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Abstract: Due to the suspension of traffic mobility and industrial activities during the COVID-19,
particulate matter (PM) pollution has decreased in China. However, rarely have research studies
discussed the spatiotemporal pattern of this change and related influencing factors at city-scale across
the nation. In this research, the clustering patterns of the decline rates of PM2.5 and PM10 during the
period from 20 January to 8 April in 2020, compared with the same period of 2019, were investigated
using spatial autocorrelation analysis. Four meteorological factors and two socioeconomic factors,
i.e., the decline of intra-city mobility intensity (dIMI) representing the effect of traffic mobility and
the decline rates of the secondary industrial output values (drSIOV), were adopted in the regression
analysis. Then, multi-scale geographically weighted regression (MGWR), a model allowing the
particular processing scale for each independent variable, was applied for investigating the relationship
between PM pollution reductions and influencing factors. For comparison, ordinary least square
(OLS) regression and the classic geographically weighted regression (GWR) were also performed.
The research found that there were 16% and 20% reduction of PM2.5 and PM10 concentration across
China and significant PM pollution mitigation in central, east, and south regions of China. As for
the regression analysis results, MGWR outperformed the other two models, with R2 of 0.711 and
0.732 for PM2.5 and PM10, respectively. The results of MGWR revealed that the two socioeconomic
factors had more significant impacts than meteorological factors. It showed that the reduction of
traffic mobility caused more relative declines of PM2.5 in east China (e.g., cities in Jiangsu), while
it caused more relative declines of PM10 in central China (e.g., cities in Henan). The reduction of
industrial operation had a strong relationship with the PM10 drop in northeast China. The results
are crucial for understanding how the decline pattern of PM pollution varied spatially during the
COVID-19 outbreak, and it also provides a good reference for air pollution control in the future.

Keywords: COVID-19; PM pollution; spatiotemporal patterns; spatial correlation analysis; influencing
factors; multi-scale geographically weighted regression (MGWR)

1. Introduction

China, as the largest developing country in the world [1], has experienced a rapid process of
urbanization and suffered from the accompanying air pollution problems. Among them, particulate
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matter (PM, mainly including PM2.5 and PM10) pollution is especially serious in China and has drawn
widespread attention from the public [2,3]. Many epidemiological research studies have confirmed that
PM pollutants can threat human health, such as increasing the risk of heart disease, lung cancer, and
cardiovascular diseases [4–6]. It was also reported that the total disability-adjusted life years (DALYs)
associated with PM2.5 and PM10 pollution in China are 7.2 million and 20.66 million, respectively, in
2014–2015 [7]. To improve air quality, the Chinese government has implemented numerous harsh
clean air measures, such as shutting down some high polluted factories and eliminating outdated
industrial capacities, since 2013 [8,9]. Several research studies found decreasing trends of the annual
average PM2.5 and PM10 concentrations in recent years, especially in some key urban agglomerations,
such as the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta
(PRD) [10,11]. Scholars also identified the reduction of industrial emission and the promotion of clean
fuels in traffic and residential sectors to be the two dominant factors for the PM pollution reduction in
China [12]. However, despite the declining tendencies in some parts of China, the PM pollution is still
serious in China given its large concentrations. Specifically, the average concentrations of PM10 and
PM2.5 over China were 89 µg/m3 and 43 µg/m3 in 2017 [11], which were 4.5 times and 4 times more
than the World Health Organization (WHO) guidelines, respectively. [13].

Since the first case reported in Wuhan, a mega city in central China, in December 2019, many
more cases of COVID-19 have been found over the country and it has evolved into a global pandemic
further. Until 8 April 2020, according to WHO, there had been over 1 million confirmed cases and
almost 80 thousand death cases reported worldwide [14]. This new virus is highly contagious and can
even spread through aerosol [15]. To cut off the spread of the COVID-19 virus, the Chinese government
adopted the strictest self-quarantine measures and listed it as the category B infectious disease on
20 January 2020. People were restricted from traveling outside for entertainment, study, and work
and were encouraged to stay at home. In addition, because of the Spring Festival, workers went
back to their hometowns, so numerous industrial plants had to be shut down during this period.
Under this circumstance, less traffic mobility and industrial operation produced less atmospheric
pollutant emissions which were in favor of air quality improvement [16]. Some studies also reported
that air pollutants, such as PM10, O3, and NO2, showed significant reductions during the COVID-19
outbreak in some major cities around the world, such as New York, Rome, and Delhi [17,18]. In the
Yangtze River Delta Region of China, it was found that the reduction of industrial operations and
vehicles’ emissions made a great contribution to air quality improvement during this period [19].
Thus, these control measures are not only necessary for preventing the contagion of COVID-19 virus but
also provide an opportunity to examine the effect on PM pollution of traffic restriction and industrial
shutdown. In addition, it must be recognized that the pattern of PM pollution reduction tends to vary
in regions due to the diversified city response to COVID-19. However, related research studies were
mainly focused on local regions or cities, and the national spatiotemporal change pattern of PM was
discussed rarely.

