mean λ= kb/kd . The superimposed black lines show one
stochastic realization of Eqs. 16 and 17 in B and C, respectively. A small section (highlighted in red) is enlarged in Insets to illustrate the stochastic jump
dynamics. (D) Schematic illustration of the coagulation–fragmentation model. (E and F) Expected moment dynamics for parameters kI = 10, λ= 50, kE = 0.1,
kF = 5 · 10−3, and kC varying according to the ratios shown in the legend.
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dM 1 =

∞∑
y=0

(+y)dRI ,y +

∞∑
x=0

(−x )dRE ,x

+

∞∑
x=0

(+1)dRb,x +

∞∑
x=0

(−1)dRd,x . [17]

Note that the mass updates related to intake or exit events
depend on the content of each specific transition, while, for birth
or death events, they always take values +1 or −1, respectively.
We can express Eq. 17 in the compact form [13] too, which
equals

dM 1 =YI dR̄I −XEdR̄E + dR̄b − dR̄d , [18]

where we introduced the random variables ∆M 1
I =YI with

P(YI = y) =πPoiss(y ;λ) and ∆M 1
E =−XE with P(XE = x | n) =

n(x )/N , which is a categorical distribution for the content of the
compartment randomly exiting the system, found by evaluating
hE (n; x )/HE (n). We can proceed to study the average trajectory
for Eqs. 16 and 17 by using the result [14]. We obtain

d〈N 〉
dt

= kI − kE 〈N 〉

d〈M 1〉
dt

= kIλ− kE 〈M 1〉+ kb〈N 〉− kd〈M 1〉.
[19]

Not surprisingly, the evolution of 〈N 〉 is independent of that of
〈M 1〉 because N is just a birth–death process with constant rates
kI and kE . Conversely, the dynamics of the expected total mass
〈M 1〉 depends on the expected number of compartments. Corre-
sponding equations for the variance of N and M 1 can be derived
analogously (SI Appendix, section S7). In summary, this leads to a
system of six coupled ODEs which can be integrated numerically
to compute the exact mean and variance of N and M 1, as shown
in Fig. 2 B and C. Note that no moment closure approximation is
required for this system.

We next utilize the derived moment equations to investi-
gate more closely how compartmental and chemical fluctuations
affect the dynamics of the population. We first focus on the
expected total mass at steady state, 〈M 1

∞〉= limt→∞〈M 1〉, for
which we find

〈M 1
∞〉=

kI
kE

[
kb
kd

1 +αβ

1 +α

]
, [20]

where we introduced the dimensionless parameters α= kE/kd
and β=λ/(kb/kd). The term kI /kE corresponds to 〈N∞〉, the
expected number of compartments at steady state, which fol-
lows from N being a birth–death process (SI Appendix, section
S7). The term in the square brackets corresponds to the steady-
state average content per compartment, 〈m∞〉= 〈M 1

∞〉/〈N∞〉.
The latter coincides with the first moment of the normalized
expected number distribution P∞(x ) = 〈n∞(x )〉/〈N∞〉, where
we defined 〈n∞(x )〉= limt→∞〈n(x )〉. We observe that setting
β= 1 in Eq. 20 gives 〈m∞〉= kb/kd , since the intake distribu-
tion πPoiss(x ;λ= kb/kd) now matches the stationary distribution
of the chemical birth–death process of rates kb and kd occur-
ring in each compartment. In other words, the content of newly
arriving compartments is already at steady state, thus preserving
Poissonian content statistics.

To study variations across compartment contents, we calcu-
lated the variance-to-mean ratio σ2

∞/〈m∞〉 of P∞(x ), where
σ2
∞ is obtained from moment equations as σ2

∞= 〈M 2
∞〉/〈N∞〉−

〈m∞〉2 (SI Appendix, section S7). We find

σ2
∞

〈m∞〉
= 1 + 〈m∞〉

α

2 +α

(β− 1)2

(1 +αβ)2
. [21]

The first contribution in [21] corresponds to Poissonian noise
stemming from the chemical fluctuations inside each compart-
ment. The second contribution is caused by compartmental fluc-
tuations, generally leading to super-Poissonian statistics. How-
ever, when β= 1, Poissonian noise is recovered due to the
agreement of chemical and intake processes.

