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Abstract: Carbon dioxide (CO2) laser cutting finds one of its most relevant applications in the
processing of a wide variety of polymeric materials like thermoplastics and thermosetting plastics.
Different types of polymeric materials like polypropylene (PP), polymethyl methacrylate (PMMA),
low- and high-density polyethylene (LDPE, HDPE), are processed by laser for different household as
well as commercial products in the industry. The reason is their easy availability and economical
aspect in the market. The problems associated with laser cutting include heat-affected zone (HAZ)
generated on the cut surface, kerf width (KW), surface roughness (SR), dross formation, and striations
formation. Furthermore, other related problems include taper cutting for deep parts and high-power
consumption. The primary purpose of this work is a comprehensive literature review in CO2 laser
cutting of polymeric materials. The influence of parametric variation on the cut quality is also
explained. Cut quality in terms of KW, SR, HAZ, dross formation, and striations formation is
analyzed by optimizing cutting variables like laser power (PL), cutting speed (CS), assist gas pressure
(Pg), pulse frequency, nozzle type and its diameter, and stand-off distance (SOD). The effects of the
laser cutting on the properties of different thermoplastics/thermosetting materials are also reported.
However, this topic requires further studies on exploring the range of polymeric materials, and their
optimal parameters selection to improve the cut quality. Therefore, the research gaps and future
research directions are also highlighted in the context of CO2 laser cutting for polymeric materials.

Keywords: polymeric materials; CO2 laser cutting; dross formation; assist gas pressure; cutting
speed; kerf; cut quality

1. Introduction

Conventional machining processes are able to process a large variety of materials. However,
the complex profiles are difficult to be generated by these processes [1–3]. These processes also possess
some restrictions to treat with difficult to machine materials. The nonconventional machining processes
like electric discharge machining (EDM), electron beam machining, electrochemical machining,
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and abrasive water jet machining are also employed to achieve fine and accurate machining of
materials. These processes can also generate complex profiles in difficult to machine materials.

An advanced technology named as laser beam machining is becoming the backbone of the
materials processing industry due to its numerous applications and processes. Laser (an acronym
for light amplification by stimulated emission of radiation) cutting can be performed by melting
or vaporization of the material by melt shearing or by vaporization cutting. Laser cutting offers a
highly precise cut quality by optimizing laser parameters to produce a little surface roughness (SR),
and minimum heat-affected zone (HAZ). Laser cutting is also independent of material hardness. It offers
more material utilization, no tool wear, and high cut quality [4–7]. Caiazzo et al. [8] presented an
experimental study of process variables in carbon dioxide (CO2) laser cutting of polymeric materials
such as polycarbonate (PC), polypropylene (PP), and polyethylene (PE). The effect of CO2 laser cutting
of different polymer materials at different settings of laser parameters was analyzed and explained.
It was proved that cut quality could be enhanced by using a low power CO2 laser.

A significant work is already available on the laser cutting of metals, composites, and alloys.
Although, a significant breakthrough is also made in the laser cutting of polymeric materials over
the last few decades. However, the laser cutting of polymeric materials is still needed to be explored
further to enhance cutting efficiency. Therefore, this work is done to study the laser cutting of polymeric
materials for a variety of household, and industrial applications. Numerous research studies on
laser cutting have been reported to reduce HAZ, SR, dross and striations formation, and enhance
material removal rate (MRR). The purpose of this work is a comprehensive literature review on
cutting plastic polymers using a CO2 laser to understand and investigate the cut quality in terms of
HAZ, kerf formation, SR, dross formation, striations formation, and material removal rate (MRR).
Emerging challenges and future trends have also been proposed in the end.

2. Classification of Polymers

In general, macro-molecular compounds properties are strongly linked to changes in
temperature [9]. Amorphous polymers at sufficiently low temperature are harder and glass-like,
while at normal critical temperature they take a softer and moldable form, the glass transition
temperature (Tg) [10]. At higher temperature Tg, polymer chain shows an increased variability that
allows the flow of the bulk material. Flexibility is restricted at temperatures below Tg, and the polymer
turns into a glassy, flexible, or elastic solid. Tg is conditioned by its structural chemistry, physical
or chemical interconnection, and molecular weight [11]. The Tg value is considered as an important
indicator of either a thermosetting or thermoplastic polymer’s classification of the plastic compound.

Synthetic polymers (like PP, PE) and semisynthetic polymers (like vulcanized rubber) have
inherent material properties influenced by the values of the Tg parameter that vary by molecular
weight, as defined by Fox and Flory [12] with the relation reported in Equation (1).

Tg = Ta
g −

K
Mn

(1)

Here, Ta
g is the maximum temperature at which the qualitative infinite molecular mass can be

attained, K is an analytical value linked with the free polymer sample volume, and Mn is its mean
molecular weight [12].

