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Enzyme turnover numbers (kcats) are essential for a quantitative
understanding of cells. Because kcats are traditionally measured in
low-throughput assays, they can be inconsistent, labor-intensive to
obtain, and can miss in vivo effects. We use a data-driven approach
to estimate in vivo kcats using metabolic specialist Escherichia coli
strains that resulted from gene knockouts in central metabolism
followed by metabolic optimization via laboratory evolution. By
combining absolute proteomics with fluxomics data, we find that
in vivo kcats are robust against genetic perturbations, suggesting
that metabolic adaptation to gene loss is mostly achieved through
other mechanisms, like gene-regulatory changes. Combining ma-
chine learning and genome-scale metabolic models, we show that
the obtained in vivo kcats predict unseen proteomics data with much
higher precision than in vitro kcats. The results demonstrate that
in vivo kcats can solve the problem of inconsistent and low-
coverage parameterizations of genome-scale cellular models.
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Enzyme catalytic rates are crucial for understanding many
properties of living systems like growth, proteome allocation,

stress, and dynamic responses to perturbation. The turnover
number of an enzyme, kcat, describes the maximal rate at which an
enzyme’s catalytic site can catalyze a reaction. Knowledge of kcat
has traditionally been a bottleneck in the quantitative under-
standing of cells, mainly because kcats have historically been
obtained in labor-intensive, low-throughput in vitro assays. The
substantial effort required for in vitro assays is likely the reason
why, even in model organisms, only a small fraction of cellular
enzymes has a measured kcat (1). Furthermore, in vitro kcat esti-
mates for the same enzyme that are found in databases are fre-
quently very inconsistent when different literature sources are
compared (2), probably because different experimental protocols
are used. Furthermore, in vitro conditions can miss important
in vivo effects like posttranslational modifications, cellular
crowding, or metabolite concentrations. The latter points hamper
the utilization of in vitro kcats in genome-scale metabolic models.
In order to address the problems of low-throughput acquisition

and in vivo−in vitro discrepancies, Davidi et al. (3) combined
proteomics data and flux predictions to estimate in vivo turnover
numbers based on apparent catalytic rate (kapp). Davidi et al. (3)
integrated published Escherichia coli proteomics datasets with
in silico flux predictions in multiple growth conditions and showed
that the resulting maximum apparent catalytic rate (kapp,max)
across growth conditions is significantly correlated with in vitro
kcats. Thus, kapp,max has the potential to overcome the problem of
inconsistent conditions, low coverage, and in vitro−in vivo dis-
crepancies that hampers the use of in vitro kcats in large models of
metabolism. However, it is unclear whether kapp,max is a stable
system parameter that is robust to perturbation, and how much
experimental procedures bias the estimation of kapp,max: Absolute

proteomic quantification techniques are still suffering from high
variation, and previous estimates of kcat were based on in silico
flux predictions rather than 13C fluxomics data. Furthermore, kcat
is expected to scale with growth rate (4). As many experimental
conditions in the literature data used in Davidi et al. (3) resulted in
low growth rates, the effective number of datasets contributing to
kapp,max is low. Finally, if kapp,max is a useful estimator of in vivo
kcat, it should improve the predictive capability of metabolic
models on data that was not used to obtain kapp,max, that is, the
performance on a test set.
Here, we present an approach for estimating kcat in vivo

(Fig. 1). We combined proteomic profiling with fluxomics data to
estimate in vivo kcats in E. coli strains that have undergone strong
physiological perturbations via knockout (KO) of metabolic
genes. To obtain strains with high growth rates for which kapp
approaches kapp,max, adaptive laboratory evolution (ALE) (5)
was used on the metabolic KO strains. We profiled 21 strains,
representing metabolic specialists with diverse flux profiles that
are able to obtain high growth rates (6–9). With this data-driven
approach, we show that in vivo kcats are stable and robust to
genetic perturbations, and that they can be used in genome-scale
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models to obtain a high predictive performance for unseen
protein abundance data.