Note that, in this simple linear case study, P∞(x ) could be
characterized also directly by taking the expectation on Eq. 8.
We show, in SI Appendix, section S7, how closed-form analyti-
cal solutions can be obtained for this simple system under two
special parameter configurations.

We want to point out that, while Eq. 21 reveals the fluctua-
tions of the content across individual compartments, a similar
analysis can be performed for the total population mass M 1.
This is demonstrated in SI Appendix, section S7, where we
show the evolution of M 1 for three different values of β and
compare it against a static population without compartmental
dynamics (SI Appendix, Fig. S1). This analysis shows that com-
partmental events are typically the dominant source of total mass
fluctuations in the considered model.

This simple case study serves to illustrate how the pro-
posed framework can be used to study fluctuations in sys-
tems that exhibit both compartment and reaction dynamics.
In the following, we will consider systems with more complex
interactions.

B. Stochastic Model of a Coagulation–Fragmentation Process.
Coagulation–fragmentation processes form an important class
of models to describe populations of interacting components
(15), which have been used to study biological phenomena at
different scales, including protein clustering (29), vesicle traf-
ficking (30–32), or clone-size dynamics during development (33).
Previously, these models have been analyzed mostly using mean-
field approaches or forward stochastic simulation. In this case
study, we will revisit coagulation–fragmentation systems using
the proposed moment equation approach. For simplicity, we will
consider again a univariate compartment content x ∈ [0, . . . ,∞),
but we remark that multivariate scenarios can be handled analo-
gously. We define a random coagulation class, where each pair
of compartments is equally likely to fuse with rate kC (i.e.,
gC (x , x ′) = 1 in Table 1). Instead, we introduce a mass-driven
fragmentation class, where a compartment undergoes a fragmen-
tation event with rate kFgF (x ) = kFx that is proportional to its
content. For πF (y | x ), we choose a uniform fragment distribu-
tion. The corresponding total class propensities read HC (n) =
kCN (N − 1)/2 and HF (n) = kFM

1 (SI Appendix, section S8).
Moreover, we might consider that the population can exchange
compartments with an external environment. In order to account
for this, we can equip our model with an intake and an exit
transition class, similarly to model [15]. Considering these four
transition classes (Fig. 2D), the SDE for N is

dN = dR̄I − dR̄E −dR̄C + dR̄F , [22]

because ∆N is equal to −1 for any exit or coagulation event and
+1 for intake or fragmentation. The SDE for the total mass M 1

of the compartment population assumes an even simpler form,

dM 1 =YI dR̄I −XEdR̄E , [23]

since coagulation and fragmentation events conserve mass. The
random variables YI and XE are defined like in the previous case
study. For space considerations, the derivation of the moment
equations is left to SI Appendix, section S8. In particular, since
the considered system does not exhibit closed moment dynam-
ics, we made use of the proposed Gamma closure as mentioned
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earlier. In Fig. 2 E and F, we plot the expected trajectories and
fluctuations of N and M 1 for different parameter settings and
compare them to exact stochastic simulations. In all cases, we
found very good agreement between both approaches. An anal-
ogous analysis of the expected second-order moment is provided
in SI Appendix, Fig. S2. An interesting feature emerging from
Fig. 2F is that the coagulation and fragmentation rates affect
the variability of the total mass, but not its average behavior,
which depends only on the intake and exit parameters. This hap-
pens because a larger coagulation rate implies that the same
total mass has to be shared among fewer compartments, which
causes the total population mass to exhibit larger fluctuations
upon occurrence of the intake and exit events. This fact could
not be captured by a mean-field treatment of a coagulation–
fragmentation system, since fluctuations are necessarily lost in
that case. Similar considerations hold true for the expected
compartment number dynamics

d〈N 〉
dt

= kI − kE 〈N 〉−
kC
2

(〈N 2〉− 〈N 〉) + kF 〈M 1〉, [24]

where we point out the dependency on the second-order moment
〈N 2〉. In a mean-field approximation, the coagulation term in
Eq. 24 would simplify to − kC

2
〈N 〉2. Indeed, replacing 〈N 2〉 with

〈N 〉2 implies that Var(N ) = 〈N 2〉− 〈N 〉2 = 0, thereby neglect-
ing fluctuations in the compartment number. Additionally, the
linear correction kC 〈N 〉/2 in Eq. 24, which originates from the
exact combinatorics of the possible compartment pairings, would
be omitted too. Both of these approximations can lead to signifi-
cant deviations when only a few compartments are present in the
system. For more details on the validity of mean-field approxi-
mations in stochastic coagulation systems, the reader may refer
to ref. 34.