In addition to the spatiotemporal variations of PM pollution, the influencing factors driving such
variations are also essential for investigating how COVID-19 control measures affected PM pollution.
PM pollution related influencing factors can be categorized as natural environmental factors and
socioeconomic factors. Some studies have proved that some natural meteorological factors, such as
relative humidity, play very important roles in the formation of the substances in PM [20,21]. As for
socioeconomic indicators, previous research studies tended to use some indicators from government
yearbooks or bulletins, such as secondary industry share, population density, and gross domestic
product (GDP) per capita, to reflect the effect of human activities on PM pollution [22–24]. Among these
indicators, scholars have confirmed that some, like secondary industry share, is significantly correlated
with PM pollution, while the influences of other factors, like GDP per capita, are dependent on
the development stage of a city or a region [25,26]. Compared with the study periods in previous
researches, the period of COVID-19 outbreak is relatively short and it is tough to find appropriate data.
For example, traffic mobility reduction, as a vital factor contributing to the PM pollution, is limited by



Int. J. Environ. Res. Public Health 2020, 17, 6274 3 of 19

availability and reliability and is hard to measure, especially during a relatively short period. As the
development of mobile Internet technology, traffic mobility can be perceived easily by the data from
location-based service (LBS) [27]. Moreover, it can present the change of traffic mobility with high
temporal resolution, thus possibly being the solution for the short-period research studies, like ours.

In terms of investigation methods, some scholars used classic statistical methods, such as ordinary
least square (OLS) model and stochastic impacts by regression on population, affluence, and technology
(STIRPAT) model, for relationship analysis [23,28]. These models indicate the overall influence
of different factors by some global coefficients and cannot depict the spatial heterogeneity among
different geographical objects. To solve this issue, geographically weighted regression (GWR), a local
regression method, indicating the influence of factors by many spatial coefficients, were introduced in
some research studies [29,30]. However, there are also some disadvantages for GWR. For example,
GWR assumes that all influencing factors affect the result at the same scale, which may induce some
errors. For the research studies of air pollution underlying mechanism analysis, the relationship between
pollutants and different influencing factors usually varies in spatial scales [31]. Therefore, GWR may
not perform well for the influencing factors analysis in our research. Recently, an improved model
of GWR, multi-scale geographically weighted regression (MGWR), was developed [32]. This model
can obtain the optimal bandwidth for each influencing factor and address the issue of imposed scale
heterogeneity, which might be the better choice in our research.

In this study, our goal was to derive the pattern of PM2.5 and PM10 change by comparing the
concentrations in two study periods of 2019 and 2020, respectively, for prefecture cities of China
and to further analyze the influencing factors. The study period was set from 20 January to 8 April,
when the COVID-19 virus spread seriously in China and related control measures were the strictest
during this period in 2020. Firstly, spatial autocorrelation analysis was conducted to recognize the
PM concentration change pattern of all prefecture cities in China. Then, for reflecting the traffic
mobility reduction, we collected intra-city mobility intensity of Chinese prefecture cities from the Baidu
platform and used the average difference between 2019 and 2020 as the indicator for the regression
analysis in the next stage. Lastly, MGWR was applied for the relationship investigation between the
decline rates of both PM2.5 and PM10 and the influencing factors, including meteorological factors and
socioeconomic factors.

2. Materials and Methods

2.1. Data Preparation

2.1.1. Ground-Level PM Measurements Data

Hourly PM2.5 and PM10 concentration data from 20 January to 8 April in 2018, 2019, and 2020 were
downloaded from China National Environmental Monitoring Center (CNEMC, http://www.cnemc.cn).
The reason for adding the data of 2018 is to compare the difference in the change between 2019 and
2020 and the change between 2019 and 2018. It includes more than 1500 ground sites established by
Chinese government in all 337 prefectural cities of China (excluding Hong Kong, Macau, and Taiwan).
The number of sites in each city is given by Figure 1. Among them, there are 232 background sites
and the others are non-background sites. At each site, data of PM2.5 and PM10 were calibrated by
automated monitoring systems according to HJ 655-2013 [33]. We first excluded the null data in the
original dataset. Then, the daily average PM2.5 and PM10 concentrations of each site were calculated.
Based on daily average data of sites, we further calculated the average concentrations of each city.
Due to data deficiency, the average PM2.5 and PM10 concentrations of 336 cities, in total, for the study
period were obtained as final.

http://www.cnemc.cn
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Given the distinct concentration variations among different cities of China and two PM pollutants,
relative decline rates of the two pollutants, respectively, presenting the temporal changes from 2018
to 2019 and 2019 to 2020, were calculated using formula (1). Here, drPMi is the decline rate of PM
pollutants (PM2.5 or PM10) concentration of city i, and PMai and PMbi are the average concentrations
of the prior year (2018 or 2019) and this year (2019 or 2020) of city i, respectively. Besides, for analyzing
the hourly change of PM pollution, average concentrations of each hour were also calculated.

drPMi = (PMai − PMbi)/PMai (i = 1, 2, 3 . . . , 336). (1)

2.1.2. Meteorological Data

Multiple meteorological indexes were used for relationship investigation, including relative humidity,
air temperature, wind speed, and total precipitation. Data of the meteorological indexes were obtained
from the China Meteorological Data Network (CMDN, http://data.cma.cn). This website provides
historical daily meteorological observations of all prefectural cities in China. Then, we averaged the daily
observations from 20 January to 8 April in both 2019 and 2020 to obtain the mean of each city during
the study period. Furthermore, the decline values of four meteorological indicators were derived by
using the mean of 2019 minus that of 2020.

