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MicroRNA miR-100 Decreases Glioblastoma
Growth by Targeting SMARCA5 and ErbB3
in Tumor-Initiating Cells

Bahauddeen M. Alrfaei, PhD1,2,3 , Paul Clark, PhD1,4,
Raghu Vemuganti, PhD1,2,5,6, and John S. Kuo, MD PhD1,2,4,5,7,8

Abstract
Glioblastoma multiforme (GBM) is the most aggressive and most frequently diagnosed malignant human glioma. Despite the best
available standard of care (surgery, radiation, and chemotherapy), the median survival of GBM patients is less than 2 years. Many
recent studies have indicated that microRNAs (miRNAs) are important for promoting or reducing/limiting GBM growth. In
particular, we previously showed that GBMs express decreased levels of miR-100 relative to control tissue and that restoring
miR-100 expression reduced GBM tumorigenicity by modulating SMRT/NCOR2 (Nuclear Receptor Corepressor 2). Here, we
demonstrate that miR-100 overexpression decreases expression of the stem cell markers, nestin and L1CAM, and decreases
proliferation of GBM tumor-initiating cells (cancer stem cells). We further show that miR-100-mediated anti-tumorigenic activity
limits the activity of SMARCA5 and its downstream target STAT3 (known as mTOR-STAT3-Notch pathway). In addition, we
report ErbB3 (Her3) as a putative miR-100 target, including inhibition of its downstream AKT and ERK signaling pathways.
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AKT, Protein kinase B, PKB; ATM, ataxia telangiectasia mutated; Bfgf, Fibroblast Growth Factor; CNS, Central nervous system;
DMEM, Dulbecco’s Modified Eagle’s Medium; EGF, Epidermal Growth Factor; EGFR, Epidermal growth factor receptor; ErbB2,
Receptor tyrosine-protein kinase erbB-2; ErbB3, Erb-B2 Receptor Tyrosine Kinase 3; ERK, Extracellular Signal-Regulated Kinase;
FGFR3, fibroblast growth factor receptor 3; GBM, Glioblastoma; HDAC, Histone deacetylase; L1CAM, L1 Cell Adhesion
Molecule; MiR, microRNA; mRNA, Messenger Ribonucleic Acid; mTOR, Mammalian target of rapamycin; Notch, Notch homolog,
translocation-associated (Drosophila); NSC, Neural stem cell; SMARCA5 / Sm5, (SWI/SNF Related, Matrix Associated, Actin
Dependent Regulator of Chromatin, Subfamily A, Member 5); SMRT / NCOR2, Nuclear Receptor Co-Repressor 2; STAT3, Signal
transducer and activator of transcription 3; TICs / CSCs, Tumor Initiating Cells / Cancer Stem Cells; UTR, Untranslated region
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Introduction

Glioblastoma multiforme (GBM), the most aggressive primary

brain tumor, accounts for more than 50% of all detected malig-

nant brain cancers and approximately 20% of all primary intra-

cranial tumors.1,2 Approximately 15,000 new cases of GBM

and CNS malignancies are diagnosed annually in the USA.3

Median patient survival is under 2 years even with the best

standard of care.4,5 The molecular mechanisms responsible for

GBM growth and invasion are poorly understood.

MicroRNAs (miRNAs) are small, non-coding RNAs (16–22

nucleotides long) that repress protein translation by binding to

the 3’UTRs of mRNAs.6,7 Many miRNAs are known to be

differentially expressed in various types of cancer8; it is there-

fore essential to understand their role in tumorigenesis.9 At

least 19 miRNAs have been identified as being linked to the

pathogenesis of GBM.10,11 Of these, miR-100 has been linked

to several targets that are known to modulate GBM growth and/

or survival, such as fibroblast growth factor receptor 3

(FGFR3), silencing mediator of retinoic acid and thyroid hor-

mone receptor (SMRT), and ATM Serine/Threonine Kinase

(ATM; ataxia telangiectasia mutated).12-14 In addition, miR-

100 was reported to stimulate a positive therapeutic response

in breast cancer stem-like cells undergoing hormonal ther-

apy.15 Moreover, it was demonstrated that gliomas’ prolifera-

tion, apoptosis and angiogenesis were suppressed by inhibition

of AKT and STAT3 signaling pathway.16 The same pathways

were effective against limiting glioma stem cells propaga-

tion.17 Also, it has been reported that Akt-mTOR pathway

regulates neurogenesis of neural stem cells.18 The same path-

way (Akt-mTOR) is involved in ErbB family activation and

contributes to cancer stem cells resistance which make it eli-

gible for EGFR-Targeted therapy.19

We previously demonstrated that downregulation of miR-

100 promotes GBM growth and invasion, and that restoring

miR-100 expression reduces GBM growth and survival.13 We

also showed that miR-100 limits GBM tumor proliferation and

extends the survival of mice bearing orthotopic GBM xeno-

grafts by inhibiting the miR-100 target, SMRT/NCOR2.13

These findings were subsequently supported by Luan et al.