2.1. Thermoplastic Polymers

Thermoplastic polymers like PE, PC, and PP, are the polymeric materials that, become softer
and then harder after heating and cooling. When heating thermoplastic polymers to their melting
point, they melt into a liquid. When these polymers are cooled below the Tg, they freeze to a glassy
state. Thermoplastic polymers become soft and go into a viscous liquid state after reaching the Tg

or melting temperature. These polymers are then converted into glassy or semi-crystalline solids
following the cooling method [13]. This process allows small cooling and heating cycles without
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any structure or function repercussions. For instance, shape and color altering, microstructural
changes, and mechanical failure produce a reversible and restricted thermoplastic melting solidification
behavior [14,15]. The whole crystal structure is changed if the heating temperature of the thermoplastic
polymer is higher compared to its melting point. The linear molecular link chain dispersed randomly
and changed special physico-chemical composition [16].

2.2. Thermosetting Polymers

Thermosetting polymers, also designated as thermosets, are irreversible plastic materials.
The permanent changes can be made by heating over 200 ◦C. When a thermoset polymer heats
up more than its melting point, the liquid–solid-state transition becomes irreversible, and it is called the
solidification process. In the curing procedure, small molecules form a chemical bond, build complicated
networks, and then establish a permanence of hard and rigid substance [13]. Similar to thermoplastics,
the thermoset plastics are not temperature-dependent on the mechanical characteristics like tensile
strength, hardness, and compressive strength.

3. Laser Cutting Mechanisms

The mechanism for the determination of a combination of material, assist gas, and laser type
can be divided into three different categories which include vaporization cutting, fusion cutting,
and chemical degradation.

3.1. Fusion Cutting

Most thermoplastics are cut by melting the material, and this process is known as fusion
cutting [17–20]. The underlying mechanism is similar to the inert gas metal cutting because it melts the
material in-depth. The assist gas (usually compressed air) takes away the molten material, which is
used to cut the workpiece. The kerf width (KW) varies between 0.2 mm and 0.8 mm depending on the
material thickness. The cutting edge and the face are macroscopically smooth with certain streaks that
are formed by the melt material from the laser beam from the point of entry to exit point. The materials
that can be cut by fusion contain PE, PC, and PP [8]. The laser creates a small molten pool which is
constantly blown away by the assist gas as can be seen in Figure 1 [21]. The cutting parameter level
values for different polymeric materials are reported in Table 1.
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Table 1. Cutting parameter levels for polyethylene (PE), polypropylene (PP), and polycarbonate (PC)
in the fusion cutting mechanism [22].

Material Thickness (mm) Laser Power (PL, W) Cutting Speed (CS, m/min)

PE 1 500 11
3 500 2.2
6 500 1
9 500 0.5

PP 1 500 17
3 500 4
6 500 1.6
9 500 0.9

PC 1 500 21
3 500 5
6 500 2.1
9 500 1.1

Note: The assist gas pressure (Pg) ranges from 1 to 4 bar, and the nozzle diameter ranges from 1 to 2 mm in
fusion cutting.

3.2. Vaporization Cutting

In this type of cutting, the material is quickly heated to the temperature before significant thermal
conduction melting occurs. Then, vaporization takes the material away and the fluid is normally
ejected through the inert gas jet with the laser beam. The plastics mostly cut through the vaporizing
mechanism include polymethyl methacrylate (PMMA), and polyacetal. An illustration of CO2 laser
vaporization cutting is shown in Figure 2 [23]. The cutting edge resulted in high quality and produced
a little kerf. This form is applied to thin portions since a unit quantity of material needs more energy to
be removed [22,24]. The cutting parameters level values for PMMA material are reported in Table 2.
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Table 2. Cutting parameter levels for PMMA in the vaporization cutting mechanism [22].

Material Thickness (mm) PL (W) CS (m/min)

PMMA 1 500 35
3 500 8
6 500 3.5
9 500 1.9

Note: Pg usually ranges from 1 to 4 bar for PMMA and nozzle diameters from 1 to 2 mm in the vaporization cutting
mechanism. However, if the glossy edge is required, the Pg may be dropped below 0.25 bar.

3.3. Chemical Degradation

The laser beam changes the material integrity by breaking chemical bonds in this mechanism,
such as woodcutting. Woodcutting reduces big cellulose molecules to the main components of carbon
as well as water vapor. The chemical degradation mechanism is used to cut a variety of thermosetting
polymers such as rubber and epoxy resins. The mechanism generates a smooth and flat cut edge.
The edge quality of cutting materials in chemical degradation is higher compared to the mechanical
actions (conventional cutting) because it is soft and free of scattering. However, the cutting edge in this
mechanism is covered with residual carbon layer dust that may require cleaning [22,24]. The cutting
parameters levels for different thermosetting polymers are given in Table 3.

Table 3. Cutting parameter levels for selected materials in the chemical degradation mechanism [22].

Material Thickness (mm) PL (W) CS (m/min)

Rubber 3 400 4
6 400 1.6
9 400 0.9

Rubber (carbon-filled, black) 3 400 3
6 400 1.2
9 400 0.35

Note: Pg usually ranges from 3 to 10 bar and nozzle diameters from 1 to 2 mm in chemical degradation.