2.1.3. Socioeconomic Data

During the outbreak of COVID-19, emission reduction of industry and traffic mobility were the
two major reasons reducing air pollution [19]. It has been confirmed that the emission of the industry
has a close relationship with the secondary industrial output values (SIOV, i.e., the gross product of
secondary industry of each city) [22,34,35]. Therefore, for indicating the decrease of PM concentration
caused by the reduction of industrial operation, decline rates of the secondary industrial output values
(drSIOV) in the first quarter in 2020 (compared with the first quarter in 2019) of prefectural cities were
obtained from the socio-economic operation bulletins. In China, drSIOV were directly announced
by each local government statistics office. Limited by data availability, the drSIOV of 264 prefecture
cities in total were obtained. Thus, the regression analysis would be conducted on these 264 cities,
rather than all 336 cities.

Nevertheless, the traffic mobility reduction can’t be reflected effectively by government documents
in this relatively short period of COVID-19 outbreak. Fortunately, mobility data based on LBS provides
a solution for this issue. Given the easy contagiousness and the fast spread of COVID-19, some scholars
have adopted some mobility data from mobile phones or the Internet to figure out the epidemic and
obtained some crucial findings of the spread of COVID-19 in different regions [36–38]. Similar to the
spread of COVID-19, traffic PM emission also has a close relationship with mobility [39], thus using
these mobility data may also work out in detecting the change of PM pollution caused by traffic

http://data.cma.cn
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mobility reduction. We obtained daily intra-city mobility intensity (IMI) data of the corresponding 264
prefectural cities in the study period of 2019 and 2020 from the Baidu platform. Baidu is an Internet
company in China and provides the LBS for 195 million people in mainland China. The daily IMI
provided by Baidu is the intensity of residents’ traffic travel of a city, which is recognized by origin
and destination (OD) pairs of residents based on Baidu LBS data. The higher the index is, the more
people go outside (with a relatively long distance) in a city. The mobility data of Baidu also played
an important role in other studies about predicting the spread of COVID-19 indicating high data
quality [36]. For depicting the change of IMI, we further calculated the decline IMI of each city by
using the average IMI of 2019 minus that of 2020.

2.1.4. Variable Summary

To sum up, there are two separate dependent variables and six independent variables.
The dependent variables comprise the decline rates of two PM pollutants (drPM2.5 and drPM10).
The independent variables include (1) Meteorological variables, including the decline of relative
humidity (dHUM), air temperature (dTEM), wind speed (dWS), and total precipitation (dTP).
(2) Socioeconomic variables, including the decline rates of the secondary industrial output values
(drSIOV) and the decline of IMI (dIMI). These variables would be applied for the regression analysis
investigation further. As mentioned in Section 2.1.3, we only obtained the data of 264 cities in China.
Fortunately, these 264 cities are mainly located in the areas where the COVID-19 epidemic was serious
during the study period, so the analysis was still representative. Some statistics about the six influencing
factors, including dIMI, drSIOV, dTEM, dHUM, dWS, and dTP and two dependent variables, drPM2.5

and drPM10, in 2019–2020 are shown in Table 1.

Table 1. Some information about variables.

Variable. Min Max Mean Std

drPM2.5 (%) −58.803 42.025 16.213 15.495
drPM10 (%) −19.822 45.424 21.739 10.842
dTEM (°C) −2.06 2.84 −0.572 0.905
dHUM (%) −19.051 11.926 −2.35 6.312
dWS (m/s) −0.8 0.598 −0.004 0.173
dTP (mm) −3.538 1.98 −0.342 0.738
drSIOV (%) −0.142 0.537 0.089 0.108
dIMI (-) −1.29 2.95 0.971 0.507

2.2. Methods

2.2.1. Spatial Autocorrelation

In order to figure out the characteristics of two PM pollutants’ temporal change spatially, spatial
autocorrelation analysis was applied. Specifically, the global Moran’s index (Moran’s I) [40], which is
widely used for spatial dependence detection, was calculated for drPM2.5 and drPM10. The calculated
formulation is shown as (2) and (3):

Iglobal =

∑n
i=1

∑n
j=1 wi j(xi − x)

(
x j − x

)
1
n
∑n

i=1(xi − x)2
∗
∑n

i=1
∑n

j=1 Wi j
, (2)

x =
1
n

n∑
i=1

xi. (3)

Here, Iglobal is the global Moran’s index, n is the number of all prefecture cities (n = 336). xi and
x j are the observations of city i and city j, respectively. Wi j represents the neighboring relationship
between city i and city j. If city i is adjacent to city j, then Wi j = 1; otherwise, Wi j = 0. The range of
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global Moran’s index is between −1 and 1. If the value of global Moran’s index is positive (negative),
it indicates that there is a positive (negative) correlation among all observations. If the value is closed
to 1 (−1), the positive (negative) correlation relationship is strong. In addition, it shows a random
distribution of observations in space when the value is closed to 0.

The global Moran’s index can only demonstrate the overall intensity of spatial correlation, so we
calculated local Moran’s index [41] further for each city. The formulation is shown in (4):

Ii
local =

xi − x
1
n
∑n

i=1(xi − x)2

n∑
j=1, j,i

Wi j
(
x j − x

)
. (4)

Here, x, xi, x j, Wi j are derived the same as mentioned above. Ii
local is the local Moran’s index of

city i.
The significance of Iglobal and Ii

local can be measured by Z value. The formulation of Z value is
given by (5).

