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Abstract 
More than 50 years of efforts to identify the major cytokine 
responsible for red blood cell (RBC) production (erythropoiesis) led to 
the identification of erythropoietin (EPO) in 1977 and its receptor 
(EPOR) in 1989, followed by three decades of rich scientific discovery. 
We now know that an elaborate oxygen-sensing mechanism regulates 
the production of EPO, which in turn promotes the maturation and 
survival of erythroid progenitors. Engagement of the EPOR by EPO 
activates three interconnected signaling pathways that drive RBC 
production via diverse downstream effectors and simultaneously 
trigger negative feedback loops to suppress signaling activity. 
Together, the finely tuned mechanisms that drive endogenous EPO 
production and facilitate its downstream activities have evolved to 
maintain RBC levels in a narrow physiological range and to respond 
rapidly to erythropoietic stresses such as hypoxia or blood loss. 
Examination of these pathways has elucidated the genetics of 
numerous inherited and acquired disorders associated with deficient 
or excessive RBC production and generated valuable drugs to treat 
anemia, including recombinant human EPO and more recently the 
prolyl hydroxylase inhibitors, which act partly by stimulating 
endogenous EPO synthesis. Ongoing structure–function studies of the 
EPOR and its essential partner, tyrosine kinase JAK2, suggest that it 
may be possible to generate new “designer” drugs that control 
selected subsets of cytokine receptor activities for therapeutic 
manipulation of hematopoiesis and treatment of blood cancers.
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Introduction
Healthy human adults produce about 200 billion red blood 
cells (RBCs) daily to replace those lost by senescence. This  
process, termed erythropoiesis, is exquisitely regulated by an 
oxygen-sensing mechanism that has evolved to maintain RBC 
numbers within a narrow physiological range1–3. Central to this 
mechanism is erythropoietin (EPO), a cytokine secreted by the 
kidney in response to low blood oxygen tension. Circulating  
EPO binds its cognate receptor (EPOR) on bone marrow eryth-
roid progenitors, triggering multiple signaling pathways that  
support differentiation into mature RBCs. Inherited and acquired 
abnormalities in EPO production, its downstream activities, or  
its regulation cause numerous human diseases associated with  
too many or too few RBCs. The same pathways have been 
shaped by evolution for adaptation to life under chronic hypoxia  
at high altitudes. Although much is known about the pro-
duction of EPO and its biological activities after 40 years of  
research, the topic remains a rich source for biomedical dis-
covery and therapeutics. This review focuses on recent insights  
into the oxygen-regulated production of EPO and its actions on 
post-natal bone marrow erythropoiesis. It is important to note 
that EPO–EPOR signaling also drives RBC production during  
embryogenesis through similar but distinct mechanisms4–6.

History of EPO
In 1875, Denis Jourdanet and Paul Bert described anemia-like  
symptoms in patients living at high altitude and identified 
low blood oxygen level to be the primary mechanism7. Build-
ing on this finding about 30 years later, Carnot and Deflan-
dre discovered that infusion of serum from anemic rabbits into 
normal ones caused a rise in RBC count, predicting the exist-
ence of a circulating factor that stimulates erythropoiesis3.  
In the early 1950s, studies using parabiotic rats validated 
the concept of a humoral erythropoiesis-stimulating agent8,9 
that was shown by Erslev9 to originate from the kidney10. In 
1977, Goldwasser’s group reported the purification of EPO 
from 2550 liters of urine collected from patients with aplastic  
anemia11. Molecular cloning of the EPO gene in 1985 facilitated  
the manufacture of recombinant human EPO (rhEPO) pro-
tein for treating various forms of anemia12,13. This work led 
to discoveries of the EPOR by Lodish’s group in 198914 and  
subsequently multiple downstream signaling pathways were 
characterized by many laboratories. An elaborate oxygen- 
sensing mechanism that regulates EPO production was dis-
covered in the early 1990s by William Kaelin Jr., Sir Peter  
Ratcliffe, and Gregg Semenza, who received the 2019 Nobel  
Prize in Physiology or Medicine for this work15–20.