4. Quality Characteristics of Laser Cutting Edge

The accuracy in laser cutting is highly dependent on its quality characteristics such as KW, SR,
dross, charring, and width of HAZ. The quality characteristics of the laser cutting are highly dependent
on the input parameters, and their levels. The following section discusses these key features to address
the cut quality (also known as quality characteristics).

4.1. Kerf Formation

Kerf is defined as the slot produced as a result of material erosion and KW is the measurement
of the excessive material removed (width of the cut slot) [25]. Thus, the slot produced by the laser
is called kerf, and the width of that slot is called KW. The illustration of KW is shown in Figure 3.
Eltawahni et al. [26] studied the kerf properties for PMMA and classified them as upper, middle,
and lower kerf. Yilbas et al. [27] suggested a scaling law method to analyze the parametric trends
for KW. It was concluded that both PL and KW are directly proportional to each other, while CS is
inversely proportional to KW by keeping PL constant. KW is increased by increasing the workpart
thickness. The focal point position of the lens caused an increment or decrement in the KW of
material. Mathematical modeling is used to find an optimized value of KW and the model revealed
the correlation with the measured KW of the PMMA material at low PL [28]. Sulaiman et al. [29]
explained the influence of different process variables like PL and CS on KW in laser cutting. It was
inferred that PL and CS are highly significant for KW, and high-power lead to a wider kerf formation.
Hossain et al. [30] explored the behavior of different process variables on kerf formation and resulted
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that stand-off distance (SOD), CS, Pg, and PL are highly influential parameters for KW. Gross et al. [31]
reported the difficulties in understanding of a melting flow layer such as high temperature, intensity,
Pg, and dense structure of the kerf. An enhancement in PL increased the KW, whereas an increase in
CS reduced the KW [32,33].Materials 2020, 13, x FOR PEER REVIEW 6 of 24 
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Figure 3. Schematic illustration of the cut material and its kerf formation (A,B): Schematic illustration
of kerf and kerf width, (C): Physical representation of KW, and (D): Microscopic analysis of kerf width.

The physical model of the material and kerf are shown in Figure 3A. Pictorial representation of
kerf and removed material is shown in Figure 3B. Figure 3C indicates the physical view of the kerf.
The microscopic examination of KW for the PE sample at 100×magnification is shown in Figure 3D.

Tamrin et al. [34] examined the influence of PL and CS on performance measures such as MRR,
and KW for PC. As a result, CS varied inversely with the work part thickness, and directly with the
MRR. The authors also inferred that upper KW was found 1.5 times larger as compared to bottom KW.
They further noted that the cut quality varied directly with the PL up to a certain threshold extent and
then gradually reduced.

4.2. Striations Formation and Surface Roughness (SR)

Striation formation is another quality characteristic of laser cutting surface. The surfaces that are
cut with a laser beam are usually striated almost constantly resulting in a rough surface. Striations are
not just produced by vibrations of the machinery. They appear in all the cases, independently of the
laser workpiece displacement system vibrations. A schematic representation of striations formation is
indicated in Figure 4.
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Figure 4. A schematic diagram for striation formation during the laser cutting process [35].

The striation must be reduced to achieve optimized laser cutting, resulting in minimal SR [36].
The preheated temperature is needed to give a fine cut, and decreased SR in the case of PMMA
plastic as can be seen in Figure 5 [23]. Yilbas et al. [37] conducted a comprehensive study to analyze
striation formation and its influence on laser cutting variables. They inferred that the major reasons
for striations formation include side-by-side burning, variation in absorbed power caused by surface
plasma, and fluid layer surface oscillation.
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4.3. Dross Formation

The material stuck to the bottom of the work part after the laser cutting is called dross formation
as demonstrated clearly in Figure 6. The dross may be solidified if the inert gas acts as an assist
gas. Dross formation is dependent on the viscosity, and surface tension of the molten material.
Materials with high viscosity and more surface tension resulted in more dross formation.

Gas jet is used to eliminate dross from the underside of the part and mechanically removed after
cutting [22,24,36]. Schuöcker et al. [38] conducted an experimental study on dross formation at the
material edges as a result of laser cutting. As a result, dross and slag formation occur at the kerf wall
not in the middle.

4.4. Heat-Affected Zone

The HAZ is created during the laser cutting due to more localized heat and is the closed cutting
zone (see Figure 7). Width size of HAZ is enhanced with the increase in energy input and cutting
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thickness for each unit length. The size of the width of HAZ is important to make cuts close to
heat-sensitive sections. Besides this, it is not usually included in the laser cut quality evaluation [22].
Abrão et al. [39] reported the influence of different input variables to create a fine and effective cut
in laser cutting. A proper experimental design was established to investigate the parametric effects.
The burning of the workpiece occurs when the laser tool speed is less compared to its critical speed [40].
The thermal effects induced on the workpiece surface were reported by Ohkubo et al. [41] as examined
by scanning electron microscopy.
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4.5. Charring

Charring is defined as the chemical process caused by incomplete combustion during laser cutting.
It is recognized by a black line in carbon-based materials. Therefore, the PL should be controlled
to avoid burning. Caiazzo et al. [8] examined the influence of laser cutting variables on charring
formation. It was resulted that charring is reduced by increasing CS and decreasing PL. Akitt et al. [42]
proposed an electronic supervisory system to improve power stability, and accuracy in laser processing.
The PL was measured after each quadrant of laser output for the calculation of its stability.