Results
Quantifying In Vivo Kinetics in Metabolic Specialists. In theory,
kapp,max will approach kcat in vivo if a condition is found in which
the respective enzyme is utilized at full efficiency. In order to
achieve strong genetic perturbations of enzyme usage, we used
gene KO strains for the phosphotransferase system (PTS)
(ptsHIcrr; ref. 6), the phosphoglucose isomerase (pgi; ref. 8),
triosephosphate isomerase (tpiA; ref. 7), and succinate dehy-
drogenase (sdhCB; ref. 9). As kapp increases with growth rate (4),
we used KO strains that were optimized for growth on glucose
minimal medium via ALE (6–9) experiments. In addition to
these KO strains, we utilized a wild-type (WT) MG1655 strain
that was subjected to ALE (6–10). As evolution is not a deter-
ministic process, ALE endpoints differ in genotype, and we in-
cluded a total of 21 strains that resulted from replicates of ALE
experiments (i.e., four endpoint strains for ptsHIcrr, eight for pgi,
four for tpiA, three for sdhCB, and two WT controls) and that
were representative for the respective endpoint population. We
subjected the selected strains to genome sequencing and used
the resulting sequences as reference proteomes in liquid chro-
matography with tandem mass spectrometry (LC-MS/MS) pro-
teomics (see Materials and Methods). Absolute quantification of
biological duplicates was achieved via calibration to the UPS2
standard and the top3 metric (11, 12), which estimates protein
abundance based on the average intensity of the three best
ionizing peptides. Measured protein abundances show a median
R2 of 0.91 between biological replicates, and a median number of
2,076 proteins were detected per strain (SI Appendix, Table S1).
The obtained protein abundance vectors cluster by the genetic
background of the strain used for ALE (SI Appendix, Fig. S1).
This result indicates that protein levels have adjusted in a spe-
cific pattern to compensate for the respective gene KO (see refs.
6–9 for details on the transcript level).

Gene KO and ALE Cause Diversity in Enzyme Usage. We integrated
the measured protein abundances with 13C metabolic flux anal-
ysis (MFA) fluxomics data (6–9) to calculate apparent catalytic
rates in the 21 strains as the ratio of flux and protein abundance.
Like in Davidi et al. (3), we only calculated kapp for homomeric
enzymes and reactions that are not catalyzed by multiple isoen-
zymes, to allow a specific mapping of proteins to reactions. This
approach resulted in a median number of 258 enzymes per strain
for which we were able to calculate kapp. The resulting apparent
catalytic rates largely cluster by the genotype of the KO strain
(Fig. 2A), confirming that enzyme usage was indeed perturbed by
the respective KOs. Across the 21 strains, the maximum ob-
served kapp of an enzyme is, on average, 4.4 times larger than the
smallest observed kapp (Fig. 2B). This result indicates that con-
siderable variation in enzyme usage was caused by the metabolic
gene KO. To exclude the possibility that experimental variation
causes this apparent diversity in enzyme usage, we compared the
SD of kapp in biological replicates (mean on log10 scale = 0.07) to
the SD measured across the 21 strains (mean on log10 scale =
0.18). We found that the variation caused by KOs and ALE is
significantly larger than that caused by experimental variation
(P < 2e-16, n1 = 5177, n2 = 311, Wilcoxon rank sum test).

In Vivo Turnover Numbers Are Stable and Consistent. We estimated
in vivo kcat for a given enzyme as the maximum of kapp (kapp,max)
in the 21 KO strains. This approach was similar to Davidi et al.
(3), who estimated in vivo kcats as the maximum kapp over dif-
ferent growth conditions. Due to incomplete substrate saturation
and backward flux, the apparent catalytic rate of an enzyme is
smaller than the in vivo kcat. It is thus unclear whether kapp,max is
a stable property of the system that can be used in metabolic
models to give reliable predictions. Furthermore, absolute pro-
teomics data and fluxomics data come with significant experi-
mental uncertainties and biases that could prevent kapp,max from
being useful in modeling applications.
Even though our protocol perturbed enzyme kapp via gene KO