Erythropoietic activities of EPO and EPOR
Multi-potent hematopoietic stem cells undergo a series of dif-
ferentiation steps that successively restrict developmental poten-
tial, giving rise to lineage-committed progenitors (Figure 1)5. 
The first identifiable erythroid progenitor, termed “burst-forming  
unit-erythroid” (BFU-E), is defined by its ability to gener-
ate large colonies with scattered clusters of erythroblasts  
in semi-solid medium. Differentiation of BFU-E produces  
“colony-forming units-erythroid” (CFU-E) that generate smaller 
colonies containing about 50 cells. Proerythroblasts, the first  

recognizable erythroid precursor, undergo further maturation 
steps, which include specialized cell divisions, reduced cell 
size, elimination of most organelles, development of a special-
ized cell membrane to facilitate microcirculatory transit, and 
accumulation of hemoglobin for oxygen transport1,21,22. Ter-
minal erythroid maturation occurs in bone marrow erythrob-
lastic islands composed of erythroid precursors surrounding a  
central macrophage23. The morphological and functional defini-
tions of committed erythroid progenitors have been augmented 
by the identification of stage-specific cell surface markers24–31 
and, more recently, the discovery of their transcriptional states  
using single-cell RNA sequencing (scRNAseq)32,33.

Although multiple cytokines support erythropoiesis34, EPO  
is the key physiological regulator. Loss of EPO or derangements 
in EPO signaling in mice or humans cause anemia4,35 while 
excessive EPO production or EPOR signaling or both cause 
pathologically increased RBC numbers36–38. EPO acts mainly on  
CFU-E progenitors and proerythroblasts to maintain their  
survival and facilitate terminal maturation (Figure 1)25,39–41.  
Additionally, EPO can stimulate cell proliferation and drive  
multi-potent hematopoietic progenitors toward an erythroid 
fate40,42 but is not required for erythroid lineage commitment4. 
In vivo administration of EPO leads to rapid skewing of multi-
potential progenitors away from myeloid and toward the eryth-
roid lineage and to altered gene expression in BFU-E and CFU-E  
progenitors32.

An oxygen-sensitive feedback loop regulates EPO 
production
Post-natal EPO production occurs mainly in peritubular  
fibroblast-like interstitial cells of the kidney43–50 but also in liver, 
spleen, bone marrow, lungs, and brain51–53 and is regulated by 
blood oxygen levels through a transcriptional feedback loop 
(Figure 2)15–19. The hypoxia-inducible transcription factor (HIF) 
complex binds hypoxia response elements in the EPO gene  
promoter to stimulate its transcription. Functional HIF is a het-
erodimer composed of an α subunit (HIFα) and a β subunit 
(HIFβ, also known as aryl hydrocarbon receptor nuclear trans-
locator or ARNT). The stability of HIF is regulated by prolyl 
hydroxylase domain (PHD) enzymes, which use oxygen and 
2-oxoglutarate to catalyze the hydroxylation of specific proline 
residues in HIFα, thereby stimulating binding of the HIF het-
erodimer to the von Hippel–Lindau protein (pVHL) component  
of an E3 ubiquitin ligase complex3,54,55. Subsequent polyubiq-
uitination of HIF leads to its proteasomal degradation. At low 
cellular oxygen concentrations, the PHD proteins are inac-
tive and HIF is stabilized for target gene activation. Another  
2-oxoglutarate–dependent oxygenase, factor inhibiting HIF 
(FIH), stimulates the oxygen-dependent hydroxylation of a spe-
cific asparagine residue in HIFα, which inhibits its activity  
by blocking HIFα binding to the transcriptional co-activator 
p30055,56. In these ways, the PHD and FIH enzymes act as oxy-
gen sensors that inhibit the production of EPO and other HIF 
targets under oxygen-replete conditions. Remarkably, HIF also 
activates hundreds of genes besides EPO. Other HIF target  
genes encode glycolytic enzymes, angiogenic factors, and iron 
uptake proteins, representing a concerted hypoxia response to 
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Figure 1. Erythropoietin (EPO) activity during erythropoiesis. Classic hierarchy of hematopoiesis with stages of red blood cell (RBC) 
development shown in greater detail. The major site of EPO action is indicated. Genetic and cell culture studies have shown that EPO is 
required for the development of CFU-E into late-stage erythroblasts. NK, natural killer. Multi-potent hematopoietic progenitors include 
the following: CLP, common lymphoid progenitor; CMP, common myeloid progenitor; LT-HSC, long-term engrafting hematopoietic stem 
cell; MEP, megakaryocytic-erythroid progenitor; ST-HSC, short-term hematopoietic stem cell. Committed erythroid progenitors include the 
following: BFU-E, burst-forming unit-erythroid; CFU-E, colony-forming unit-erythroid. Erythroid precursors include the following: BasoE, 
basophilic erythroblast; OrthoE, orthochromatic erythroblast; PolyE, polychromatic erythroblast; ProE, proerythroblast; Retic, reticulocyte.
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Figure 2. Regulation of endogenous erythropoietin (EPO) gene transcription by the oxygen-sensitive hypoxia-inducible factor 
(HIF) pathway. The HIF transcription factor heterodimer (HIFα–HIFβ) activates the EPO gene and numerous other genes that promote 
tissue oxygen delivery. At high oxygen concentrations, prolyl hydroxylase (PHD) enzymes hydroxylate the HIFα subunit, targeting it for 
ubiquitination by the von Hippel–Lindau protein (pVHL) ubiquitin ligase complex followed by proteasomal degradation. Under hypoxia, 
PHD enzymes are inactive, thereby stabilizing HIF, which activates transcription of EPO and other target genes involved in tissue oxygen 
delivery. PHD inhibitors (PHIs) such as roxadustat and vadadustat stabilize HIFα and are under investigation for treating anemia associated 
with chronic renal failure. PDGFβ, platelet-derived growth factor beta; SLC40A1, solute carrier family 40 member 1; TF, Transferrin; VEGF-A, 
vascular endothelial growth factor A.