5. CO2 Laser Parameters for Polymeric Materials Processing

The characteristics of the work material, laser beam, the required KW, precision needed for the
cutting process, and workpiece width are the main attributes on which laser cutting variables depend
upon [43]. There are other various characteristics that directly or indirectly influence on the cut quality.
A detailed illustration of different parameters affecting the cut quality is described in a cause and effect
diagram as elaborated in Figure 8 [44].

Kuo et al. [45] reported the comparison of low- and high-power laser in laser cutting. It was
inferred that cut quality is significantly influenced by varying CS and PL compared to other process
input parameters. Figure 9 highlights some of the essential laser cutting variables.
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5.1. Laser Cutting Speed

The thermally affected region is reduced as a result of the increased CS. Therefore, CS should be
kept high to minimize the thermal damages in the workpiece. The cut quality is highly influenced by
CS. Depth of cut (DOC) varies inversely by increasing CS. Zhou et al. [46] derived the relationship of
CS with DOC and PL for PMMA material

CS = B
[

α

Q × Rb × ρ ×
√
π
(

PL

DOC
)
ω
]

(2)

where CS symbolizes the cutting speed, PL is the laser power, and α denotes the energy absorptivity.
It is presumed that the laser radiation is entirely absorbed by material where α = 1. Q is the specific
heat of the material, Rb = 0.25 mm describes the radius of the laser beam, ρ denotes the material density,
and DOC depicts the depth of cut. B andω are constants with the properties of the material. The values
of B andω have been checked from experiments. For different materials, B andω have different values.
Materials constant values used in Equation (2) are mentioned in Table 4. The expression reported in
Equation (2) indicates that CS is varied directly as PL, and inversely with the cutting depth as depicted
in Figure 10. The equation can be applied for practical reasons by the industries. They can use it to cut
more depth material at low CS and low PL or adjust according to the requirement.

Table 4. Properties values for different polymers [45].

Material Density (kg/m3) Q (kJ/g) B ω

PMMA 1180 2 0.415 0.7
Rubber 1300 2.1 0.791 0.83Materials 2020, 13, x FOR PEER REVIEW 11 of 24 
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PE and PP material were cut at a different material thickness. It was observed that the thick
workpiece needed high CS while the thin material needed less speed, as illustrated in Figure 11.
Controlled CS is required to cut different thickness that leads to obtaining good cut quality.
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Figure 11. Parametric trends for CS and the thickness at different power ratings for PE and PP
(A): Graphical trends for CS and thickness for PE at different power, (B): Illustration of steep curve
to describe the relationship between CS and thickness, (C): Pictorial representation of PE cut part,
(D): Graphical trends for CS and thickness for PE at different power, (E): Illustration of steep curve to
describe the relationship between CS and thickness, and (F): Pictorial representation of PP cut part [8].

Parametric trends for CS and thickness for PE at different power ratings as depicted in Figure 11A.
It can be seen that CS is inversely proportional to the work part thickness. Figure 11B indicated the
pointed part of Figure 11A. The CS for PE material was set at 3.8 mm/s, PL of 300 W, along with
the cutting thickness of 2 mm. The cut part is presented in Figure 11C. Figure 11D describes the
parametric trends of CS and thickness for PP at various powers. Figure 11E indicated the pointed part
of Figure 11D. The PP material with a 6 mm thickness was cut at 1.5 mm/s and 200 W PL. Figure 11F
illustrates the pictorial view of the machined part.

1. Vishnulal et al. [47] performed an experimental investigation of CS, PL, and vibrational frequency
(workpiece vibrations) for improving the laser cut quality in terms of MRR for PMMA, PC, and PP.
The authors concluded that low-frequency vibrations ranging from 12 to 24 hertz (Hz) improved
the cutting rate with more microcracks on the cut surface. Hashemzadeh et al. [48] found that CS
is increased by increasing workpiece vibrations: a 12-Hz vibration frequency raises the CS from
0.2 m/min to 0.4 m/min. The proposed the two-pass fabrication method to increase MRR. It was
concluded that various issues related to cutting like optimal parameters selection, dimensional
variations, energy input, and HAZ width can be controlled by the careful optimization of CS, Pg,
and PL using the two-pass fabrication method.

2. Nozzle diameter and CS are considered as the main factors for energy utilization effectiveness.
An optimal parameter setting is required to utilize energy effectively [49]. The high temperature
generated during cutting resulted in low cut quality because of the more HAZ produced. PL

and CS found significant variables to control the thermal effects of the work material [50].
Pietro et al. [51] analyzed the influence of CS on steady-state front temperature. The authors
realized that both CS, and temperature are directly proportional to each other. It was further
added that CS is increased because of heating edges during cutting.