C. Protein Expression Dynamics in a Cell Community. In our next
case study, we apply our approach to analyze a population of
compartments which are chemically coupled to each other. To
this end, we consider a cell population of fixed size N0 = 100,
and we equip each cell (i.e., each compartment) with a pro-
tein expression network, as shown in Fig. 3A. Protein expres-
sion is described as a random telegraph process (35), where
a binary gene variable can stochastically switch between an
off state (xG = 0) and on state (xG = 1). The active state pro-
motes the production of a protein at rate kP . Furthermore,
the protein is constantly degraded at rate kP

d . We define the
two-dimensional compartment content variable x = (xG , xP )∈
X= [0, 1]×N0. We account for a cell-to-cell communication
mechanism where cells in the active state can promote inac-
tive cells to switch on protein expression. Previous studies have
described cell-to-cell communication by a stochastic diffusion
mechanism that couples neighboring compartments on a lat-
tice (10, 36) or, in the limit of fast diffusion, through a shared
environment (37, 38). Similarly to the latter scenario, we con-
sider that an active cell can interact with the same probability
with any inactive cell in the population. Such communication
mechanism can be captured by a bicompartmental transition
class

[x] + [x′]
hcom(n;x,x′)−−−−−−−⇀ [1, xP ] + [1, x ′P ], [25]

where we made explicit in the r.h.s. that, upon this transition,
both cells are in the active state (details in SI Appendix, section
S9). The total class propensity for [25] equals

Hcom(n) = kcomM 1,0(N0−M 1,0), [26]

which reflects the fact that the global activation rate is propor-
tional to the product of the number of active cells M 1,0 and

the number of inactive cells (i.e., N0−M 1,0) in the current
configuration n. Note that, in the considered model, all transi-
tion classes—including the communication events—are chemical
transitions according to our definition, so that the number of
compartments remains constant at its initial value N0. We fur-
ther remark that, while the communication class [25] only acts on
the binary gene state xG , similar transitions can be defined within
our framework to capture also exchange of molecules between
compartments.

We are now interested in studying the protein expression
dynamics in the cell population, as a function of the commu-
nication rate constant kcom. To this end, we derived moment
equations describing the averages and variances of the active
cell number M 1,0 and the total amount of proteins M 0,1 (SI
Appendix, section S9). In Fig. 3B, we plot the expected total
protein dynamics 〈M 0,1〉 for different values of the communi-
cation rate kcom. Similarly to the previous case studies, results
obtained from exact SSA and the moment-based approach are
in very good agreement with each other. Next, Fig. 3C illus-
trates the variance-to-mean ratio of the total protein amount
at steady state as a function of the communication rate. This
result has been obtained through moment equations, by comput-
ing Var(M 0,1

∞ )/〈M 0,1
∞ 〉. We note how the noise initially increases

with kcom, peaks around kcomN0/k
G
d = 1, and then soon starts

declining toward Poissonian noise as the activation saturates.
This can be appreciated also from Fig. 3C, Inset, which shows
the shape of the normalized expected protein distribution in a
cell, computed by SSA sampling. The distributions are in agree-
ment with the theoretical predictions for the two limiting cases
of absent and infinitely fast communication. In particular, for
kcom→∞, all cells in the population are constitutively main-
tained active, so that the protein levels are Poisson-distributed
with mean kP/k

P
d = 20. When, instead, kcom = 0, each cell

evolves independently, and the steady-state distribution is in
agreement with the canonical telegraph model, whose analytical
solution is known (35). We performed an analysis equivalent to
Fig. 3 B and C for the expected number of active cells 〈M 1,0〉 (SI
Appendix, Fig. S3). As can be seen from this application, moment
equations provide an effective means to access the statistics of
a compartment population for a wide range of parameters and
identify interesting dynamical regimes with little computational
effort.