Z =
I − E(I)
√VAR(I)

, (5)

where I is Iglobal or Ii
local, E(I) is the expected value of I, and VAR(I) is the variance of I. For the Z value

of global Moran’s index, at the significance level is 0.05, it shows a significant result if the Z value is
higher than 1.96 or less than −1.96, while a not significant result otherwise. For the Z value of local
Moran’s index, at the significance level is 0.05, if the Z value is higher than 1.96, then it shows that
a city with high (low) drPM2.5 or drPM10 is surrounded by other cities with high (low) drPM2.5 or
drPM10. If the Z value is less than −1.96, then it shows that a city with high (low) drPM2.5 or drPM10 is
surrounded by other cities with low (high) drPM2.5 or drPM10. If the Z value is between −1.96 and
1.96, it shows that the correlation relationship of a city with surrounding cities is not significant.

2.2.2. Correlation Analysis

Correlation analysis was used for detecting the relationship between the decline rates of PM
concentration (drPM2.5 or drPM10) and influencing factor variables. Here, we selected Pearson
Correlation Coefficients as the measurement, and the formulation is given by (6):

Rxy =

∑n
i=1(xi − x)(yi − y)

√∑n
i=1(xi − x)2 √∑n

i=1(yi − y)2 , (6)

where x = 1
n
∑n

i=1 xi, and y = 1
n
∑n

i=1 yi. x and y represent the two compared variables. Here, n = 264
which is corresponded with the number of cities in regression analysis. Rxy is the Pearson Correlation
Coefficients and its range is between −1 and 1. It represents a negative relationship between two
variables (x and y) when Rxy < 0, and a positive relationship when Rxy > 0. If the absolute value of Rxy

is close to 1, then it shows a strong correlation relationship between variable x and variable y. If the
absolute value of Rxy is close to 0, then the correlation relationship is weak.

2.2.3. Regression Analysis and Evaluation

The relationships between the decline rates of PM pollutants and related influencing factors were
investigated by OLS, GWR, and MGWR. We would compare the performance of them and use the
best model for analyzing further. OLS is a widely used global model for relationship analysis and the
formulation can be shown as (7):

Y = β0 +
m∑

k=1

βkXk + ε. (7)

where Y is the dependent variable and, specifically, is the PM pollutants decline rate (drPM2.5 or
drPM10). Xk is the independent variable k. βk is the coefficient of Xk. ε is the random error item.
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GWR is the extension of OLS regression in space. Compared to OLS with a set of constant
parameters for all locations, in GWR, each sampling location has their own parameters [42]. Through this,
the characteristics of spatial variation can be depicted. The formulation of GWR is given by (8):

Y(ui, vi) = β0(ui, vi) +
m∑

k=1

βk(ui, vi)Xk(ui, vi) + εi(i = 1, 2, 3 . . . , n, n = 264), (8)

where (ui, vi) is the coordinate of the local sampling location. In our research, (ui, vi) of each city is
the centroid of all ground PM pollutants observation sites. n is the number of city (n = 264). β0(ui, vi)

is the intercept, and βk(ui, vi) represents the parameter of independent variable Xk in location (ui, vi).
β0(ui, vi) and βk(ui, vi) can be estimated by the data from neighboring locations, and the spatial weight
of the estimated data can be measured by distance weighting functions. Here, we used Bi-square
function in our research for weight calculation, which is given by (9).

W(i, j) =


[1−

(di j

bi

)2

]

2

, di j < bi

0, di j ≥ bi

, (9)

where di j is the Euclidean distance between location i and location j. bi is the adaptive bandwidth of
location i.

Although GWR can depict the spatial heterogeneity, the assumption that all relationships between
the dependent variable and influencing factors operate at the same spatial scale limits the performance
and reliability of the regression result. For addressing this issue, MGWR [32], which relaxes the
“same spatial scale” assumption and allows specific bandwidths of different independent variables’
relationship with the dependent variable to be optimized, was applied in our research. The formulation
of MGWR is given by (10):

Y(ui, vi) = βbw0(ui, vi) +
m∑

k=1

βbwk(ui, vi)Xk(ui, vi) + εi(i = 1, 2, 3 . . . , n, n = 264). (10)

Other than βbw0 and βbwk, other parts of (10) are the same as (8), where bw0 is the bandwidth of
intercept and bwk is the bandwidth of variable k. Therefore, different from GWR, each local parameter
βk is obtained under the condition of a set of optimal specific bandwidths rather than one bandwidth
for all relationships between independent variables and the dependent variable.

We used 3 measurements for evaluating these 3 regression models, including the coefficient of
determination (R2), the corrected Akaike information criterion (AICc), and the residual sum of squares
(RSS). The MGWR model was conducted using the software MGWR2.1 provided by the School of
Geographical Sciences and Urban Planning at Arizona State University (https://sgsup.asu.edu).

3. Results and Discussions

3.1. Overview of PM Pollutants in China

The spatial distribution of PM2.5 and PM10 in China during the study periods of 2018, 2019, and
2020 are shown in Figure 2. The average concentrations of PM2.5 (PM10) in study periods from 2018
to 2020 were 52.90 µg/m3 (98.47 µg/m3), 48.40 µg/m3 (82.63 µg/m3), and 40.57 µg/m3 (66.18 µg/m3),
respectively, demonstrating a decline trend. Contrast with the decline in the study period of 2019
compared with 2018 (hereafter 2018–2019), the decline in the study period of 2020 compared with
2019 (hereafter 2019–2020) was more notable with decline rates of 16% and 20% for PM2.5 and PM10,
respectively. According to the Chinese Ambient Air Quality Standards (CAAQS) [43], there were only
6 (10), 15 (29), and 20 (73) cities reaching the annual “good” level of PM2.5 (PM10) standard, respectively