and ALE, whereas Davidi et al. (3) used differences in growth

Fig. 1. Approach for obtaining kcat in vivo from metabolic specialists: KO of enzymes in central metabolism was followed by ALE to obtain 21 strains that had
diverse flux profiles, while achieving high growth rates (6–9). Fluxomics and proteomics data were then integrated for the evolved strains to obtain the
maximum kapp across the 21 strains (kapp,max) for each enzyme that could be mapped uniquely. The obtained kapp,max vector was then extrapolated to genome
scale via supervised machine learning and used to parameterize genome-scale metabolic models. The resulting genome-scale models were then validated on
unseen proteomics data.
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conditions to achieve variation in enzyme usage, we found a very
high agreement between kapp,max from the two sources (R2 = 0.9,
Fig. 3A). We used a parametric bootstrap procedure to quantify
the uncertainty in our kapp,max estimations (see Materials and
Methods). We found that 42% (88 out of 210) of comparable
values estimated by Davidi et al. (3) fall into the 95% CIs of the
kapp,max values obtained in this study. A clear outlier is the re-
action FAD reductase (FADRx; Fig. 3A). This discrepancy is
caused by the different methods of flux estimation: While pro-
tein abundances of FAD reductase are relatively similar in the
respective conditions for which the maximum kapp was measured
[protein abundance is 2 times lower in Davidi et al. (3)], flux
through the FADRx reaction in parsimonious flux balance
analysis (FBA) (13) is 1,000 times higher than the flux estimated
in 13C MFA.
It is worth noting that the mutations observed in the ALE

strains are mostly regulatory in nature, with almost no structural
changes in the homomeric enzymes examined in this study (see
Dataset S1D and refs. 6–9 and 14 for details). One exception is

the enzyme isocitrate dehydrogenase, which has shown a very
high level of convergence for a coding sequence mutation
(R395C) in seven out of the eight evolved pgi KO strains. We
found no significant difference in kapp,max compared to the
kapp,max of isocitrate dehydrogenase reported by Davidi et al. (3)
(P = 0.28, n = 500, parametric bootstrap), suggesting that the
structural mutation does not increase the in vivo catalytic
efficiency.
In order to understand the relationship of kapp,max from KO

strains with kcat in vitro, we compared kapp,max with a dataset of
kcat in vitro that was compiled by Davidi et al. (3) for that pur-
pose. This in vitro dataset originates from a variety of literature
sources and thus varying assay conditions (3). While kapp,max
from KO strains is very consistent with kapp,max from different
growth conditions, the correlation with kcat in vitro is significantly
lower (R2 = 0.59; Fig. 3C), and only 26% (32 out of 125) of the
in vitro values fall into the 95% CIs of kapp,max. A similar low
correlation with in vitro kcat was found in the kapp,max estimates
published by Davidi et al. (3) (R2 = 0.59; Fig. 3D).
In summary, although we obtained kapp,max from a genetic

perturbation rather than variation in growth conditions and used
13C fluxomics data instead of in silico flux, and despite proteo-
mics and flux data being subject to significant noise, we found
very high agreement between kapp,max from the two sources.

Using Machine Learning to Extrapolate to the Genome Scale. The
problem of low coverage that is associated with kcat in vitro is also
present in kapp,max: Not all protein abundance can be mapped to
enzymes uniquely, and proteomics experiments still suffer from
coverage issues. The final set of kapp,max values includes 325 en-
zymes (Fig. 3B). This coverage is 27% higher than that found in
Davidi et al. (3), mostly because we used 13C fluxomics data that
tends to have a higher sensitivity than the in silico method (par-
simonious FBA; ref. 13) used by Davidi et al. (3). In order to
validate the estimated in vivo turnover numbers in a genome-scale
model that contains over 3,000 direction-specific reactions, we first
needed to extrapolate the data to the genome scale. We used
supervised machine learning on a diverse enzyme dataset (15) that
includes data on enzyme network context, enzyme three-
dimensional structure, and enzyme biochemistry to achieve this
goal. An ensemble model of an elastic net, random forest, and
neural network (15) showed good performance in cross-validation
for the in vivo turnover numbers, where the highest performance
was achieved for kapp,max that was obtained from the 21 KO strains
(Fig. 4). Taking the maximum of kapp,max from this study and that
of Davidi et al. (3) did not improve model performance, even
though it resulted in the largest training set.

Validation of Turnover Numbers in Mechanistic Models. The enzyme
turnover number is a major determinant of gene expression
levels, as it sets a lower limit on the enzyme concentration re-
quired to maintain a given flux. Turnover numbers are success-
fully used in genome-scale metabolic models to constrain
metabolic fluxes by a limited cellular protein budget (16–18) or
the balance of translation and dilution of proteins (19–21). The
kapp,max obtained from diverse growth conditions was previously
used successfully in genome-scale metabolic models, showing
that the performance of protein abundance predictions of
models using kapp,max was significantly higher than that of models
using in vitro kcats (15). A major drawback of this analysis lies in
the validation of the metabolic model which used data (22) that
was also utilized in obtaining kapp,max (3), posing the risk of
circular reasoning through data leakage. If kapp,max is a stable
property of in vivo enzyme catalysis, it is expected to yield a high
performance in metabolic models on unseen data; that is, kapp,max-
based models should generalize well.
To test this hypothesis, we parameterized two genome-scale