increase RBC production, manufacture hemoglobin, enhance  
tissue perfusion, and promote oxygen-independent metabolism  
through glycolysis54,57–59.

Mammals express three HIFα isoforms (HIF-1α, -2α, and -3α)  
and three PHD isoforms (PHD1, 2, and 3), each encoded by 
separate genes with overlapping but distinct tissue distribu-
tions and functions60. The production of EPO in adult life 
is regulated mainly by HIF-2α and PHD261. Perhaps not  
surprisingly, germline and somatic mutations affecting the 
PHD–HIF–EPO regulatory pathway are associated with eryth-
rocytosis, anemia, abnormal angiogenesis, and cancer62,63. In 
mice and humans, loss-of-function mutations in PHD2 and 
VHL or gain-of-function missense mutations that stabilize  
HIF-2α by inhibiting its binding to PHD2 or VHL cause  
erythrocytosis64. An interesting gain-of-function mutation in 
the EPO gene (c.32delG) was recently identified to cause auto-
somal dominant erythrocytosis in a multi-generational pedigree65.  

The single-nucleotide deletion introduces a frameshift into the 
main EPO mRNA but initiates excess production of EPO from 
what is normally a non-coding EPO mRNA transcribed from an 
alternative promoter in intron 1. Variants in the PHD–HIF–EPO 
pathway have also been selected for in evolution as an adap-
tive mechanism to living at high altitude. Some of these vari-
ants attenuate hypoxia-induced erythrocytosis that can cause  
deleterious hyperviscosity syndromes64,66–69. These clinical obser-
vations highlight the exquisite and complex genetic regulation 
of EPO production and erythropoiesis. Of note, only one iso-
form of FIH has been identified. Ablation of the correspond-
ing gene in mice causes metabolic alterations but does not 
appear to alter the canonical HIF functions in erythropoiesis or  
angiogenesis70.