The HAZ is decreased by increasing CS but sometimes shows fluctuating behavior. There should
be a controlled CS to minimize HAZ, and SR. The relationship of HAZ, and CS for PS, low-density
polyethylene (LDPE) material [52], and PMMA material where it shows fluctuating behavior [53] as
illustrated in Figure 12.
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Figure 12. Parametric trends for laser CS, HAZ for PS, LDPE, and PMMA at different power ratings
(A): Graphical illustration to show the influence of cutting velocity on HAZ, (B) Indication of pointed
part of (A), (C): Pictorial representation of one of the cut parts among PS and LDPE, (D): Relationship
between cutting velocity and HAZ at different power for PMMA, (E): Indication of maximum HAZ
from (D), and (F): Pictorial representation of the cut part with maximum HAZ [52,53].

The HAZ was analyzed showing behavior for PS, and LDPE with respect to CS, as shown in the
pointed part of the graph Figure 12B. Parametric trends indicated the relationship of CS, and HAZ
for the PMMA material at different PL values as illustrated in Figure 12D. The CS was found directly
proportional to PL. The CS is increased with the increase of the PL. This material (PMMA) showed
fluctuating behavior of the HAZ by varying CS, and PL. The machined specimen is shown in Figure 12F
in a pointed zoom graphical representation from Figure 12E.

5.2. Laser Power

The examination of thermal efficiencies has proved that low power leads to obtain a good cut
quality. Usually, high PL is employed for fast melting and ejection of work material during cutting.
Stepak et al. [54] performed CO2 laser cutting of polylactic acid (PLLA) material for making tubular
stents in surgical applications. Cut quality and geometry were studied by the changes in PL and CS
during machining. Sahin et al. [55] found that thermal efficiency is decreased by increasing PL. It was
also found that the combination of high CS and less PL lead to better thermal efficiency. Sahin et al. [56]
explained the requirement of high thermal efficiency in the context of PL. Madić et al. [57] described
the importance of optimal PL in laser cutting. It was inferred that Taguchi and response surface
methodology (RSM) are the vital tools to obtain the optimal results. Karimzad et al. [52] studied the
influence of PL and CS on cut quality in laser cutting of two different polymeric materials like LDPE,
and PS. It was concluded that the combination of low PL and high CS reduced the area of HAZ. It was
also proved that the SR and tensile strength of the material are directly proportional to each other.
The parametric trends for PL and other different parameters are presented in Figure 13.
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Figure 13. Parametric trends for PL and CS for PS, LDPE, PE, PP, and PC at different power ratings
(A): Graphical illustration to show the influence of laser power on HAZ for PS and LDPE, (B) Indication
of pointed part of (A), (C): Pictorial representation of one of the cut parts among PS and LDPE,
(D): Relationship between laser power and cutting speed at same thickness of 5 mm for PE, PP, and PC,
(E): Indication of pointed part from (D), (F): Pictorial representation of one of the cut parts among PE,
PP, and PC (G–I): Microscopic examination of cut part at 100×, 200×, and 500× [8,52].

The relationship between PL and HAZ for different polymers is described in Figure 13A. The HAZ
is increased by increasing PL [24]. According to this reported Figure, all materials indicated an
increasing trend with HAZ, and CS by varying PL. LDPE exposed a significant variation in the
HAZ. The response of the material is illustrated in Figure 13C. The zoomed graphical curve of the
LDPE material is shown in Figure 13B. The material that showed a small HAZ at low PL is evident
in Figure 13C. Figure 13D indicated the parametric behavior of PL and CS for different polymers.
In Figure 13F, the 5 mm thick material was cut to examine the relationship between PL and the CS.
The zoomed part is shown in Figure 13E. The zoomed microscopic image of the cut edge is indicated
to examine the cutting quality and the effect of the power on the plastic and resulted in a slight change
of voltage creating layers on the cutting edge. In Figure 13G–I, scanning electron microscopy at 100×
magnification indicated the layers on edge. It revealed the spots formation because of the dense focal
spot heated thick focal spot. Such spots can also be formed when the ejected material touches the edge
while cutting is ongoing. It needed optimal CS, and PL to minimize the layers, and spots on edge to
get finer cut.

5.3. Lens Focal Length

The primary purpose of a lens is to converge and focus the light beam onto the work surface.
The focal length of the lens can be adjusted by replacing different convex lenses (changing the lens
curvature). The wider lens curvature gives short focal length, while the small curvature gives a large
focal length. The point where the beam primarily starts cutting the material is called a focal point,
as pointed in Figure 14B. This alteration in the focal point position significantly influences the cutting
quality of the whole process. The cutting line is clear and transparent with a very little black line
on the cutting surface at a short focal point distance Figure 14C. Nanoscopic examination of the kerf
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is presented in Figure 14D. A schematic illustration of the focal length of the lens in laser cutting is
displayed in Figure 14A.
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5.4. Assist Gas Pressure

The use of any assist gas in the laser cutting process has four main functions that impact cutting
efficiency. These key functions include molten material ejection, back splatter protection of the lens,
the cutting edge is refreshed, and an added heat source caused by a thermal exposure to active
gas. Pg assisted in reducing dross formation and limiting the width of laser cutting, and HAZ [22].
The higher the Pg, the smaller the formation of dross and the lesser the HAZ. The degree of pureness
of the assist gas is also affected by the cutting performance. A small quantity of impurity can reduce
the total CS as well as increase the formation of dross. Compressed air is usually used in laser cutting
because it is readily available for cutting plastics [24,36].