(2015), who also confirmed the tumor suppressor activity of

miR-100 and examined 2 GBM cell lines (U251 and T98G) in

addition to 13 patient GBM specimens. They confirmed the

decrease in endogenous levels of miR-100 in all tested tumor

samples and in both cell lines, and compared GBM tumors to

adjacent normal tissue. When miR-100 was overexpressed in

GBM cell lines, reduced proliferation, migration, and chemo-

sensitivity were observed. The authors concluded that miR-100

has anti-tumor activity against GBMs.

Since a single miRNA can regulate multiple target mRNAs,

the beneficial effects of miR-100 might also be mediated by

other target proteins in addition to SMRT/NCOR2. In this

study, we have uncovered and evaluated additional pathways

that might also be regulated by miR-100 and potentially con-

tribute to its anti-tumorigenic activity. In particular, we eval-

uated the role of ErbB family members that we found are

targeted by miR-100. Members of this protein family are

known to be resistant to EGFR inhibitor therapy especially in

GBM stem-like cells.19 Two members of the ErbB family Her2

(ErbB2) and Her3 (ErbB3) are being targeted by immunother-

apy in clinical trials designed to control GBM growth.20,21

In this study, we restored miR-100 levels in primary GBM

cells by transfecting GBM tumor-initiating cells (TICs) with

pre-miR-100, which generates 2 forms of miR-100: miR-100-

5p and miR-100-3p. We found that the dominant isoform, miR-

100-5p,22 is down-regulated in GBM-derived TICs (also called

GBM stem-like cells) known to be responsible for tumor pro-

gression and recurrence22 because of radiation and chemo-

resistance.23 Thus, in this study, we tested the therapeutic

utility of miR-100-5p overexpression for controlling GBM

growth and also evaluated the downstream mechanism of

miR-100-5p activity.

Materials and Methods

Isolation and Validation of GBM TICs

All human tumor specimens were collected after patient

informed consent and with approval of University of

Wisconsin-Madison Institutional Review Board No. (IRB

2012-0024—Certified, exempt). Patient-derived TICs were

isolated from GBMs and validated as previously

described.19,24-26 Tumor tissue collected from the operating

room was minced and chopped twice using a tissue chopper

(Sorvall TC-2 Smith-Farquhar) and plated in medium (70%
Dulbecco’s modified Eagle medium-high glucose, 30% Ham’s

F12, 1X B27 supplement, 5 mg/ml heparin, penicillin-

streptomycin-amphotericin, and 20 ng/ml each of epidermal

growth factor (EGF) and basic fibroblast growth factor

(bFGF)). We used 3 primary (22, 33, and 44) GBM samples

and 1 recurrent GBM sample (12.1). All of the GBM TICs were

negative for EGFRvIII mutations.19 A tumor-free neural stem

cell (NSC) line prepared from fetal human cortical tissue and

used as a source of normal control cells was a kind gift of Dr.

Clive Svendsen.26 Validation of TICs was done through neuro-

sphere isolation and differentiation procedures beside staining

for stem cells markers was done, Supp. Figure 1. More details

on isolation, validation and neutrosphere’s formation of TICs

could be found in our previous publications.19,27,28

Real-Time (Quantitative) PCR

Total RNA was isolated using an RNA isolation kit (Life Tech-

nologies). All probes and primers were purchased from Life

Technologies, USA, and absolute quantitative PCR was con-

ducted using TaqMan assays according to manufacturer’s

instructions (Life Technologies, USA). 18 s rRNA was used

as a house-keeping control as described previously.19 Relative

expression was measured by subtraction targets ct from 18 s ct

and the sum was further subtracted from control samples ct.