D. Stem Cell Population Dynamics. In our last application, we aim
to study a system involving a more complicated interplay between
internal and compartmental dynamics. Specifically, we consider
a model inspired by the proliferation and differentiation dynam-
ics of stem cell populations (39, 40), as illustrated in Fig. 3D.
While the regulatory mechanisms controlling cell differentiation
are diverse and complex, we focus here on a minimal model
to exemplify how our framework can be applied to problems
of such kind. We consider that stem cells can undergo divi-
sion events with two probabilistic outcomes: either a symmetric
division, where both daughter cells are stem cells, or an asym-
metric division, where one of the daughter cells differentiates.
Cell cycle length distributions are typically peaked and nonexpo-
nential (41–43). To account for this, we couple the division rate
of a stem cell to the dynamics of an internal molecular factor
xS which stochastically increases over time at a constant rate kS .
More precisely, we consider the propensity of cell division to be
proportional to the current abundance of xS . Upon division, xS
is reset to zero in both daughter cells, so that xS can be inter-
preted as a proxy for cell cycle progression. This is illustrated in
Fig. 3E, where the dynamics of xS across a lineage is followed
over multiple rounds of cell division along a stochastic real-
ization. This accumulation-reset mechanism provides a simple
strategy to account for peaked and nonexponential interdivision
time distributions (SI Appendix, Fig. S4). Similar models of cell
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Fig. 3. Moment dynamics and steady-state properties of the cell communication model and the stem cell system. (A) Schematic illustration of the reaction
network and the cell–cell interaction mechanism in the cell communication model. The yellow square symbolizes the active gene state. The green square
represents the expressed protein species. (B) Expected dynamics of the total protein mass M0,1 for different values of kcom, with 1 SD above and below
the mean. Lines and shaded areas correspond to the result of moment equations, while dots and error bars were obtained from averaging 103 stochastic
simulations. The population comprises N0 = 100 cells, of which only one is in the active state at time 0. Parameters are set to kG

b = 0.01, kG
d = 0.1, kP = 1,

and kP
d = 0.05. (C) Variance-to-mean ratio of the steady-state total protein mass, obtained by moment equations and plotted as a function of kcomN0/kG

d .
(Inset) The expected steady-state protein distribution in one cell, computed with stochastic simulations for the range of communication rates used in B.
The dotted and dashed lines are analytical solutions, respectively, for no cell communication and infinitely fast communication (i.e., gene always active).
(D) Schematic illustration of the stem cell model. Stem cells are indicated by an orange nucleus, and differentiated cells are indicated by a purple one. The
green square represents a factor associated with cell cycle progression that induces stem cell division. The reference parameter values for E–H are set to
k+

F = k−F = 5 · 10−3, kS = 10, knf = 0.01, and kE = 0.05. (E) (Upper) The accumulation-reset stochastic dynamics of xS in stem cells is shown for the initial
transient of a single realization, starting with one stem cell. (Lower) The corresponding changes in total cell number and stem cell number. (F) Comparison
of the expected dynamics for the total cell number N (blue) and stem cell number M1,0 (orange) obtained from moment equations (ODEs) and stochastic
simulations (SSA), for two different initial conditions. (G) Dependency of the steady-state stem cell fraction on variations of some model parameters around
their reference values, computed from moment equations. (H) Robust dynamics of the stem cell fraction, upon applying a perturbation at time t = 200
where knf was suddenly downscaled by a factor of 5. In red, the expected stem cell fraction obtained from moment equations. In orange, one particular
stochastic realization.

division have been considered in ref. 19, with the difference that
the factor xS was considered to increase deterministically. Addi-
tionally, we introduce a negative feedback mechanism, which
causes stem cells to differentiate at a rate that increases with
their own abundance. For instance, such feedback could origi-
nate from mechanical cues due to cell crowding (44). To account
for negative feedback in our model, we introduce a second-order
compartment event, which mimics the interaction of a stem cell
with the remaining stem cell population (SI Appendix, section
S10). Finally, we assume that differentiated cells die or exit the
system at a constant rate kE . Formally, the cell content of the
considered model is described by x = (xG , xS )∈X= [0, 1]×N0,
where the binary variable xG indicates whether a cell is either a
stem cell (xG = 1) or a differentiated cell (xG = 0).

Our goal is to study the dynamics and the variability of the
total cell number N and the stem cell number M 1,0 in the popu-
lation. We remark that, in comparison to the previous case stud-
ies, the application of the moment equation method turns out

to be more challenging for this model. This is because the total
propensities of the division events depend on the second-order
moment M 1,1 =

∑
x xGxS , which represents the total amount of

xS in stem cells. In combination with the second-order feed-
back mechanism, this would lead to a large number of equations
required to capture the full dynamics of all involved moments up
to a certain order. Here we address this problem by combining
the multivariate Gamma closure with a mean-field approxima-
tion, where correlations among certain population moments are
neglected (SI Appendix, section S10).