Man et al. [58] observed the supply pressure in particular for pressures over four bar. As a result,
the lack of uniformity of effective jet pressure would lead to poor and inconsistent cuts, low cuts,
and high gas waste. Man et al. [59] found that the flow of gas in the kerf is better if the Pg is reduced
from 7 to 4 bar. It is because the more mass flow absorbs the kerf and without any significant difference,
the gas flows along the kerf. The gas is easy to set up for thermoplastics: low pressure air. The pressure
is usually increased for thermosets and composites, but high pressure causes the cut quality problems,
i.e., charring. This problem is more apparent in thicker materials.
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5.5. Nozzle Design and Diameter

It was concluded that Pg is highly influenced by the type of nozzle to improve cut quality. It was
further explained that the cutting performance of the convergence nozzle is higher as compared to the
tapered nozzle. Chen et al. [60] reported the demerits of high Pg on nozzle life. This problem was
resolved by a device with a lens to enhance nozzle efficiency so that the nozzle can withstand high
Pg. A narrower nozzle diameter leads to a greater flow and the greater the amount of removal of
molten material [59]. Riveiro et al. [61] pointed out the importance of finding new and cost-effective
nozzle design to resolve degradation of the performance responses of the exit jet from conical nozzles
currently in use.

5.6. Stand-Off Distance

The gap among the workpiece surface and nozzle for laser cutting is named as the stand-off

distance. SOD is highly influenced by the flow pattern of the gas. SOD is usually estimated from 0.5 to
1.5 mm to reduce turbulence in laser cutting. A narrow stand-off distance provides a stable cutting
environment irrespective of the risk of spreading the lens damage is increased [24].

5.7. Continuous Wave (CW)/Pulsed Beam Laser Mode

Continuous wave (CW) and pulsed laser beams are widely used in laser cutting, but typically CW
is used. The laser cutting of plastics by the CW CO2 laser was studied theoretically and experimentally
by Atanasov and Baeva [62]. Laser cutting of PMMA, Si-rubber, and Teflon-PMMA-Teflon structures
was analyzed. A good agreement between theoretical estimation and experimental data was found.
They pointed out that model relations, like the CS, can be predicted as a function of the substratum
thickness or PL and used for determining the optimal setting of the process parameters. Nylon was
reported to be cut by either a CW or a CO2 pulsed laser. The process was optimized using a procedure
called the 3D finite difference method. The quality of the edge can be improved significantly if pulsed
laser mode is used [62]. Pulsed laser beam lower energy is usually chosen to precisely cut fine elements.

5.8. Pulse Frequency

When the pulse frequency is increased, the laser pulse overlap is consequently reduced then the
energy of the individual laser input lead to decrease KW [63]. At this frequency, the 600 Hz pulse
frequency, the kerf dross expulsion rate becomes nearly steady. It has been noted that the thickness and
CS have an important effect on flatness. Laser cut quality can be enhanced by varying the combination
of laser output intensity, and its pulse frequency [64].

6. Properties of Cut Material in CO2 Laser-Assisted Machining

Every material has its properties such as mechanical, thermal, physical, and optical characteristics,
which influence the cut quality [65]. Some of these characteristics are briefly described here in the
following subsections.

6.1. Mechanical Characteristics

The mechanical properties affected by the cut quality include elastic modulus, tensile/compressive
strength, bulk modulus, shear modulus, and bending stress. The detailed examination of stress
distribution provides an idea about the interactions of focal point position and stress concentration
in the material. Goeke and Emmelmann [44] performed experiments for the investigation of the
influence of materials properties on the cut quality. Radek et al. [66] performed the experimental
investigation in laser cutting assisted modification by electrode spark deposition to analyze the surface
microhardness, porosity, and adhesion. It was found that the aforementioned mechanical properties
of the modified copper-tungsten electrodes are significantly influenced by the machined surface
morphology. Their findings were validated through experiments.
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Effect of Polymer Classification on the Mechanical Properties

The microscopic and mechanical properties of crystalline (like LDPE), and amorphous (like PS)
polymers were studied in laser cutting [52]. The results indicated that:

• Microcracks, sink marks, and re-solid spots of molten material appear in amorphous polymers
compared to the crystalline polymers. The microcracks were observed in three areas, such as cut
surface, HAZ, and HAZ with base polymer boundary.