The final results were applied on 2̂ (–delta delta CT). Calcula-

tion method was reported previously.29 The primers has-miR-
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Figure 1. Overexpression of pre-miR-100 reduces proliferation and targets SMARCA5. (A) qPCR shows that the expression of miR100-5p is

lower in GBM TICs (12.1, 22, 33, and 44) compared to human neural stem cells lines (hnsc and hnsc2). (B) Percentage of normalized cell growth

showing that the overexpression of pre-miR-100 reduces the number of GBM TICs compared to controls as determined by the MTS assay.

(C) The targets of miR-100-5p as predicted by 3 algorithms: PICTAR, TARGET SCAN, and microRNA.org. The intersection of the circles

represents the number of shared targets. (D) The overexpression of pre-miR-100 decreases proliferation in GBM TICs compared to the control.

The results were normalized for pre-miR-100 expression (E) Immunoblots showing the reduction of SMARCA5-encoded HSNF2 H protein

levels following the transient expression of pre-miR-100. The reduction in HSNF2 H levels does not occur when control miR is overexpressed.

The boxes are included to make the blot easier to interpret. (F) The quantification of the immunoblot in panel (E) shows that HSNF2 H levels are

reduced by 40–70% when pre-miR-100 is overexpressed. (G) Pre-miR-100 inhibits the luciferase signal from the SMARCA5 3’UTR reporter

compared to controls that utilize a different miRNA or a reporter with a mutated target site. The host cells used were HEK293 T cells. Asterisk

denotes statistical significance of p < 0.05.
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100-5p, has-miR-100-3p, and has-pre-miR-100 were used

for qPCRs assay and were commercially bought from Invitro-

gen, USA.

MiRNA and siRNA Transfection

Cells were transfected with miRNA precursors, siRNAs,

miRNA mimics and the miR-100 isoforms miR-100-5p and

miR-100-3p (all from Life Technologies) using 15 pmol Pep-

Mute reagent (SignaGen Labs, Rockville MD) per million cells

as described previously.19,20

Cell Viability Assay

GBM TICs were grown as spheres, disseminated into single

cells, then inoculated in 96-well plates at a density of 20,000

cells/well and temperature of 37 oC. After 1 day of growth, the

cells were transfected with pre-miR-100 or with a control miR.

Following 2 days of growth in culture medium containing 4.5 g

glucose DMEM/F12, 20 pg EGF and 20 pg bFGF, cell numbers

were quantified using an MTS assay (CellTiter 96 Aqueous,

Promega, USA) as per the manufacturer’s instructions.

Cell Proliferation Assay

The Click-iT EdU assay (which is similar to the BrdU assay)

was performed according to the manufacturer’s (Invitrogen)

instructions. Twenty thousand cells were plated and then trans-

fected with pre-miR-100 or control miRs in combination with

the SMRT/NCOR2 expression vector (pSMRT, Fisher Scien-

tific) after 1 day of growth. The Click-iT EdU assay was per-

formed following an additional 2 days of growth in culture

medium containing DMEM/F12, EGF and bFGF.

Luciferase Reporter Assay

293 T cells were co-transfected with pre-miR (15 pmol) and a

luciferase reporter plasmid (1 ug) containing the 3’UTR of

SMARCA5 or ErbB3 mRNA in 96-well culture plates. Twenty-

four to 48 hours after transfection, the light switch luciferase assay

(Switch Gear Genomics, Menlo Park, CA) was performed

according to the manufacturer’s instructions. The signal was

detected using a microplate luminometer (Turner Biosystems,

Inc., CA) running Veritas software version 1.9.2. The reporter

plasmids contained the 3’UTRs of SMARCA5 or ErbB3 mRNA,

which include the miR-100 seed sequence. The control plasmids

(negative controls) contained a mutated seed sequence.

Western Blotting

Western blotting was performed as previously described.19,30

Cell lysates were collected, and the protein concentration was

determined by the Bradford assay (Bio-Rad, CA). The protein

samples were electrophoresed on SDS-PAGE gels, transferred

to PVDF membranes, and analyzed using antibodies against

a-tubulin, phospho-AKT (S473), total-AKT, phospho-ERK

(Thr202/Tyr204), total-ERK, phospho-STAT3 (Tyr705),

STAT3, p21, SMARCA5 (Santa Cruz Biotechnology, USA),

SMRT/NCOR2 (Santa Cruz Biotechnology, USA), ErbB3

(Santa Cruz Biotechnology, USA), ErbB2 (Santa Cruz Bio-

technology, USA), human nestin (Santa Cruz Biotechnology,

USA), and L1CAM (Fisher, USA). All antibodies were pur-

chased from Cell Signaling, USA, unless otherwise indicated.