modeling algorithms of proteome-limited metabolism, a metabolic

A

B

Fig. 2. Apparent catalytic rates cluster by genetic background and exhibit
diversity across strains. (A) Data on kapp in each of the 21 strains projected
onto the first two principal components. Only reaction−strain combinations
for which kapp was available in all strains were used, resulting in 214 reac-
tions used in the analysis. Data were centered and scaled before conducting
principal component analysis. (B) Distribution of ranges of kapp across reac-
tions. The log2 of the ratio between the highest and the lowest kapp per
reaction is shown.
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modeling with enzyme kinetics (MOMENT) model (16) and an
integrated model of metabolism and macromolecular expression
(ME model) (19), with kapp,max obtained from KO strains. We then
used the model to predict enzyme abundance data under various
growth conditions published by Schmidt et al. (22), a dataset that
was not used to obtain kapp,max in this study. For comparison, we
included model parameterization based on kcat in vitro, with kapp,max

from Davidi et al. (3), and the maximum of kapp,max obtained in this
study and that of Davidi et al. (3). We found that the performance
of kapp,max from KO strains on the Schmidt et al. (22) data is very
similar to that of Davidi et al. (3): The average root-mean-square
error (RMSE) on log10 scale is 4% higher for the MOMENTmodel
and 12% lower for the ME model, even though the Schmidt et al.
(22) data were used to obtain kapp,max in Davidi et al. (3) (Fig. 5 and
SI Appendix, Fig. S2). This good performance on unseen data
confirms that in vivo kcat are stable against genetic perturbation and
consistent across experimental protocols.
We further found that kapp,max outperforms kcat in vitro in

MOMENT and ME models across all growth conditions (Fig. 5).
When comparing median-imputed kcat parameterizations to
those using supervised machine learning, we found that machine

learning reduces RMSE on log10 scale by 38% for kapp,max and
10% for kcat in vitro, confirming the utility of this approach (15).

Discussion
A large-scale characterization of the kinetic parameters that
govern metabolism, termed the kinetome (1), has been a major
hurdle in our quantitative understanding of cellular behavior (1,
23, 24). Previous efforts to use kcat, which represents a major
fraction of the kinetome, at the genome scale either utilized
in vitro data (16, 18) or fitted kinetic parameters to physiological
data (4, 25, 26). While the parameterization with in vitro kcats
can suffer from varying assay protocols, low throughput, and
potentially missing in vivo effects, parameter fitting is frequently
underdetermined and leads to nonunique solutions that cannot
be expected to generalize well when used in new conditions. The
use of proteomics data and flux predictions on homomeric en-
zymes (3), for which proteome abundances can be assigned
uniquely, is a promising approach that could solve many short-
comings of in vitro data and fitting approaches. While it was
shown that this approximation of in vivo kcat, kapp,max, exhibits a
decent correlation with kcat in vitro, it is unclear whether kapp,max
captures an upper bound on enzymatic rate that is stable with

26115 210

KO ALE Davidi
et al.

A B

C D

Fig. 3. Estimates of in vivo turnover numbers are consistent. (A) Comparison between kapp,max obtained from KO strains (this study) and kapp,max from growth
conditions (3). MAE, mean absolute error. (B) Number of reactions for which kapp,max was obtained in KO strains (this study) and varying growth conditions (3).
(C) Comparison between kapp,max obtained from KO strains and in vitro kcats. (D) Comparison between kapp,max obtained from KO strains and in vitro kcats (3).
Horizontal lines are 95% CIs determined by 500 parametric bootstrap samples (see Materials and Methods). Points are marked red when the compared value
falls into the 95% CI of kapp,max from KO strains and are colored blue if the compared value does not fall into the CI. Points are labeled with reaction IDs as
given in the iJO1366 reconstruction (51) if the values differ by more than one order of magnitude. Data on kcat in vitro shown in C and D were taken from
Davidi et al. (3) to allow for comparison between the studies. Davidi et al. (3) obtained this in vitro dataset from the Braunschweig Enzyme Database
(BRENDA) (52) and utilized the maximal kcat in cases where multiple sources were available for the same enzyme.
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respect to genetic perturbations and consistent across experi-
mental procedures. These properties are prerequisites for the
application of kapp,max in metabolic models.
We found that in vivo turnover numbers that are obtained