• HAZ and SR are decreased for semi-crystalline polymers.
• The laser input parameters affect both polymer types with almost similar effects on HAZ, SR,

reducing PL, and increasing CS to improve the HAZ and SR.
• Semi-crystalline and amorphous polymers lost tensile strength after laser cutting. The formation

of HAZ and SR are the reasons for this decrease in tensile strength.
• The presence of microcracks in HAZ plays a vital role in its tensile strength for an amorphous

polymer.
• Among these two types of polymers, crystalline polymers result in better cut quality because of

less HAZ and SR.
• The microcracks grow under the tensile load and result in sample fracture under the original tensile

strength of the base polymer, according to microscopic studies that make PS cutting difficult.
• PS material’s tensile strength decreases significantly when power is increased as compared to

LDPE material, as shown in the graphical illustration in Figure 15.
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6.2. Thermal Characteristics

Thermal properties of the material such as thermal expansion, thermal conductivity, heat capacity,
and enthalpy exert their influence on the cut quality. Among these properties, the thermal conductivity
of a material is highly dependent on its morphology. The polymeric materials usually possess low
thermal conductivity, which limits their use in high-temperature applications like in heat exchangers.
The more the thermal conductivity of the polymer, the greater the temperature distribution, resulting
in greater MRR [67,68]. Yilbaş et al. [69] established the relationship of temperature distribution with
the work material thickness. The temperature distribution diminished when the size of the workpiece
decreased. Banerjee et al. [70] made a comparison of the processing of various polymers such as
fluoroelastomers (FKM), polyamide 6 (PA6) and thermoplastic elastomers (TPEs) in laser cutting.
TPE contained less melted volume and area than PA6, whereas FKM possessed less melted area and
volume among all previously stated polymers. The working temperature was found maximum on
the workpiece surface and its edges. Choudhury et al. [71] conducted an experimental study in laser
cutting, and concluded that HAZ varied directly with PL and inversely with Pg, and CS. The order
of increasing HAZ produced for polymeric materials like PP, PMMA, and PC follows PP > PC >
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PMMA [53]. Thus, the cut quality of PMMA is higher compared to PC, and PP because of less HAZ
produced on the cutting edge.

6.3. Different Strategies to Improve the Cut Quality

Various polymers like Nylon PA6-T27 result in poor cutting performance while processing using
a CO2 laser. Accordingly, different methods were adopted to accelerate this cut quality like doping in
2.5–10% of Nylon using organic bentonite improved the cut quality [72]. Chiou et al. [73] implemented
the six sigma principles to develop and understand the methods related to the properties of cut material.
These principles were utilized in the laser cutting of acrylic polymers. The examination of different
process parameters was made by using an internet-based machine vision (i.e., a camera with an image
processing software), and Coordinate Measuring Machine (CMM). Modest et al. [74] developed a
mathematical model to scribe the thickness of the material when studying the conduction properties of
the material. The material’s inner temperature was predicted and measured after its initiation by laser.
As a result, the formation of grooves and temperature is slightly influenced by the thermal effects of
conduction and convection. Golyshev et al. [75] inferred that the amount of energy needed in laser
cutting for obtaining the least SR in the melt flow is about 26 J/mm3.

7. Applications of CO2 Laser Cutting

Laser cutting plays a significant contribution to different industrial sectors for precision work.
Stepak et al. [54] performed the CO2 laser cutting of PLLA material for making tubular stents in
surgical applications. Ueda et al. [76] reported the benefits of laser cutting over conventional machining
techniques in terms of work accuracy, fast cutting, and inexpensive system. The CO2 laser can assist in
cost reduction and an increased production rate. In another study, Bonardi et al. [77] conducted the
experimental study to decompose alkoxyamine through a CO2 laser. It resulted in the polymerization
initiated for benchmark methacrylate monomers which considered an irradiated area, and having the
significant potential for writing applications in 3D printing.

Additionally, CO2 laser processing eliminates distortion and increases the production rate,
producing optimal microscopic results [78]. Sharp et al. [79] employed a CO2 laser for the manufacturing
of medical types of equipment. Ink filler was used for showing a mark. Laser cutting is widely used to
machine medical and surgical types of equipment. Therefore, it can also be regarded as a lifesaver.
Caiazzo et al. [8] described some of the standard applications of laser cutting, which include cellular
phones, orifice drilling, inkjet heads, flat panel annealing, optical circuits, drilling angioplasty devices,
and catheters balloons. A parametric investigation on different laser types was performed, and as a
result, the main application areas of laser cutting include material removal, cladding, and inscribing.
Mayuet et al. [80] made a comparison of laser-assisted drilling with conventional drilling and stated
that the laser processed part resulted in no mechanical vibrations, cutting forces and tool wear like in
traditional drilling.

Wang et al. [81] proposed an idea for a laser marker to process it at low Pg, and PL.
Chryssolouris et al. [82] proposed a three-dimensional laser cutting approach for composite materials
along with plastics polymers. The method involved the use of two interlinked beams for 3D cutting.
These polymeric materials are used in daily life to manufacture plastic bottles. Stock et al. [83] reported
the laser cutting process for CFRP material for its use in light material weight applications such as in
aircraft and other instruments.