https://sgsup.asu.edu
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(<15 µg/m3 for PM2.5 and <40 µg/m3 for PM10) in the study period of 2018, 2019, and 2020. In terms of
space, the spatial patterns of both PM2.5 and PM10 were similar for these 3 study periods with high
PM pollution areas in the North China Plain and Xinjiang and low PM pollution areas in coastal and
southwest regions. Except some northwest cities located in the desert, it is noted that most cities in
China had experienced a huge improvement of PM pollution in 2019–2020. A comparison at national
scale between background sites (BS) and non-background sites (NS) was also conducted and is shown
in Table 2. Here, Avg_PM2.5 and Avg_PM10 represent the average PM2.5 concentration and PM10

concentration, respectively. Results illustrate that there was a consistent decrease in PM concentrations
of both two type sites. It is noted that the decreased concentrations of NS in 2019–2020 (about 10 µg/m3

for PM2.5 and 19 µg/m3 for PM10, respectively) were much higher than that in 2018–2019 (about 3 µg/m3

for PM2.5 and 11 µg/m3 for PM10, respectively), while the decreased concentrations of BS were relatively
constant (about 6–9 µg/m3 for PM2.5 and 18 µg/m3 for PM10, respectively, for both 2018–2019 and
2019–2020). This is related with the location of background sites. Generally, for better representing the
air pollution in large areas, background sites in China were established in the areas that are far away
from urban centers. These areas are of relatively low population density and were affected less during
the COVID-19 period, so the decreased concentrations in background sites were not significant as that
in non-background sites.
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(d) for PM10); 2019 ((b) for PM2.5 and (e) for PM10); and 2020 ((c) for PM2.5 and (f) for PM10).

Table 2. Average PM concentration comparison between background sites (BS) and non-background
sites (NS).

Sites BS in 2018 BS in 2019 BS in 2020 NS in 2018 NS in 2019 NS in 2020

Avg_PM2.5 (µg/m3) 50 44 35 55 52 42
Avg_PM10 (µg/m3) 86 68 51 96 85 66

In terms of temporal perspectives, the daily average and hourly PM concentration over China
was calculated and some related statistics are shown in Figure 3. According to the 24-h average PM2.5

standard in CAAQS, there were 4%, 10%, and 38% days in the study periods reaching the “good” level
(<35 µg/m3) for 2018, 2019, and 2020, respectively. As for PM10, there were 12% days in the study
period of 2020 reaching the “good” level (<50 µg/m3), and there was no day reaching this level in 2018
and 2019. As for the hourly change, both PM2.5 and PM10 showed a shape of the “W” trend from 0:00
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to 23:00 with reaching the peak at 0:00 and 10:00 and reaching the valley at 6:00 and 16:00. In addition,
the decreasing concentrations in 2019–2020 were much higher than that of 2018–2019 at all-time points
with about 10 µg/m3 and 20 µg/m3 for PM2.5 and PM10, respectively.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 9 of 19 
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3.2. Spatiotemporal Change Pattern of PM Pollutants in China

3.2.1. Spatiotemporal Variation of PM Pollutants Change

The change distribution of PM pollutants, including drPM2.5 and drPM10, were derived as shown
in Figure 4. It can be found that the change distribution of 2019–2020 is totally different from that
of 2018–2019 for both PM pollutants. In 2018–2019, the areas with decline rates higher than 30%
were mainly located in some western regions, like Tibet and Xinjiang. The PM pollution in north of
China especially Heilongjiang, Jilin, Liaoning, Shandong, and Henan were getting worse compared
to the study period of 2018. However, the decline rates of 2019–2020 in these northern regions came
to more than 20% for both PM pollutants. This is a very interesting phenomenon. These regions
always suffer from PM pollution caused by high-emission industrial plants and inappropriate energy
consumption structure [44,45], but the COVID-19 control measures became a very effective solution
for this issue by accident. In addition, in central and southeast of China, PM pollution also showed a
tremendous decline in 2019–2020. As for the comparison of two pollutants, the spatial distribution of
drPM2.5 and drPM10 were similar in 2018–2019 but was observed with some differences in 2019–2020,
showing that PM10 pollution was improved better than PM2.5 pollution in some northern areas. This is
because heating from coal burning in north China continued during the COVID-19 outbreak, which still
produced much PM2.5 [44]. There was a big difference of PM changed patterns between 2018–2019 and
2019–2020 in north western regions, which may be related to some random natural factors, like the
sandstorms in spring. As for the city affected most significantly by the COVID-19, Wuhan, drPM2.5

and drPM10 were 2% and 12% in 2018–2019, respectively, while at 36% and 39% in 2019–2020. This
demonstrated a notable PM pollution reduction during the COVID-19 outbreak period.
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3.2.2. Spatial Autocorrelation Analysis of PM Pollutants Change

Global Moran’s indexes for drPM2.5 and drPM10 in 2018–2019 and 2019–2020 were calculated to
identify whether the declines of PM2.5 and PM10 are clustered overall. The result is shown in Table 3.
All changes of PM pollutants saw global Moran’s indexes much higher than 0, thus indicating the
existence of spatial clustering. The spatial autocorrelation degree of drPM2.5 showed a slight increase
in 2019–2020 compared to 2018–2019, whereas that of drPM10 decreased. Z values of four distribution
were higher than 13, which means they all passed the significance test (p < 0.001).