from KO strains are surprisingly consistent between very differ-
ent protocols (Fig. 3). Specifically, the protocol we used to obtain
kapp,max shows the following differences compared to that of
Davidi et al. (3): 1) kapp is not perturbed by growth conditions,
but by genetic KOs; 2) we used 13C MFA fluxomics data instead
of in silico data from parsimonious FBA; 3) we utilized pro-
teomics data that were obtained with a single LC-MS/MS pro-
tocol, avoiding batch effects; and 4) all data were obtained under
batch growth that promotes high growth rates, increasing kapp
(4). Given these differences in the two approaches to obtain

kapp,max, the high agreement between the two methods indicates
a high stability and consistency of in vivo kcats.
The high stability of in vivo kcats indicates that the adaptation

of the strains during ALE does not lead to drastic increases in
in vivo kcats. This hypothesis is supported by the relatively low
number of convergent mutations in the coding regions of en-
zymes (Dataset S1D). Short-term metabolic evolution appears to
be governed by changes in gene regulation, rather than changes
in enzyme efficiencies, at least in the case of the homomeric
enzymes investigated in this study.
Why does kapp,max exhibit a high consistency, where, in con-

trast, in vitro kcats often show a low agreement between different
sources (2)? In the context of large metabolic models, in vitro
kcats are typically obtained from hundreds of different publica-
tions that are collected in databases. Thus, it is usually not
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possible to obtain data that use uniform experimental protocols
that mimic the in vivo situation of interest. In contrast, kapp,max is
obtained from a small number of proteomics and flux datasets
that were ideally obtained on the same instruments, thus
avoiding batch effects. Furthermore, there is some indication
that metabolite levels in vivo tend to saturate many enzymes
(27). Such a high saturation might allow for conditions of high
enzyme saturation to be found even with a relatively small
number of system perturbations.

Some sources of uncertainty remain in the kapp,max values pre-
sented in this study. The 13C MFA data that we used were obtained
for the endpoint populations of the respective ALE experiments
(6–9), whereas we used clonal samples for proteomics experiments.
While we chose clones that represented the most dominant muta-
tions found in the endpoint populations, flux distributions could be
affected by uncommon mutations. Furthermore, 13C MFA data can
yield high coverage (28), but it still relies heavily on the quality of
the underlying network model, which could bias analyses.
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Because not all enzymes can be mapped to a reaction uniquely
and proteomics data still suffer from incomplete coverage,
kapp,max has a low coverage of the metabolic network and cannot
be readily used in genome-scale models. Based on mechanistic
knowledge of factors that shape enzyme turnover numbers (2, 29,
30), supervised machine learning was previously used success-
fully to extrapolate in vivo kcats to the genome scale (15). We
find a slightly lower error in cross-validation on kapp,max obtained
from KO strains compared to kapp,max from varying growth
conditions (3); this slight increase in performance may lie in the
increased size of the training set, as we were able to obtain 38%
more kapp,max values due to the use of 13C MFA data. This
finding is consistent with previously computed learning curves of
kapp,max on the Davidi et al. (3) dataset that showed that a do-
main of diminishing returns in model performance is reached
with respect to the size of the training set (15).
We find that metabolic models that are parameterized with

the kapp,max values we obtained from KO strains lead to very
good predictive performance on unseen proteomics data. This
performance in mechanistic models supports the hypothesis that
kapp,max indeed represents a stable property of the system, that is,
kcat in vivo. Thus, kapp,max can enable genome-scale metabolic
models that generalize well to unseen conditions.
While kinetic parameters remain difficult to obtain, the stable

and consistent properties of in vivo kcats support the notion that
these parameters can improve the predictive capabilities of
metabolic models significantly, and thus enable better quantita-
tive understanding of the cell. Finally, the high stability of in vivo
kcats suggests that short-term metabolic evolution is governed by
changes in gene expression, rather than adaptation at the level of
enzyme kinetics.

Materials and Methods
Strain Genomic Sequencing. Genomic DNA of ALE endpoint clones was iso-
lated using bead agitation in 96-well plates as outlined previously (31).
Paired-end whole-genome DNA sequencing libraries were generated with a
Kapa HyperPlus library prep kit (Kapa Biosystems) and run on an Illumina
HiSeq 4000 platform with a HiSeq SBS kit, 150 base pair reads. The gener-
ated DNA sequencing fastq files were processed with the breseq computa-
tional pipeline (version 0.32.0) (32) and aligned to an E. coli K12 MG1655
reference genome (33) to identify mutations. DNA sequencing quality con-
trol was accomplished using the software AfterQC (version 0.9.7) (34).