EPO activities are mediated through the EPOR
EPO drives erythropoiesis by stimulating the EPOR on the  
surface of erythroid progenitors. The EPOR is a member of the  
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type I cytokine receptor family distinguished by a conserved 
extracellular WSXWS amino acid motif, a single-transmembrane  
domain, and a cytoplasmic tail that lacks intrinsic tyrosine  
kinase activity71. The proximal cytoplasmic domain of 
EPOR is bound by the JAK2 tyrosine kinase. Binding of a  
single EPO molecule to two EPOR molecules triggers a confor-
mational change that stimulates JAK2 to initiate a multi-tiered 
signaling cascade (Figure 3)72,73. Activated JAK2 phosphor-
ylates itself and several tyrosine residues on the EPOR cytoplas-
mic tail, which serve as docking sites to engage SH2-containing  
signaling molecules such as the STAT5 (signal transducer and 
activator of transcription 5) transcription factor. Following phos-
phorylation and activation by JAK2, STAT5 enters the nucleus 
to activate numerous target genes74. Biologically important 
erythroid STAT5 target genes include the following: BCL2L1, 
which prevents apoptosis of late-stage erythroblasts75–77; ID1, 
which promotes erythroblast expansion and survival78; TRIB3, 
which regulates erythroid maturation79; SPI2A, which encodes 
a serpin protease with antioxidant activities80; and TFRC  
(transferrin receptor protein 1), which mediates iron uptake81,82. 
The recently discovered STAT5 target gene erythroferrone  
(ERFE) encodes a hormone that acts on hepatocytes to 
inhibit their production of hepcidin, a different hormone 
that blocks intestinal iron absorption and release of iron 
stores from macrophage83. By stimulating the production of 
ERFE in erythroblasts, EPO increases bioavailable iron for  
hemoglobin synthesis83,84. In addition to STAT5, EPOR  
activates the canonical Ras/mitogen-activated protein kinase 
(MAPK) and phosphoinositide-3 kinase (PI3K)/Akt pathways 
to enhance erythroid progenitor survival, proliferation, and  
differentiation3,85–89. The Akt kinase also activates FOXO3, a 
transcription factor that induces genes that control antioxidant 
pathways90,91, cell polarity, and enucleation92. Other signaling  
molecules activated by EPOR include Lyn kinase and PLCγ, 
although their contributions to erythropoiesis are less clear93,94.

Although some EPO–EPOR effectors can be linked directly to 
activation of a single linear signaling pathway, overgeneraliz-
ing this concept may be biologically inaccurate. As postulated 
for cytokine receptor signaling in general95, the biological func-
tions of EPOR are likely to be regulated by cross-communications  
between its numerous downstream signaling pathways and 
signaling by other cytokine receptors. In regard to the latter, 
cooperative signaling between the EPOR and stem cell fac-
tor receptor (KIT) is believed to promote erythropoiesis96–99.  
The EPOR also binds the type 2 transferrin receptor (TFR2), 
which is expressed in hepatocytes and erythroid progenitors. 
In hepatocytes, the TFR2 stimulates hepcidin production and 
germline TFR2 mutations cause iron overload (hemochroma-
tosis type 3)100. In erythroid progenitors, TFR2 binds EPOR  
in the endoplasmic reticulum and facilitates its transport to 
the cell surface101. The effects of TFR2 in erythroid progeni-
tors appear to be context-dependent and are not fully resolved. 
In cultured erythroblasts, suppression of TFR2 inhibits  
erythropoiesis101. In contrast, hematopoietic-specific abla-
tion of the Tfr2 gene in mice enhances erythropoiesis, likely by 
modulating EPO sensitivity102. Expression of TFR2 in the kid-
ney may inhibit EPO production103. Interaction with iron-bound  

transferrin stabilizes TFR2 at the cell surface104, representing a 
potential mechanism by which TFR2 coordinates erythropoietic 
rate and enteral iron uptake with circulating iron level.