Table 3. Global Moran’s indexes for the decline rates in 2018–2019 and 2019–2020 of PM pollutants.

Change Global Moran’s Index Z Value

drPM2.5 for 2018–2019 0.453 13.812
drPM10 for 2018–2019 0.628 19.070
drPM2.5 for 2019–2020 0.492 15.028
drPM10 for 2019–2020 0.452 13.806

In order to better display the spatial distribution pattern of drPM2.5 and drPM10, the clustering
results were derived by local Moran’s indexes and were shown in Figure 5. The clustering pattern of
local spatial autocorrelation can be categorized as 5 types: “high-high” (high observations surrounded
by high observations), “high-low” (high observations surrounded by low observations), “low-high”
(low observations surrounded by high observations), “low-low” (low observations surrounded by
low observations), and not significant areas. Here, the observation is the drPM, i.e., the decline rate of
PM. It can be found that the “high-high” and “low-low” are the main clustering types in all results
of the local spatial autocorrelation analysis. Moreover, both two PM pollutants have similar spatial
distribution patterns, indicating the close relationship between PM2.5 and PM10 [46]. The “high-high”
clusters were in south, southwest, and some northwest areas, while the “low-low” clusters were in
northeast, central, and north areas in 2018–2019. This distribution pattern was also similar with some
findings in other researches [47–49]. However, in the results of 2019–2020, the “high-high” clusters were
mainly located in central, east, and south areas. This was related to the strong and enduring control
measures of COVID-19 in these areas. The “low-low” clusters are mainly located in inner-Mongolia,
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northwest, and southwest areas in 2019–2020. Combined with Figure 4, although it showed a decline
trend of PM concentrations in these areas, the degree of decline was not as large as the “high-high”
clustering areas and the distribution of the PM pollution decreasing cities was not as dense as that In
the “high-high” clustering areas. The “low-low” clustering areas were also the areas affected less by
COVID-19 during the study period.
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3.3. The Relationship between PM Pollutants Change and the Influencing Factors

3.3.1. Overview of Regression Variables

Before regression analysis, correlation analysis based on the Pearson Correlation Coefficient was
conducted and the results are shown in Table 4. It can be found that the coefficients between two
socioeconomic factors and both decline rates of PM pollutants are positive, which means that the
reduction of residents’ travel mobility and industrial production have a strong positive relationship
with the drop of PM pollutants. A previous study conducted in North America also confirmed that
socioeconomic indicators tend to explain more variations of air pollutants and the findings of ours also
are coherent with that view [22]. Additionally, it reflected that dIMI and drSIOV were appropriate
as the influencing factors for detecting the changed pattern of PM pollutants caused by COVID-19
control measures. As for the meteorological factors, except dHUM, others have negative relationships
with drPM2.5 and drPM10; so, the higher these meteorological observation values are, the lower PM
concentration is in general. This is also consistent with some previous studies [50].

Table 4. Pearson Correlation Coefficients between 6 independent variables and 2 dependent variables.

Variable. dTEM dHUM dWS dTP dIMI drSIOV

drPM2.5 −0.317 *** 0.177 ** −0.236 *** −0.205 *** 0.258 *** 0.214 **
drPM10 −0.220 *** 0.015 −0.134 * −0.254 *** 0.376 *** 0.245 ***

Note: *** means the result satisfies the significance level test of α = 0.001, ** means the result satisfies the significance
level test of α = 0.01 and * means the result satisfies the significance level test of α = 0.05.

For examining whether the independent variables were fit for linear regressions, multicollinearity
was detected using variance inflation factor (VIF) [51]. If the VIF value of an independent variable is
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higher than 7.5, then there exists multicollinearity, and the variable cannot be used with some other
independent variables at the same time. The result is shown in Table 5. It shows that there are no
variables with VIF higher than 7.5, so all these variables can be used for linear regression analysis.
The abbreviations and the specific meanings can refer to the Section 2.1.4.

Table 5. Variance inflation factors (VIFs) among independent variables.

Variable. VIF

dHUM 1.24
dTEM 1.21
dWS 1.03
dTP 1.09
drSIOV 1.20
dIMI 1.48

3.3.2. Model Performance and Comparison

Three regression models, including OLS, GWR, and MGWR, were conducted based on the
normalized independent variables and the performances are summarized in Table 6. The performance
of OLS was very poor with R2 of 0.227 and 0.217, respectively, for drPM2.5 and drPM10. Two local
regression models performed much better than OLS indicating the superiority of considering spatial
heterogeneity. The performance of MGWR further outperforms GWR, with R2 of 0.711 and 0.732 for
drPM2.5 and drPM10. In addition to R2, the results of RSS and AICc also illustrated the performance of
MGWR to be the best among three models. Consequently, the strategy that produces the particular
bandwidth for the relationship between each independent variable and the dependent variable in
MGWR was effective in our research, and the results of MGWR would be applied for the analysis next.

Table 6. Model performance of ordinary least square (OLS), geographically weighted regression (GWR),
and multi-scale geographically weighted regression (MGWR).