Tumor Xenograft Assay

UW-Madison institution-approved animal protocol was foll-

owed for all experimental procedures. Tumor xenografts were

generated via stereotactic implantation of tumor cells as

described previously.13 Briefly, GBM cells were enzymatically

dissociated into single cells. One million cells were suspended

in 5 ml of PBS and stereotactically implanted at 0.33 ml/min into

the right striatum of anesthetized immunodeficient 6-8 weeks

old NOD-SCID mice (Jackson lab) at the following coordinates

referenced from bregma: 0 mm anteroposterior,þ2.5 mm med-

iolateral, and �3.5 mm dorsoventral.31 Xenograft growth was

detected and verified by MRI, and brains containing the xeno-

grafts were obtained from the animals after death.

Inducible and Stable Expression of Pre-miR-100 and
Immunohistochemical Analysis

Tumor xenograft model has been previously described.13

Briefly, The 22 T and U87 GBM cell lines were orthotopically

implanted into immunodeficient NOD-SCID mice. Control and

miR-100 doxycycline inducible overexpression vectors (Gene-

Copoeia, MD) were created and then integrated into the gen-

omes of tumor cells with lentiviruses. Later, at least 1 million

cells were implanted into mouse brains. The cells holding vec-

tors resulted in a 3-fold increase in expression above baseline

miR-100 levels were isolated. Those vectors were validated as

described previously.13 When severe clinical symptoms were

detected, or the mice were moribund, they were sacrificed.

Immunohistochemistry was carried out on mouse brain 16 days

after transplantation. The brains of the mice were formalin-

fixed, paraffin-embedded, sectioned (into 5 mm-thick sections),

and stained with hematoxylin, as described previously.32 The

animal implantation procedure, validation and Ki-67 index

were previously reported.13

Statistics

The statistical analyses were performed using Student’s t-test

and 1-way ANOVA/Tukey’s multiple comparison post-tests.

All error bars represent the standard error of the mean

(S.E.M.), and the significance level (*) was P < 0.05.

Results

Expression of miR-100-5p Is Down-Regulated in
GBM Cells

Quantitative PCR revealed that expression of endogenous miR-

100-5p was reduced by approximately 50–80% in the 4 GBM
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tumor cell populations (12.1, 22, 33, and 44) evaluated relative

to the levels of endogenous miR-100-5p in 2 different control

normal human neural stem cell (hnsc) lines (n ¼ 3/group; P <

0.05; Figure 1A). The results were normalized for pre-miR-100

expression.

Restoring MiR-100 Levels Decreased Cell Viability and
Proliferation

When the TIC cell lines were transiently transfected with pre-

miR-100, we observed a 20–50% decrease in cell viability (n¼
3/group; p < 0.05; Figure 1B) and a 20–40% decrease in cell

proliferation (n ¼ 3/group; p < 0.05; Figure 1D) compared to

the respective controls transfected with a control miRNA. It

worth noting that transient transfection using pre-miR-100 gen-

erates 200-300% more of pre-miR-100 expression than Hnsc

baseline.

SMARCA5 mRNA Is a Target of miR-100-5p

Using 3 target identification algorithms (PICTAR, TARGETS-

CAN, and microRNA.org), we found 18 common putative tar-

gets of miR-100-5p (Figure 1C). SMARCA5 was the only

common target that was among the top 6 targets identified by

all 3 algorithms (Table 1). When the TICs (12.1, 22, 33, and 44)

were transfected with pre-miR-100, the protein levels of

HSNF2 H (encoded by SMARCA5) were approximately

40–70% lower than observed in the control transfected cell lines

(p < 0.05; n ¼ 3; Figure 1E, F). We further confirmed the miR-

target relationship by co-expressing a SMARCA5 3’UTR luci-

ferase reporter vector with pre-miR-100 or with miR-100-5p.

When 293 T cells were co-transfected with the SMARCA5

3’UTR and with either pre-miR-100 or miR-100-5p,

SMARCA5 3’UTR luciferase activity was inhibited by 45%
(p < 0.05; n ¼ 3) compared to cells transfected with the control

miRNA (Figure 1G).