Signaling through EPO–EPOR promotes both basal erythro-
poiesis, which maintains homeostasis by replacing erythro-
cytes lost by normal senescence, and “stress erythropoiesis”  
associated with increased synthetic demands caused by  
bleeding, excessive RBC destruction, or hypoxia. Relatively low 
concentrations of EPO during basal erythropoiesis are thought 
to act mainly by inhibiting apoptosis of erythroid progenitors,  

Figure 3. Activation of erythropoietin receptor (EPOR) by EPO. 
A single EPO molecule binds and stabilizes EPOR–JAK2 complex 
dimers, inducing a conformational change that initiates JAK2 trans-
phosphorylation and activation. Active JAK2 phosphorylates multiple 
tyrosine residues on STAT5 and the cytoplasmic domain of EPOR, 
triggering a signaling cascade that activates numerous effector 
pathways contributing to biological activity. Dashed lines represent 
kinase activity. For simplicity, the kinase activity of only one JAK2 
protein is indicated. Major signaling pathways activated by EPOR 
include Ras/MAPK, STAT5, and PI3K/Akt, which drive the expression 
of genes that promote erythroid progenitor survival, proliferation, 
and differentiation as well as feedback inhibition of EPOR signaling. 
MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide-3 
kinase; STAT5, signal transducer and activator of transcription 5.
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while stress erythropoiesis induces higher EPO concentra-
tions that can drive hematopoietic differentiation toward the 
erythroid fate25,32,40,41. In line with this notion, EPO is able to 
act like a dimmer switch in activating STAT5 over a wide con-
centration range105, and functional genomic approaches are  
beginning to identify direct targets of EPO-activated STAT5 
in erythropoiesis74. Different EPO concentrations during basal 
and stress erythropoiesis are likely to engage distinct signaling  
modalities, as revealed by a “knock-in” mouse strain in which 
EPOR is replaced with a truncated version (EPOR-HM) that 
binds and activates JAK2 but lacks the cytoplasmic portion con-
taining all JAK2 tyrosine substrates106. EPOR-HM mice are 
viable with a mild defect in steady-state erythropoiesis but 
are unable to support stress erythropoiesis106. Thus, phospho-
tyrosine signaling from the EPOR is selectively required for 
stress erythropoiesis. The signaling pathways that are activated 
in response to high EPO concentrations differ depending on  
whether stress is chronic or acute. For example, STAT5-mediated  
activation of BCL2L1 occurs rapidly after acute bleeding or 
hypoxia, and then decays, even if high levels of EPO per-
sist. In contrast, persistent or chronic stress conditions such 
as β-thalassemia elicit a distinct set of EPOR signaling  
pathways that include the EPOR-mediated suppression of  
pro-apoptosis genes FAS and BCL2L11 (formerly BIM)32.

EPO signal termination
Activation of EPOR by EPO is balanced by complex negative  
feedback mechanisms that fine-tune and inhibit signaling to 
prevent excessive RBC production. Initial evidence for this 
came from studies of a Finnish family ascertained through an 
Olympic cross-country skier107. This family and others discov-
ered subsequently were found to have erythrocytosis caused by 
EPOR-truncating mutations that eliminate portions of the cyto-
plasmic domain, which later was found to negatively regulate  
EPOR signaling by recruiting various inhibitory proteins, includ-
ing the tyrosine phosphatase PTPN6, members of the sup-
pressor of cytokine signaling (SOCS) protein family, SH2B 
adapter protein 3 (SH2B3, LNK), and the p85 regulatory 
subunit of PI3K38. Mechanistically, PTPN6 attenuates EPOR  
signaling by dephosphorylating JAK2108,109. CISH and SOCS3 
block access of STAT5 to the EPOR, whereas SOCS1 binds 
to the JAK2 kinase domain and reduces its tyrosine kinase 
activity110. Transcription of SOCS1, SOCS3, and CISH are 
induced by STAT5, forming a negative feedback loop111.  
Mutations in JAK2 at the SOCS3 binding site and muta-
tions in SOCS3 occur in patients with erythrocytosis112,113. The 
SH2B3 protein (LNK) is upregulated and phosphorylated in  
response to EPO and inhibits EPOR signaling by binding 
phosphotyrosine residues in JAK2 and the cytoplasmic tail of 
EPOR114,115. Sh2b3−/− mice exhibit features of myeloproliferative 
neoplasms (MPNs) such as splenomegaly and extramedullary 
hematopoiesis, and inactivating SH2B3 mutations are associated  
with myeloproliferative disease in humans115. Genome-wide 
association studies have identified a hypomorphic SH2B3 vari-
ant associated with elevated hemoglobin and RBC counts116,117, 
and suppression of SH2B3 production by RNA interference 
improved the production of RBCs by in vitro differentiation  
of human CD34+ cells and embryonic stem cells118.