Cloneswere chosen in order to represent the high-frequency alleles found in
the endpoint populations of the respective ALE experiments. DNA sequences
were used to create reference proteomes for proteomics experiments
described below.

Sample Preparation. For each strain, 3 mL of culture was grown overnight at
37 °C with shaking in M9 medium (4 g of glucose L−1) (35) with trace ele-
ments (36), and then passed twice the following days in 15 mL of media at
37 °C from optical density (OD) 0.05 to 0.1 to OD 1.0 to 1.5. For the exper-
iment, 100 mL of culture with initial OD600 (OD at a wavelength of 600 nm) =
0.1 was grown in flasks with stirring in a water bath at 37 °C. When cultures
reached OD600 = 0.6, 40 mL of culture was collected and immediately put on
ice. The cells were pelleted by centrifuge at 5,000 rpm at 4 °C for 20 min. Cell
pellets were then washed with 20 mL of cold phosphate-buffered saline
(PBS) buffer three times and centrifuged at 5,000 rpm for 20 min at 4 °C.
Pellets were transferred into 1.5-mL microcentrifuge tubes and centrifuged
at 8,000 rpm at 4 °C for 10 min. Remaining PBS buffer was removed, and
pellets of proteomic samples were frozen at −80 °C.

Sample Lysis for Proteomics. Frozen samples were immersed in a lysis buffer
comprising 75 mM NaCl (Sigma Aldrich), 3% sodium dodecyl sulfate (Fisher Sci-
entific), 1mMsodium fluoride (VWR International, LLC), 1mM β-glycerophosphate
(Sigma Aldrich), 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate
(VWR International, LLC), 1 mM phenylmethylsulfonyl fluoride (Fisher Scientific),
50 mM Hepes (Fisher Scientific) pH 8.5, and 1× complete ethylenediaminetetra-
acetic acid-free protease inhibitor mixture. Samples were subjected to rapid
mixing and probe sonication using a Q500 QSonica sonicator (Qsonica) equipped
with a 1.6-mmmicrotip at amplitude 20%. Samples were subjected to three cycles
of 10 s of sonication followed by 10 s of rest, with a total sonication time of 50 s.

Protein Abundance Quantitation. Total protein abundance was determined
using a bicinchoninic acid Protein Assay Kit (Pierce) as recommended by the
manufacturer.

Peptide Isolation. Six milligrams of protein was aliquoted for each sample.
Sample volume was brought up to 20 mL in a solution of 4 M Urea + 50 mM
Hepes, pH = 8.5. Disulfide bonds were reduced in 5 mM dithiothreitol (DTT)
for 30 min at 56 °C. Reduced disulfide bonds were alkylated in 15 mM of
iodoacetamide in a darkened room-temperature environment for 20 min.
The alkylation reaction was quenched via the addition of the original vol-
ume of DTT for 15 min in a darkened environment at room temperature.
Proteins were next precipitated from solution via the addition of 5 μL of
100% wt/vol trichloroacetic acid. Samples were mixed and incubated on ice
for 10 min. Samples were subjected to centrifugation at 16,000 × g for 5 min
at 4 °C. The supernatant was removed and sample pellets were gently
washed in 50 μL of ice-cold acetone. Following the wash step, samples were
subjected to centrifugation at 16,000 × g at 4 °C. The acetone wash was
repeated, and the final supernatant was removed. Protein pellets were dried
on a heating block at 56 °C for 15 min, and pellets were resuspended in a
solution of 1 M Urea + 50 mM Hepes, pH = 8.5. The UPS2 standard (Sigma)
was reconstituted as follows. Twenty milliliters of a solution of 4 M Urea +
50 mM Hepes, pH = 8.5 was added to the tube. The sample tube was sub-
jected to vortexing and water bath sonication for 5 min each. The standard
was subjected to reduction and alkylation using methods described above.
The sample was next diluted in a solution of 50 mM Hepes, pH = 8.5 such
that the final concentration of Urea was 1 M. Then 0.88 mg of the protein
standard was spiked into each experimental sample, and samples were
subjected to a two-step digestion process. First, samples were digested using
6.6 μg of LysC at room temperature overnight, shaking. Next, protein was
digested in 1.65 μg of sequencing-grade trypsin (Promega) for 6 h at 37 °C.
Digestion reactions were terminated via the addition of 3.3 μL of 10% tri-
fluoroacetic acid (TFA), and were brought up to a sample volume of 300 μL
of 0.1% TFA. Samples were subjected to centrifugation at 16,000 × g for
5 min and desalted with in-house-packed desalting columns using methods
adapted from previously published studies (37, 38). Following desalting,
samples were lyophilized, and then stored at −80 °C until further use.