Reduced Activation of Signaling Proteins
AKT, ERK, and ErbB3 Are Involved in
miR-100-5p Expression

In the cell lines treated with pre-miR-100, there was a signif-

icant reduction in the phosphorylation of AKT and ERK

relative to the cell lines transfected with the control pre-

miRNA (Figure 2A-D; p < 0.05; n ¼ 3/group). Treatment with

siRNAs that are specific to SMRT or SMARCA5 also signif-

icantly inhibited AKT and ERK phosphorylation (Figure 2A-D;

p < 0.05; n ¼ 3). Furthermore, the knockdown of ErbB3

(it functions upstream of AKT and ERK) significantly sup-

pressed the phosphorylation of AKT and ERK in TICs

(Figure 2A-D).

Pre-miR-100 releases 2 mature miRNAs, miR-100-5p and

miR-100-3p. Overexpression of Pre-miR-100 reduces ErbB3

expression in all TICs lines. Interestingly, ErbB3 expression

decreases when SMRT, and SMARCA5 get inhibited which

are targets of miR-100 (Figure 3A and B; p < 0.05; n ¼ 3).

Since ErbB3 is upstream of AKT and ERK, it is possible that

loss of ErbB3 leads to a reduction in downstream signaling.

Knockdown of SMRT and SMARCA5 (Sm5) genes by inhibi-

tory siRNA, reduce ErbB3 levels. Our bioinformatics analysis

showed that the miR-100-3p targets ErbB3 (Figure 3C). We

found that expression of miR-100-3p was 40–80% lower in

GBM TICs than in control NSCs (Figure 3D; p < 0.05; n ¼ 3).

A luciferase reporter assay showed that miR-100-3p signifi-

cantly inhibited the expression of the ErbB3 3’UTR vector

(Figure 3E; P < 0.002; n ¼ 3).

SMRT and SMARCA5 Controls STAT3

When the GBM TIC lines were transfected with pre-miR-100,

SMRT siRNA, or SMARCA5 siRNA, phosphorylation of

STAT3 (a marker of STAT3 activation) was completely inhib-

ited in all 4 of the tested cell lines (Figure 4A, B; p < 0.05; n¼ 3).

Overexpression of miR-100-5p Upregulates p21

Western blot analysis showed that expression of the cell cycle

inhibitor p21 (WAF1 or cyclin-dependent kinase inhibitor 1)

was upregulated by 50–300% when the various GBM TICs

were treated with pre-miR-100, miR-100-5p, or SMRT siRNA

(Figure 4C, D; P < 0.05; n ¼ 3).

Pre-miR-100 Treatment Decreases Stem Cell Markers

Nestin and L1CAM are both stem cell markers that are nor-

mally expressed by GBM TICs. When the GBM TICs were

Table 1. Predicted Targets of MIR-100.

Rank MicroRNA.org PICTAR TARGETSCAN 5.2

1 TMPRSS13 (NM_001077263) SMARCA5 (NM_003601) THAP2 (NM_031435)

2 SMARCA5 (NM_003601) BAZ2A (NM_013449) KBTBD8 (NM_032505)

3 ANKAR (NM_144708) HS3ST3B1 (NM_006041) HS3ST3B1 (NM_006041)

4 ICK* (NM_014920) HS3ST2 (NM_006043) HS3ST2 (NM_006043)

5 AP1AR* (NM_018569) FRAP1 (NM_004958) CTDSPL (NM_005808)

6 NCOR2* (NM_001077261) EIF2C2 (NM_012154) SMARCA5 (NM_003601)

A list of the top 6 predicted targets of microrna-100-5p (miR-100-5p) and their transcript ID numbers as they rank according to 3 different algorithms: microRNA.

org, PICTAR, and TARGETSCAN. The asterisk (*) denotes targets that have the same score and thus can be given the same rank as the highest ranked candidate.

Shading represents repeated appearance of SMARCA5.
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transiently transfected with pre-miR-100 or with miR-100-5p,

there was a 40–75% decrease in nestin levels (Figure 5A, B; P <

0.05; n ¼ 3) and a 60% decrease in L1CAM levels (Figure 5C,

D; p < 0.05; n¼ 3) compared to the control miRNA-transfected

cell lines.