The EPOR is also negatively regulated at the protein level by 
several mechanisms119,120. First, the p85 protein, which facili-
tates EPOR signaling as a regulatory subunit for PI3K121, also 
promotes EPOR endocytosis and degradation122,123. Upon EPO 
stimulation, the casitas B-lineage lymphoma (CBL) protein ubiq-
uitinates p85 bound to the cytoplasmic domain of EPOR, facili-
tating interaction with the adaptor protein Epsin-1 to promote 
endocytosis. Second, prolyl hydroxylase D3 (PHD3)-mediated  
proline hydroxylation of EPOR stimulates its proteasomal  
degradation124. Third, iron deficiency reduces the expression of  
EPOR through interactions with TFR2 and Scribble, a scaffold 
protein that facilitates EPOR recycling125. This mechanism may 
explain EPO resistance associated with iron deficiency. Dipep-
tidylpeptidase (DPP4, CD26) expressed on hematopoietic and  
stromal cells truncates EPO into inactive fragments, reduc-
ing its plasma activity126. These examples illustrate how EPOR 
signaling is terminated by many proteins acting through multi-
ple mechanisms, most of which are components of a negative  
feedback loop triggered by EPOR activation.

Recent insights into EPO–EPOR signaling
The discovery of activating JAK2 mutations in MPNs has fueled 
the development of ruxolitinib and other JAK2 inhibitors. Rux-
olitinib induces clinical responses and improves survival in 
some patients with MPN but its overall effects and therapeu-
tic index are relatively modest127. New structure–function stud-
ies of EPOR and JAK2 may inform the rational design of novel 
drugs for MPNs. Binding of JAK2 to nascent EPOR in the 
endoplasmic reticulum facilitates its trafficking to the plasma  
membrane128. The importance of this protein interaction is freshly 
reinforced by findings that MPN-associated JAK2 mutants use 
EPOR as a scaffold for recruiting downstream substrates in 
order to drive EPO-independent erythrocytosis129. Moreover,  
changes in the JAK2 pseudokinase domain, which does not 
interact with EPOR directly, can affect EPOR–JAK2 asso-
ciation (Figure 4)129. Single-molecule fluorescence microscopy 
showed that EPO stimulates self-association of EPOR-bound  
JAK2 through its pseudokinase domain and that MPN-associated  
JAK2 mutations strengthen this interaction in the absence of 
EPO130. Thus, mutant JAK2 proteins drive EPO-independent 
EPOR signaling by enhancing dimerization of EPOR–JAK2 
complexes. Mutant JAK2 also drives MPN by stimulating  
ligand-independent activation of the thrombopoietin receptor, 
which is structurally similar to the EPOR. The authors note that  
MPNs might be treated by drugs which inhibit self-interaction 
of the JAK2 pseudokinase domain. Although JAK2 binds EPOR 
through its cytoplasmic box 1, subsequent activation requires 
another EPOR conserved region, termed the “hydrophobic 
switch”131. Crystallographic data suggest that this region posi-
tions EPOR–JAK2 molecules into a specific conformation that  
facilitates JAK2 activation132.

Activated EPOR triggers multiple signaling pathways that  
interact to specify the activation of different effectors and bio-
logical output. Medically relevant insights into this problem 
were gained by the discovery of a patient with pure red cell 
aplasia (Diamond–Blackfan anemia) caused by a homozygous 
EPO gene missense mutation (R150Q)133. Although the mutant 
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EPO protein exhibited only threefold reduced steady-state 
affinity for EPOR, kinetic studies revealed faster on-rate (k

on
)  

and off-rate (k
off

) (Figure 5). Abnormally rapid release of 
the mutant EPO from EPOR was associated with impaired 
EPOR dimerization and reduced JAK2 activation. Remark-
ably, alterations in downstream phospho-signaling elicited by 
the mutant EPO were highly selective. Thus, erythropoietic  
failure was not caused by complete loss of EPO activity but 
rather by altered function. This study shows how variability  
in ligand-induced conformational changes of a cytokine recep-
tor (in this case, EPO on- and off-rates) can selectively alter  
downstream signaling and biology.