LC-MS/MS. Samples were resuspended in a solution of 5% acetonitrile (ACN)
and 5% formic acid (FA). Samples were subjected to vigorous vortexing and
water bath sonication. Samples were analyzed on an Orbitrap Fusion Mass
Spectrometer with in-line Easy NanoLC (Thermo) in technical triplicate.
Samples were run on an increasing gradient from 6 to 25% ACN + 0.125%
FA for 70 min, then 100% ACN + 0.125% FA for 10 min. One milligram of
each sample was loaded onto an in-house−pulled and −packed glass capil-
lary column heated to 60 °C. The column measured 30 cm in length, with
outer diameter of 360 mm and inner diameter of 100 mm. The tip was
packed with C4 resin with diameter of 5 mm to 0.5 cm, then with C18 resin
with diameter of 3 mm an additional 0.5 cm. The remainder of the column
up to 30 cm was packed with C18 resin with diameter of 1.8 mm. Electro-
spray ionization was achieved via the application of 2,000 V to a T-junction
connecting sample, waste, and column capillary termini. The mass spec-
trometer was run in positive polarity mode. MS1 scans were performed in
the Orbitrap, with a scan range of 375 m/z to 1,500 m/z with resolution of
120,000. Automatic gain control (AGC) was set to 5 × 105, with maximum ion
inject time of 100 ms. Dynamic exclusion was performed at 30-s duration.
Top n was used for fragment ion isolation, with n = 10. The decision tree
option was used for fragment ion analysis. Ions with charge state of 2 were
isolated between 375 m/z and 1,500 m/z, and ions with charge states 3 to 6
were isolated between 600 m/z and 1,500 m/z. Precursor ions were frag-
mented using fixed Collision-Induced Dissociation. Fragment ion detection
occurred in the linear ion trap, and data were collected in profile mode.
Target AGC was set to 1 × 104.

Technical triplicate spectral data were searched against a customized
reference proteome comprising the reference proteome of the respective
strain (see above) appended to the UPS2 fasta sequences (Sigma) using
Proteome Discoverer 2.1 (Thermo). Spectral matching and in silico decoy
database construction was performed using the SEQUEST algorithm (39).
Precursor ion mass tolerance was set to 50 parts per million. Fragment ion
mass tolerance was set to 0.6 Da. Trypsin was specified as the digesting
enzyme, and two missed cleavages were allowed. Peptide length tolerated
was set to 6 to 144 amino acids. Dynamic modification included oxidation of
methionine (+15.995 Da), and static modification included carbamidome-
thylation of cysteine residues (+57.021 Da). A false-discovery rate of 1% was
applied during spectral searches.
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Protein Abundance Estimation. In order to estimate absolute protein abun-
dance, the top3 metric was calculated for each protein as the average of the
three highest peptide areas (11, 12). Robust linear regression (as imple-
mented in the Modern Applied Statistics with S (MASS) package; ref. 40) was
used to calibrate top3 with the UPS2 standard according to the following
model to obtain the amount of loaded protein A:

log10 A( ) = a + b  log10 top3( ).
In order to obtain abundance relative to cell dry weight (C), we use a constant
ratio γ = 13.94 μmol·gDW−1 (41),

Ci = γ
Ai

∑jAj
.

Calculation of kapp,max. For each biological replicate, apparent catalytic rates
kapp were calculated as the ratio of protein abundance and measured flux if
1) the protein abundance surpassed 50 pmol·gDW−1 and 2) the estimated
flux was at least 4 times larger than the range of the 95% CI and larger than
100 fmol·gDW−1 h−1, and the 95% CI did not include zero, as defined in
McCloskey et al. (28).

For each of the two biological replicates per strain, kapp,max was calculated
as the maximum kapp,max across the 21 strains. Finally, the average kapp,max

over the two replicates was calculated and used in the presented analyses.