Stable Overexpression of Pre-miR-100 Prevents ErbB2
and ErbB3 Expression

As mentioned above tumor xenograft model has been previ-

ously described.13 The results of inducing pre-miR-100 around

Figure 2. The activity of the AKT and ERK pathways is reduced following the overexpression of pre-miR-100. (A) Immunoblot showing the

reduction in phospho-AKT protein levels following the transfection of GBM TICs with pre-miR-100 or with the following siRNAs: siErbB3,

siSMRT, or siSm5 (siSMARCA5). This pattern is not observed in GBM TICs transfected with control miRNA. The boxes are included to make

the blot easier to interpret. (B) Quantification of protein levels in panel (A) reveals that their reduction ranges from 20% to 60%. (C) Immunoblot

showing the inhibition of phospho-ERK following the transfection of GBM TICs with pre-miR-100 or siErbB3. No inhibition of phospho-ERK

is observed in the control. The boxes are included to make the blot easier to interpret. Total ERK (T-ERK) was measured to ensure that effect is

only at phosphorylation level and not total protein. (D) Quantification of the protein levels in panel (C) shows that the reduction of phospho-ERK

ranges from 10% to 70%. Asterisk denotes statistical significance of p < 0.05.
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3 folds above base line showed lower expression of ErbB2 and

ErbB3 in mice bearing GBM cells transfected with the pre-

miR100-expression vector than in mice transplanted with GBM

cells transfected with the control vector (Figure 6 A, B; P <

0.05; n ¼ 8).

Discussion

We previously reported that the down-regulation of miR-100,

and the subsequent reduction in levels of its target SMRT/

NCOR2, can contribute to GBM tumorigenicity.13 We also

Figure 3. Overexpression of pre-miR-100 targets ErbB3 mRNA and decreases ErbB3 protein levels. (A) Verification of ErbB3 inhibition

following transfection with pre-miR-100, siErbB3, siSMRT, and Sm5 (siSMARCA5). The boxes are included to make the blot easier to

interpret. (B) Quantification of panel (A) shows a 30%–80% reduction in ErbB3 (Her3) protein levels following transfection with pre-miR-100,

siErbB3, siSMRT, or Sm5 (SMARCA5 siRNA). The control does not reduce ErbB3 expression. (C) Diagram showing the predicted binding of

miR-100-3p to ErbB3 mRNA. (D) Internal expression of miR-100-3p in GBM TICs (12.1, 22, 33, and 44) compared to human neural stem cells

(hnsc) as detected by qPCR. (E) miR-100-3p lessens the signal from the ErbB3 3’UTR luciferase reporter compared to controls that utilize a

different miRNA or a reporter with a mutated target site. The host cells used were HEK293 T cells. Asterisk denotes statistical significance of

p < 0.05. Backgrounds of some images were modified for clarity.
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showed previously that restoring miR-100 levels reduces GBM

tumorigenicity and extends the survival of animals bearing

orthotopic GBM xenografts.13 It worth noting that normal dis-

tribution of miR-100-5p expression in normal tissue is the

highest in CNS compared to other organs based on TissueAtlas

database (See supp. Figure 1).33 Our results here demonstrate

that miR-100 overexpression, by using pre-miR-100 to replen-

ish miR-100 levels in GBM cells, activates the cell cycle

Figure 4. Overexpression of pre-miR-100 reduces phospho-STAT3 and increases p21 (WAF1). (A) Immunoblot showing a reduction in

phospho-STAT3 when GBM TICs are transfected with pre-miR-100, siErbB3, siSMRT, or Sm5 (SMARCA5). This pattern is not observed

following transfection with the controls. The boxes are included to make the blot easier to interpret. Total STAT3 (T-STAT3) shows no change

in total protein level. (B) Quantification of the protein levels in panel (A) shows a reduction 60%–90% of phospho-STAT3 except for the control

and siErbB3. (C) p21 protein levels are elevated in response to miR-100-5p overexpression or SMRT silencing. (D) Quantification of the protein

levels in panel (C) shows elevated p21 levels compared to the control by 20%–300%. Asterisk denotes statistical significance of p < 0.05.

Backgrounds of some images were modified for clarity.
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inhibitor p21 and inhibits pathways that are important for cell

survival and proliferation (e.g., AKT, ERK, and STAT3), and

targets SMARCA5 and ErbB3 (Her3).