Two other studies examined EPO–EPOR structure–function  
relationships more systematically by designing a series of EPOR 
ligands that generate different homodimer topologies, result-
ing in qualitative variation in signaling output73,134. These find-
ings have potential medical implications. For example, one 
study showed that different artificial ligands that resulted 
in different angles and distance between EPOR homodimer  

subunits generated unique signaling patterns with stage-selective  
effects on hematopoiesis (Figure 6)134. The other study73 identi-
fied artificial EPOR ligands that can block EPO-independent  
signaling by the MPN-associated mutation JAK2V617F,  
which may inform new therapies for MPNs134. Overall, under-
standing and controlling the signaling output of different  
EPOR–JAK2 homo-dimer conformations may be used to pre-
cisely manipulate hematopoiesis or suppress pathologically active 
signaling. In this regard, many such studies performed on EPOR  
are generalizable to other cytokine receptors135–137.

Pharmacologic stimulation of erythropoiesis
rhEPO is used to treat anemia associated with a variety of  
diseases13,138. The most common indication is anemia of chronic 
renal failure where rhEPO increases blood hemoglobin lev-
els and improves quality of life139. In general, patients with 
renal failure have high levels of hepcidin, which limits iron 
absorption and availability for erythropoiesis140,141. Thus,  
rhEPO therapy usually requires administration of intravenous 
iron139. Although the benefits of rhEPO in renal failure are clear, 

Figure 4. JAK2 regulates dimerization of the EPOR–JAK2 complex. (A) Normal EPOR–JAK2 complexes are inert without EPO.  
(B) EPO binding to EPOR stabilizes the EPOR–JAK2 complex and triggers downstream signaling by activating JAK2. Colored circles 
represent normalized activation levels of EPOR signaling targets. (C) Myeloproliferative neoplasm (MPN)-associated mutations in the JAK2 
pseudokinase domain, which does not interact directly with EPOR, stabilize dimerization of EPOR–JAK2 complexes and activate JAK2 in the 
absence of EPO. Mutations in the linker region separating the FERM-SH2 and pseudokinase domains (exon 12) act similarly (not shown). 
Constitutive activation of the EPOR by MPN-associated mutations causes abnormal downstream signaling relative to that induced by  
EPO142–146. EPO, erythropoietin; EPOR, erythropoietin receptor.
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Figure 5. A pathological erythropoietin (EPO) mutant with altered binding kinetics to EPO receptor (EPOR) causes qualitative 
changes in downstream signaling. A homozygous p.R150Q EPO mutation was discovered in a patient with severe anemia caused by 
pure red cell aplasia (Diamond–Blackfan anemia). High levels of the mutant EPO failed to restore erythropoiesis despite an only threefold 
reduction in its overall affinity for EPOR. Compared with wild-type EPO, the mutant EPO interaction with EPOR was kinetically biased with 
higher on- and off-rates that altered the activation of specific EPOR effector pathways. kon, rate of association; koff, rate of dissociation. This 
figure was created using data from Kim et al. 2017133.