Model. R2 RSS AICc

Dependent Variable drPM2.5 drPM10 drPM2.5 drPM10 drPM2.5 drPM10

OLS 0.227 0.217 204.167 206.591 697.613 701.030
GWR 0.658 0.653 90.367 91.611 600.388 602.003
MGWR 0.711 0.732 76.312 70.747 569.028 545.205

3.3.3. The Local Relationship between PM Pollutants and the Influencing Factors

MGWR generated many local coefficients of different independent variables and some related
statistics are listed in Table 7. It includes three basic statistics including the minimum, maximum, and
mean of each variable’s coefficients in the PM2.5 model and the PM10 model. In addition, the optimal
bandwidth (BW) (represents the number of neighboring cities whose data used for constructing local
models) and the proportion of coefficients (PC) that passed by significance test (α = 0.05) of each
independent variable were also shown in Table 7.

Table 7. Some information about the coefficients in two MGWR models. BW is the optimal bandwidth
of each variable, and PC is the proportion of coefficients passed by significance test (α = 0.05).

Variable. PM2.5 MGWR Model PM10 MGWR Model

Min Max Mean BW PC Min Max Mean BW PC

dTEM −0.07 0.19 0.01 127 2% −0.01 0.02 0.004 263 0%
dHUM −0.36 0.10 −0.04 94 12% −0.67 0.44 −0.04 49 14%

dWS −0.62 0.49 −0.02 45 14% −0.03 0.17 0.1 229 0%
dTP −0.67 0.18 −0.10 43 8% −0.48 0.28 −0.02 45 3%

drSIOV −0.35 0.36 0.09 73 23% 0.09 0.33 0.16 127 45%
dIMI −0.76 0.95 0.32 43 51% −0.78 0.84 0.23 43 56%
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The different optimal bandwidths of 6 variables in two MGWR models presented large variations
in optimal spatial process scale. The bandwidth of dIMI was the smallest among all variables
demonstrating the great spatial non-stationarity of traffic mobility caused by different levels of
COVID-19 control measures in different areas. The process scale of drSIOV was larger with the
optimal bandwidth of 73 in the PM2.5 model and 127 in the PM10 model, which exhibited the similar
effects of industrial activity reduction spatially. As for meteorological variables, for the PM10 model,
both the imposed scales of dTEM and dWS were almost as large as the global scale with the number of
neighboring of 263 and 229, respectively, while, in the PM2.5 model, the optimal scales of all variables
were relatively small, except dHUM. This presented that the other three meteorological factors affected
the reduction of PM2.5 at a relatively local scale compared with that of PM10.

In terms of PC, the great difference existed between socioeconomic variables and meteorological
variables. The PCs of meteorological variables were all lower than 20% in both PM2.5 and PM10 models.
While for the two socioeconomic variables, it can be found that the estimation of them were significant
for more cities especially dIMI with 51% and 56% for the PM2.5 model and the PM10 model, respectively.
Thus, the PM pollutants’ concentration changes in the COVID-19 outbreak period have more closed
relationship with the two socioeconomic influencing factors and were slightly affected by meteorology.

Figure 6 shows the spatial coefficients of three variables with the highest PC, including dIMI,
drSIOV, and dHUM, in two PM pollutants’ models. The significance of the spatial coefficients was
sometimes ignored in some previous researches using local regression, such as GWR and MGWR, and
this will lead to questionable results [52]. In our research, despite some “not significant” coefficients,
others that passed the p-value examination were reliable. In Figure 6, the significant imposed range of
different influencing factors varied spatially. The imposed ranges of two socioeconomic factors were
much wider than dHUM. Although some meteorological factors like relative humidity are related to
the formation of substances in PM, it may affect PM concentration notably at a shorter temporal scale.
In addition, it is noted that coefficients of all three factors imposed significantly in southwest regions.
On one hand, the cities in these regions are at the relatively primary stage of rapid socioeconomic
development and were affected less by the COVID-19 so the influence of socioeconomic factors on PM
pollution is remarkable [53]. On the other hand, most cities in these regions with low urbanization
rates are surrounded by rainforests so the natural factors, like relative humidity, also play vital roles.
The decline of IMI imposed the most significantly impact on the changes of PM pattern with the widest
imposed range. In addition, it showed that the coefficient values’ range of dIMI was also the widest
in Figure 6. Therefore, the relationship between dIMI and the change of PM during the COVID-19
outbreak is not only the most relevant but also owing the strongest spatial heterogeneity.