We observed lower abundance of miR-100-5p in patient-

derived GBM TICs compared to human neural stem cells, and

found that transfection with pre-miR-100 decreased the

proliferation and viability of GBM TICs. Further, in silico

analysis to TCGA database we found that median expression

of miR-100-5p for GBM is 10.75 units while for low grade

glioma is 7806.94 units. Low grade glioma is around 780 times

higher. These data suggest that miR-100 probably plays an

important role in limiting GBM growth by modulating 1 or

Figure 5. Overexpression of miR-100-5p reduces stem cell markers. (A) Immunoblot showing a reduction in the stem cell marker nestin,

following the overexpression of pre-miR-100 or of miR-100-5p but not of the control miRNA. The boxes are included to make the blot easier to

interpret. (B) Quantification of protein levels in panel (A) represent reduction of 40%–80% as compared to control. (C) Immunoblot showing the

reduction in protein levels of the stem cell marker L1CAM when GBM TICs were transfected with pre-miR-100 (miR-100-5p), siSMRT, or Sm5

(siSMARCA5). This reduction was not observed after transfection with the control miRNA. The boxes are included to make the blot easier to

interpret. (D) Quantification of the protein levels in panel (C) showing L1CAM reduction of 30%–70% compared to the control. Asterisk

denotes statistical significance of p < 0.05. Backgrounds of some images were modified for clarity.
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more of its targets, in addition to previously identified SMRT/

NCOR2.13

By further refining the bioinformatics analysis of miR-100-

5p targets, we identified SMARCA5 (SWI/SNF-related matrix-

associated actin-dependent regulator of chromatin subfamily A

member 5) as a target of miR-100-5p. When we combined the

target predictions provided by the microRNA.org, PICTAR,

and TARGETSCAN algorithms, only 18 targets were identi-

fied in common (Figure 1C). We have calculated the prediction

score from the 3 different systems and reported the top 6 can-

didates. Of these, SMARCA5 was the only 1 with a highest

score collectively (Table 1). SMARCA5 is reported to be

highly expressed in proliferating stem and progenitor cells, and

its activity disappears or is reduced considerably in terminally

differentiated cells.34,35 In addition, in silico analysis of cir-

cSMARCA5 by Barbagallo et al. revealed SMARCA5 as a

potential malignancy inhibitor to GBM expansion.36 Thus,

we investigated whether SMARCA5 also plays a role in the

down-regulation of miR-100-5p in GBM tumors and in the

subsequent effect on GBM growth. Luciferase reporter assays

confirmed that SMARCA5 is a target of miR-100 (Figure 1G).

In addition, we have demonstrated that miR-100 expression

reduces the expression of SNF2 H (the SMARCA5-encoded

protein) in GBM TICs by approximately 50% (Figure 1G). This

finding suggests that miR-100-5p silences the SMARCA5-

encoded transcript and that the SNF2 H protein might play a

role in GBM tumorigenesis.

It was reported that SMARCA5 interacts with HDAC337,38

which modulates AKT. It is also known that AKT controls cell

survival and proliferation.39,40 In our study, we observed that

the knockdown of SMRT or of SMARCA5, or overexpression

of pre-miR-100, reduced the phosphorylation of AKT and ERK

in GBM TICs. ErbB (Her) family proteins are known to act

upstream of both the AKT and ERK pathways.41,42 The

Figure 6. Overexpression of pre-miR-100 decreases the expression of ErbB2 and ErbB3 in vivo. (A) Mouse NOD-SCID GBM xenografted

brain tissue stably overexpressing pre-miR-100 exhibits less ErbB2 (Her2) expression than the control tissue overexpressing the vector alone.

The darker the brown staining, the higher expression of Her2 antigen. The more positive stain is scored with more pluses. The pre-miR-100

group in picture 2, is scored with 1 plus (þ), and the control tissue is scored with 3 pluses (þþþ) in picture 1. (B) GBM xenograft tissue stably

overexpressing pre-miR-100 exhibits less ErbB3 (Her3) expression than control tissue overexpressing the vector alone. The pre-miR-100 group

is scored with questionable positivity (þ/-) in picture 4, and the control group is scored with 2 pluses (þ þ) in picture 3. Scale bar: 50 mm.
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knockdown of SMRT or SMARCA5, or transfection with pre-