Figure 6. Altered topology of the erythropoietin receptor (EPOR) extracellular domains (ECDs) induced by engineered ligands 
produces qualitative changes in downstream signaling. (A) Wild-type erythropoietin (EPO) causes normal activation of EPOR signaling 
targets. Engineered EPOR ligands that modify the angle (B) or distance (C) between EPOR ECDs produce selective alterations in the activation 
of downstream signaling targets. This figure was created using data from Mohan et al., 2019134.
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its overaggressive use is associated with increased rates of arte-
riovenous fistula thrombosis, venous thromboembolism, con-
gestive heart failure, myocardial infarction, and death138,147–150. 
Similarly, rhEPO use for cancer-related anemia has been 
associated with reduced survival151. Elevated blood viscos-
ity caused by increased RBC mass probably contributes to these  
adverse events. Additionally, some adverse effects of rhEPO 
may result from stimulation of EPOR signaling in non-erythroid  
tissues or tumor cells or both151–157, although this point is com-
plicated by technical difficulties in establishing the presence  
of EPOR in non-erythroid tissues because of non-specific anti-
body interactions158. Regardless, current guidelines recommend 
careful titration of rhEPO dosing in patients with renal failure139.  
A recent study showed that, compared with low-dose intra-
venous iron sucrose, high-dose intravenous iron sucrose  
therapy in chronic renal failure resulted in reduced dosage 
requirements for rhEPO, fewer major adverse cardiovascular  
events, and lower death rates159.

The routine use of rhEPO in most cancer patients who are under-
going curative chemotherapy should be avoided160. rhEPO 
remains an important drug for treating anemia associated 
with myelodysplastic syndrome, although responses are often  
transient161–163. From a historical perspective, the first rhEPO 
(epoetin alfa) was approved for clinical use in 1989 and the  
longer-acting darbepoetin was approved in 2001. Com-
bined sales reached about $5 billion per year in 2005 and 
then declined by 40% over the next 6 years as the price of  
the drugs dropped and the potential adverse effects became  
recognized164.

The prolyl hydroxylase inhibitors (PHIs), which act by  
stabilizing HIFα to stimulate endogenous EPO production  
(Figure 2), are promising new agents for treating anemia of 
chronic kidney disease and perhaps other etiologies165,166.  
Numerous clinical studies have shown that PHIs are effec-
tive for raising hemoglobin levels in subjects with chronic renal  
failure166–170. Compared with rhEPO, PHIs offer several poten-
tial advantages, including oral administration, improved iron 
utilization possibly due to suppression of hepcidin, lowering 
of plasma lipids and cholesterol, and efficacy at relatively low 
plasma concentrations of endogenous EPO, which may reduce 
cardiovascular toxicities. Three PHIs are in advanced phase 
III clinical development, and one was recently approved for 
clinical use in China171. Although the drugs have been shown  
to be relatively safe in clinical trials, there are numerous 
theoretical concerns related to on-target effects given the  

extensive number of genes and biological pathways that are 
regulated by the HIF transcription factors. Potential adverse 
effects include alterations in metabolism, immune response, 
vascular tone, and angiogenesis. Monitoring for these  
problems is required in more extended clinical trials pre- and  
post-marketing.

Conclusions
EPO and its receptor are essential for the differentiation of CFU-
E progenitors into mature RBCs. The complex, multi-layered  
biochemical pathways that regulate EPO production, sig-
nal through EPO engagement of EPOR, and extinguish EPOR 
signaling are all geared to maintain circulating RBC num-
bers in a narrow physiological range at steady state and dur-
ing erythropoietic stress. Examination of these processes over  
more than 40 years has elucidated fundamental concepts of 
general biology, defined the mechanisms of human diseases 
associated with over- or under-production of RBCs, and pro-
duced a remarkably useful biological drug to treat some forms 
of anemia. The development of rhEPO, and more recently 
PHD inhibitors, arose from basic biological research and  
represents excellent paradigms for “bench to bedside and 
back” therapeutic development. Despite the tremendous knowl-
edge gained through extensive studies of EPO and EPOR over 
many years, the field remains a fruitful area of research, as 
illustrated by ongoing efforts to better understand the com-
plexities of the PHD–HIF–EPO pathway, structure–function 
regulation of EPO–EPOR–JAK2 signaling, and mechanisms  
of human disease caused by germline and somatic alterations 
in genes tied to EPO biology. In fact, interesting and medi-
cally relevant research problems related to EPO are too numer-
ous to cover in a single review. Topics not covered here include 
the biology of EPOR signaling in non-erythroid tissues and 
its role in metabolic pathways149,151,172–179. Thus, it is likely 
that laboratory scientists and clinical researchers who study 
EPO-related biology and medicine will continue to generate  
exciting and clinically useful findings for many years to come.
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