In Fig. 3F, we plot the expected dynamics of the total number
of cells and the number of stem cells starting from two differ-
ent initial conditions (1 or 100 stem cells). Even though we used
additional approximations, the moment dynamics are in rela-
tively good agreement with the results obtained from stochastic
simulations. Based on the moment equations, we next inves-
tigated how the steady-state stem cell fraction f ST∞ = 〈M 1,0

∞ 〉/
〈N∞〉 is affected by varying three different parameters of the
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model: the feedback rate knf , the rate kS , and the ratio θ+−=

k+
F /k

−
F , with k+

F + k−F held constant (Fig. 3G). Interestingly, we
find that the stem cell fraction is largely robust against changes
in the feedback strength knf as well as the ratio of division rates
θ+−. In regard to the former, while changing knf affects the num-
ber of stem cells present in the system (SI Appendix, Fig. S5),
the relative propensity between symmetric and asymmetric divi-
sions remains unaffected, thereby preserving the total stem cell
fraction. This is further illustrated in Fig. 3H, which shows how
the stem cell fraction returns to its set point upon perturb-
ing knf . Instead, considering variations of θ+−, the robustness of
f ST∞ seems to originate from the fact that the rates of symmet-
ric divisions and feedback events compensate for each other. A
more detailed analysis of the principles underlying the robust-
ness properties of such models shall be performed in future work.
This last application shows that, even though approximate, the
moment equation approach provides valuable insights into the
collective dynamics of cell populations.

3. Discussion
Compartmentalization of biochemical processes is a hallmark
of living systems across different scales, from organelles to cell
communities. Theoretical approaches which address the inter-
play between compartment and reaction dynamics are therefore
of great relevance. In this work, we introduced a mathematical
framework to model arbitrary compartmental and biochemi-
cal dynamics in a population of interacting compartments. Our
approach relies on a fully stochastic treatment and is thus suit-
able to investigate the effect of mesoscopic fluctuations on
compartmentalized biochemical systems. We have shown how
the dynamics of a compartment population can be compactly
described by ordinary differential equations, which capture
means and variances of certain population moments, such as
the compartment number or total molecular content. Therefore,
this technique provides an analytical and computational means
to efficiently access the statistical properties of the population,
which would be costly to obtain using Monte Carlo simulation.

While the proposed approach is fairly general, it currently has
a few limitations, which are worth addressing in the future. First,
it relies on the availability of suitable moment closure approxi-

mations. In all our case studies, we found the Gamma closure to
give accurate results, but different closures may be required for
other types of systems. Second, we have focused on propensity
functions that lead to self-contained moment dynamics, and we
identified two sufficient conditions for this to be the case. While
this entails a large class of systems, it will be interesting to extend
our approach to more general rate laws, which are beyond these
two conditions.

Our approach relies on a Markovian formalism, where the
rate functions depend only on the current state of the popula-
tion. However, coarse-grained events, such as cell division, can
exhibit strong history dependencies. We have shown how mem-
ory effects can be included within our Markovian framework by
coupling compartment events to internal processes or supple-
mentary variables (45). For instance, in our last case study, we
introduced an internal timer process which controls the rate of
cell division, leading to peaked interdivision time distributions as
observed experimentally (41). This strategy is similar to the work
of ref. 46, where the authors have shown that a chemical sys-
tem with molecular memory can be mapped onto an equivalent
Markovian model.

In some of the presented case studies, we have shown how
our framework can be used to track additional compartment
properties in addition to their molecular content. For instance,
compartments can be associated with distinct types or categories,
each exhibiting different dynamical features. These categories
could correspond to cell types or clusters of cells within differ-
ent regions in a tissue. This could be particularly relevant for
studying stochasticity in developmental systems, where cells orig-
inating from the same progenitors can commit to different fates
and genetic programs in a spatiotemporal context.

Data Availability. Derivations and additional information are
provided in SI Appendix. The code used for simula-
tions is available at GitHub, https://github.com/zechnerlab/
StochasticCompartments.

ACKNOWLEDGMENTS. We thank Quentin Vagne for his helpful comments
on the implementation of stochastic simulations, and André Nadler for crit-
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