miR-100, significantly decreased ErbB3 (Her3) protein levels

in GBM TICs. However, the precise mechanism by which

ErbB3 protein levels are reduced is not clear because ErbB3

lies upstream of the AKT and ERK pathways. Interestingly, our

bioinformatics analysis revealed that ErbB3 is a target of miR-

100-3p, the less predominant form of miR-100 that is released

from pre-miR-100. In this work, ErbB3 3’UTR luciferase vec-

tor experiments confirmed this miR-target relationship

(Figure 3E). The data related to miR-100-3p was an interesting

observation that was not explored previously. TCGA has no

miR-100-3p expression data listed.43 Thus, we can not corre-

late it with patients survival. However, assessing our data

showed better outcome with miR-100 precursor (miR-100-5p

þ miR-100-3p) than miR-100-5p alone. The precursor in this

case is more effective because it targets 3 or more genes rather

than 2 oncogenic genes. The miR-100 precursor targets SMRT,

SMARCA5, and EebB3 While miR-100-5p targets ErbB3 in

our assays.

Recent studies have shown that SMARCA5 needs to be

highly expressed for stem cell self-renewal44 and that HDAC3

is required for the function of the SMARCA5-encoded protein

SNF2 H.38 Furthermore, SMRT is essential for HDAC3 activ-

ity,45-47 and the induction of a DNA-damage response by

SMRT inhibition leads to increased p21 levels.48-50 Consistent

with this finding, we observed that p21 protein levels were

increased by 100% in GBM TIC lines transfected for miR-

100-5p overexpression, or with transfected with an siRNA that

silences SMRT relative to control cells (Figure 4C). This p21

induction resulting from miR-100 activity suggests that GBM

TIC proliferation will be inhibited. There is an inverse relation-

ship between p21 levels and STAT3 activation,51-53 and our

results showed that the overexpression of either pre-miR-100

or miR-100-5p in GBM TICs almost completely blocked

STAT3 phosphorylation (Figure 4A, B). This suggests that

miR100-mediated STAT3 inhibition can exert downstream

effects on GBM growth. It worth noting that STAT3 phosphor-

ylation at position Tyr705 works under interaction of mTOR-

STAT3-Notch signaling pathway known to inhibit glioma

growth and regulate stem cells.54,55

The Notch1 pathway regulates SMRT activity which is

known to be involved in cancer stemness.56,57 Further,

SMARCA5 inhibition stimulates differentiation58,59 in GBM

TICs which were tested for the loss of stem cell markers. The

protein levels of both nestin and L1CAM were significantly

lower in GBM TIC cells overexpressing miR-100-5p than in

control cells (Figure 5A and D). As expected, knockdown of

SMARCA5 and SMRT also diminished L1CAM protein levels

(Figure 5D). The inhibition of L1CAM (CD171) was previ-

ously reported to decrease DNA damage repair (ATM; a

protein kinase that is recruited and activated by DNA double-

strand breaks) in GBM TICs through inhibition of NBS1 which

activates ATM.60 This suggests that the loss of miR-100-5p in

GBMs plays a role in maintaining the ‘stem cell-like’ status of

GBM TICs. Similarly, miR-100 was found to target the

SMARCA5-encoded protein SNF2 H in adenocarcinoma

cells.61 Thus, SMARCA5 may partially play an important role

in cancer by maintaining the de-differentiated state of cancer

stem-like cells.

Mice implanted with GBM TICs that were transfected with

stable pre-miR-100 expression or inducible pre-miR-100

expression vectors showed tumor xenograft immunostaining

that revealed decreased ErbB2 (Her2) and ErbB3 (Her3) pro-

tein levels in the pre-miR-100 group compared to the control

group (Figure 6A, B).

This study provides evidence that miR-100 indirectly inhi-

bits 3 major pathways (STAT3, AKT, and ERK) in GBM TICs.

STAT3 is inhibited by the up-regulation of p21 that results

from the miR-100-mediated down-regulation of SMRT and/

or SMARCA5. AKT and ERK are inhibited by the suppression

of either HDAC or ErbB3. The proliferation of GBM TICs was

markedly reduced, and differentiation was induced following

transfection with pre-miR-100.

In conclusion, our studies show that miR-100 targets many

pathways that might contribute to tumorigenicity. A recent

randomized clinical trial showed that miR-100 is also respon-

sible for vitamin D-induced tumor suppression in primary pros-

tate cancer.62 Furthermore, many studies have linked miR-100

with sensitizing tumors to radiotherapy.12,63,64 Findings

reported in this study suggest that altering miR-100 levels and

its downstream effects (possibly with pre-miR-100 or analogs)

might have potential clinical applications in GBM treatment

strategies.
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