Parametric Bootstrap for kapp,max. We used a parametric bootstrap approach
to estimate how experimental variability in proteomics and fluxomics data
affects kapp,max. For each enzyme, we assumed protein abundance to be
normally distributed with mean and SD estimated from the biological rep-
licates for the respective enzyme. In cases where only one biological repli-
cate was available due to lack of detection in the MS/MS, we imputed the
missing SD with a linear regression of SD (on log scale) against mean
abundance (on log scale) for all available enzymes. Variability in flux data
for the respective reaction was also assumed to take a normal distribution,
where we used the SD estimated in the MFA procedure that resulted from
multiple MFA model reruns on biological triplicates (as described in refs.
6–9). For each reaction, 500 bootstrap samples were simulated based on the
parameterized normal distributions of protein abundance and flux for that
reaction, and these samples were used to calculate 95% CIs for kapp,max.

Machine Learning. Turnover numbers were extrapolated to the genome scale
using the machine learning approach published previously (15). In this su-
pervised machine learning procedure, enzyme features on enzyme network
context, enzyme structure, biochemical mechanism, and, in the case of kcat
in vitro, assay conditions were utilized (15). These enzyme features were
labeled with the kapp,max values estimated in this study, and an ensemble
model of elastic net, random forest, and neural network was trained using
the caret package (42) and h2o (43). The ensemble used an average of the
predictions of the three individual models. Model hyperparameters were
chosen in five-times repeated cross-validation (one repetition in the case of
neural networks) based on the RMSE metric, as reported in Heckmann et al.
(15). For the neural networks, random discrete search was used for optimi-
zation of hyperparameters (15).

MOMENT Modeling. Validation of different turnover number vectors in the
MOMENT model was conducted as described in Heckmann et al. (15). In the
MOMENT algorithm, a flux distribution is computed that maximizes strain
growth rate subject to constraints on the total protein budget of the cell
(16). In order to constrain fluxes based on enzyme usage, the algorithm
requires kcat parameters (16). Here, we use the respective vectors of kcat from
different sources to parameterize MOMENT and thus to predict protein
abundances that were experimentally determined by Schmidt et al. (22). The
genome-scale metabolic model iML1515 (44) was used in the R (45) packages
sybil (46) and sybilccFBA (47) to construct linear programming problems that
were solved in IBM CPLEX version 12.7.

ME Modeling. To complement the MOMENT-based validation of the com-
puted turnover numbers, a similar validation approach was employed with
the iJL1678b-ME genome-scale model of E. coli metabolism and gene ex-
pression (48). The ME model contains a detailed description of the cell’s gene
expression machinery that is not contained in the MOMENT model. The kapps
were mapped to iJL1678b-ME as previously described (15). However, the ME
model kapps were adjusted due to a key difference that lies in the way that
the MOMENT and ME model resource allocation models apply enzyme
constraints. MOMENT accounts for each unique protein contained within a
catalytic enzyme, whereas the ME model formulation accounts for the
complete number of protein subunits in an enzyme. As a result, the mac-
romolecular “cost” of catalyzing a reaction in the ME model is often notably
higher than in MOMENT. To account for this, the kapps in the ME model were
adjusted by scaling each kapp by the number of protein subunits divided by
the number of unique proteins.

The ME model was solved in quad precision using the qMINOS solver (49)
and a bisection algorithm (50) to determine the maximum feasible model
growth rate, within a tolerance of of 10−12. All proteins in a solution with a
computed synthesis greater than zero copies per cell were compared to
experimentally measured protein abundances. Since the ME model accounts
for the activity of many proteins outside of the scope of the kapp prediction
method, only those that overlap with predicted kapps were considered.

Data Availability. Results of genome sequencing and mutation calling were
deposited to ALEdb (aledb.org) as part of the “Central Carbon Knockout (CCK)
project.” MS-based proteomic data can be found on the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) with the dataset
identifier PXD015344. Inferred protein abundances, MFA fluxes, and resulting
kapps are available as Dataset S1A. Sets of kapp,max are available as Dataset S1B.
A table of kcat in vitro and kapp,max extrapolated with machine learning models
or the median is available as Dataset S1C. A mutation table of the strains used
in this study is available as Dataset S1D. Source code in R and Python used for
producing the analyses presented in this article is available in GitHub under
https://github.com/SBRG/Kinetome_profiling. All study data are included in the
article and SI Appendix.
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