From Figure 6a,b, the impacts of traffic mobility reduction on PM pollutants demonstrated great
spatial heterogeneity. For both two pollutants, the impacts of traffic mobility were not significant in
northwest and northeast regions. In addition, it saw a negative relationship with PM concentration in
southwest regions, such as Yunnan and Guizhou. There are two aspect reasons for explaining this.
On one hand, the PM pollutants reduction during the COVID-19 outbreak period was not obvious and
even showed increased trends in these regions, which may be related with some exterior pollutants
from southeast Asian countries [54]. On the other hand, the population density in these regions is
relatively low, which means the reduction of residents’ travel did not contribute too much to the PM
pollutant emission [29]. Thus, despite a little PM decrease caused by traffic mobility reduction, the
overall PM pollution did not decrease too much. On the contrary, traffic reduction had a notable effect
on PM pollution drop in central, south, and east of China. It can be found that a decrease of 0.1 in
IMI would lead to a decline in PM concentrations by higher than 5% in these regions. These regions
with the highest population density suffered the COVID-19 control measures for a long time and both
the decreases of IMI and PM pollution were very significant. Although the decline of traffic mobility
made a great contribution to PM decline during the COVID-19 outbreak, it must be recognized that it
is not a long-term effective solution. The government should further widely promote the application
of electrical and hydrogen vehicles and encourage residents to use more public transportation [55,56].
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There were also some differences between the two PM pollutants. Except for the south regions, the
cities with high coefficients in the PM2.5 model were mainly distributed in eastern regions, such as
Jiangsu and Zhejiang, while those in the PM10 model were mainly in central regions, such as Henan
and Shandong. This may be related to the different main emissions of traffic [57,58]. Compared with
using complex traditional traffic emission inventories, it is more convenient to apply intra-city mobility
intensity obtained based on real-time LBS data to measure the influence of traffic mobility on PM
pollution during a relatively short time like the COVID-19 outbreak period. In addition, there is also
some uncertainty about the applicability of traditional emission inventories [59]. Thus, in terms of
presenting the relationship of traffic mobility and PM pollution, LBS data, like IMI, may be the best
choice in our research.
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Figure 6c,d present the spatial local coefficients of drSIOV. The reduction of industrial production
led to a great impact on PM10 drop in northeast China where is the basis of the Chinese heavy
industry with very large secondary industry share. The local economic development mainly relies on
mining, metal process, and machine manufacturing, which are the main sources of PM10 pollution [60].
The COVID-19 control measures hindered the industrial operation thus making a significant contribution
to PM10 pollution improvement. In addition, the industrial operation has a strong relationship with
PM2.5 pollution concentration in southwest regions where the industrial operation was less affected
and PM2.5 pollution also showed a slightly increasing trend. In recent years, due to some restricted
policies of central government on air pollution, many industrial enterprises were transferred from
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some developed regions like east of China to the southwest and this led to some serious air pollution
issues [53]. Despite relative low PM concentrations in the COVID-19 outbreak, local government in
southwest of China should be alert to the deterioration of PM pollution caused by industrial emissions.
For both two pollutants’ models, the “not significant” cities are mainly in northwest, south, and
east regions. Due to the advanced technology and economy, industrial operation in south and east
regions may not be closely related to PM pollutants. This is also corresponded with the EKC model
(as the economic development, the pollution became worse first and then is alleviated) and some other
previous findings in certain areas and other countries, like Canada [53,61,62]. As for northwest regions,
the reason may be related to some other natural factors, such as the deserts in inner-Mongolia [63].

Figure 6e,f show the local coefficients of dHUM. It can be found that there was mainly a negative
relationship with PM pollution for relative humidity in the cities located in the forest and plateau.
In addition, the relationship between relative humid with PM10 is positive for cities located in the
Qinling Mountains and west of Sichuan. For dHUM, there are only 12% and 14% of PC for PM2.5 and
PM10, respectively, although it is the factor with the highest PC among all four meteorological factors.

4. Conclusions

In this study, we obtained the changed pattern of PM2.5 and PM10 concentration at city-scale in
China during the COVID-19 outbreak compared with the same period of 2019 by spatial autocorrelation
analysis. In addition, an improved model of GWR, MGWR, was applied for detecting the influence of
four meteorological factors and two socioeconomic factors on the drop of PM pollution. The main
findings are as follows:

(1) The decline changes of both PM2.5 and PM10 presented a totally different spatiotemporal
pattern in 2019–2020 compared with that of 2018–2019. In the result of 2018–2019, obvious “low-low”
clustering patterns were found in north, central and east regions of China, whereas, in 2019–2020,
it showed strong clustering patterns of high decline rates of PM2.5 and PM10 in these regions

(2) IMI derived from Baidu and secondary industrial output values derived from local government
bulletins were adopted to measure the influence of the decline of traffic mobility and industrial
operation. These two variables showed an obvious positive relationship with the decline of PM2.5 and
PM10.

(3) MGWR outperformed OLS and GWR, with R2 of 0.711 and 0.732 for drPM2.5 and drPM10,
respectively. This reflected that the strategy that releases the restriction of constant scales was very
effective in our research. Thus, the results of MGWR were applied in the analysis of influencing factors.

(4) In the results of MGWR, compared with meteorological variables, the decline of IMI and the
decline rate of secondary industrial output values had a more significant impact on PM pollution
reduction. It showed that the reduction of traffic mobility caused more reduction of PM2.5 in east China,
such as Jiangsu and Zhejiang, while more reduction of PM10 in central regions, such as Shandong and
Henan, were observed. In addition, it was found that the reduction of secondary industrial output
values caused more PM2.5 drop in southwest regions of China and more PM10 drop in northeast
of China.

This study also has some limitations. First, limited by data, this study only adopted the data of
264 prefectural cities, which may cause some biases. Second, there are some other influencing factors,
such as biomass burning, sand dust, and biogenic and biological PM, were not involved. Third, most
PM observation sites are in urban areas while sparsely distributed in rural areas. This may also induce
some uncertainty to the results. Last, some other meteorological factors, like atmosphere stability,
which are also related with PM are not involved in this study, and we will consider these when data
is available.

In general, although the COVID-19 control measures restricted travel freedom and economic
development and forced people to conduct tele-work and tele-study, it provided an excellent and
precious opportunity for observing PM pollution improvement. The findings of our research reflect
the spatiotemporal PM pollution decline pattern and the impact of related influencing factors, thus
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being helpful for air pollution mitigation and control for the government. However, it also should be
recognized that, despite the remarkable reduction, the concentrations of PM2.5 and PM10 were several
times higher than the WHO standards during the COVID-19 outbreak. Therefore, there is still a long
way to go to limit the PM pollution of China in the future.
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