Schraft et al. [84] examined the laser cut quality by evaluating the dominance-free cancellation
beam guidance component optical effects for obtaining high accuracy. The representation of a
polyethylene terephthalate (PET) material cut by the CO2 laser is shown in Figure 16. Kim et al. [85]
described the application of laser processing to join polymers. The authors found that the industries
greatly benefited from the combination of PP, and PC when joined for household, and industrial
products. However, the molecular power and adhesion forces of both PP and PC were found less.
Rooks et al. [86] provided an example of three-dimensional laser cutting, which has typical applications
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in an assembly line of the automotive industry for cutting car sets and filling them with compounds.
Genna et al. [87] reported the application of laser processing for making molds, and tools. It was found
that the material’s cutting quality can be improved by clockwise cutting.
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8. Conclusions and Remarks

The inspirations of using CO2 lasers in cutting different polymeric materials are undeniable for
households as well as industrial applications. The present study is established to review the study
of the influence of different process variables such as cutting speed (CS), laser power (PL), and assist
gas pressure (Pg), pulse frequency, nozzle type and its diameter, and stand-off distance for surface
roughness (SR), heat-affected zone (HAZ), kerf width (KW), dross formation, charring, and striations
formation, in the CO2 laser cutting of plastic polymers. The main findings of this work include:

• Low power CO2 laser cutting possesses a significant potential to improve the cut quality in terms
of SR, HAZ, and KW, dross, and striations formation.

• The reported results indicate that: (a) SR is increased as PL and CS are increased. (b) HAZ is
varied directly with PL and inversely with the CS. (c) KW is varied inversely with CS. (d) Pg

is found highly influential in reducing the dross formation. (e) The control of PL is considered
as highly important factor to minimize the workpiece burning in terms of striations formation,
charring formation, and HAZ. (f) Striation formation is significantly affected by the variations in
Pg, fluctuations in PL, and workpiece vibrations. (g) The polymeric materials with high density
and surface tension result in more dross formation while laser cutting. (h) As Pg is increased,
the dross formation and HAZ intensity is reduced. (i) Nozzle type and its diameter are highly
influenced on Pg to improve the cut quality. (j) An optimized stand-off distance assists in stable
cutting, and reduces turbulence. (k) As pulse frequency is increased, then KW is reduced.

• The properties of polymeric materials (thermoplastics/thermosetting) also influence on the cut
quality in laser cutting. However, the mechanical and thermal properties are highly influential
compared to other characteristics.

• Low power CO2, laser cutting has shown promising results for almost all ranges of low melting
materials. Therefore, it finds difficulty in processing high melt materials.

9. Shortfalls and Areas of Future Research

Previous sections were dedicated to elaborate the importance of CO2 laser cutting for polymeric
materials, properties of these polymeric materials, laser cutting parameters, and different application
areas. Significant work has already been done on CO2 laser cutting of polymers. Still, the following
recommendations could be supposed to be the possible future research trends in laser cutting.

• Although the laser cutting variables like CS, PL, focal spot position, and Pg are comprehensively
described, their combined influence on overall cut quality is still needed to be explored further
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• Some of the quality characteristics like charring formation and striations formation in CO2 laser
cutting are less significantly reported in the existing literature. Therefore, these should be further
explored to improve the cut quality.

• The Pg imparts a significant role on the cut quality. Therefore, a suitable Pg range is needed to be
calculated further by balancing the exact material requirements and the overall cut quality.

• As nozzle type and its diameter is highly influenced on Pg for cut quality. Therefore,
the investigation on the design of the nozzle is yet needed to be explored further.

• The properties of polymeric materials like mechanical and thermal characteristics in the context of laser
cutting are reported with an exploratory discussion. Other properties, such as optical characteristics
including transmission, reflection, and absorption, are yet needed to be explored further.

• Different mathematical modeling techniques in laser cutting are yet needed to be explored to
improve the cut quality.

• Some of the polymeric materials produce toxic environmental effects when burned; therefore,
the environmental impacts of various thermoplastics/ thermosetting polymers in laser cutting are
yet needed to be further elaborated.

CO2 laser cutting is found to be very useful in various industries, and household applications
because of its consistently growing demand for a wide variety of low melting materials, especially
plastic polymers. Therefore, it is still a potential research area for further investigation.
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Nomenclature

CMM Coordinate measuring machine
CO2 Carbon dioxide
CS Cutting speed
CW Continuous wave
DOC Depth of cut
EDM Electric discharge machining
HAZ Heat-affected zone
HDPE High-density polyethylene
Hz Hertz
KW Kerf width
LDPE Low-density polyethylene
MRR Material removal rate
PA6 Polyamide 6
PC Polycarbonate
PE Polyethylene
PET Polyethylene terephthalate
Pg Assist gas pressure
PL Laser power
PMMA Polymethyl methacrylate
POM Polyoxymethylene
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PP Polypropylene
PS Polystyrene
Q Specific energy of a material
Rb Laser beam radius
SOD Stand-off distance
SR Surface roughness
Tg Glass transition temperature
TGA Thermoplastic elastomers
ti Interaction time
W Watt
α Energy absorptivity
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