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ABSTRACT: In recent years tremendous progress in the field of light−matter interactions has
unveiled that strong coupling to the modes of an optical cavity can alter chemistry even at
room temperature. Despite these impressive advances, many fundamental questions of
chemistry in cavities remain unanswered. This is also due to a lack of exact results that can be
used to validate and benchmark approximate approaches. In this work we provide such
reference calculations from exact diagonalization of the Pauli−Fierz Hamiltonian in the long-
wavelength limit with an effective cavity mode. This allows us to investigate the reliability of
the ubiquitous Jaynes−Cummings model not only for electronic but also for the case of ro-
vibrational transitions. We demonstrate how the commonly ignored thermal velocity of
charged molecular systems can influence chemical properties while leaving the spectra
invariant. Furthermore, we show the emergence of new bound polaritonic states beyond the
dissociation energy limit.

Within the past few years, cavity-modified chemistry has
gained popularity in the scientific community. This is

due to several major breakthroughs in this emerging field of
research.1−6 For example, it was demonstrated that strong
coupling in a cavity can be used to control reaction rates7−9 or
strongly increase energy-transfer efficiencies.10,11 In contrast to
the usual studies in quantum optics,12 where ultrahigh vacua and
ultralow temperatures are employed, many of these results were
obtained at room temperature with relatively lossy cavities.
Furthermore, recently it was even reported that strong coupling
can modify the critical temperature of superconducting
materials.13,14 These results nurture the hope of the techno-
logical applicability of cavity-modified chemistry and material
science.
Despite these experimental successes, the basic principles of

cavity-modified chemistry (also called polaritonic or QED
chemistry2,4,9,15) are still under debate.4,16−21 Currently, much
of our understanding is based on quantum-optical models that
have been designed for single (or a dilute gas of) atomic systems,
whereas approximate first-principles simulations for coupled
matter−photon situations emerge only slowly.15,22−29 We
believe it is pivotal to validate these model approaches and
approximate first-principles simulations with numerically exact
reference calculations to obtain a detailed understanding of
cavity-modified chemistry and to see the limits of the different
approximations used. Eventually, one should reach a level of
certainty as is the case in standard quantum chemistry.30

This work provides such references by presenting an exact-
diagonalization scheme for the Pauli−Fierz Hamiltonian of
nonrelativistic quantum electrodynamics (QED) in the long-
wavelength approximation for three interacting particles. Here,
we report the first exact results for real, three-dimensional

atoms/molecules coupled to one effective photon mode. To
date, exact solutions were available only for model Hamiltonians
within a cavity (e.g., 1D with soft-Coulomb interaction). As
examples, we present results for the He atom and for HD+ and
H2

+ molecular systems in a cavity. We highlight that the
inclusion of the quantized photons makes the interpretation of
the obtained spectra much richer and more involved; we discuss
the level of accuracy of the ubiquitous Jaynes−Cummingsmodel
and demonstrate fundamental effects beyond this model, such as
the formation of bound states beyond the dissociation energy
limit as well as the influence of the thermal velocity for charged
systems. The latter point is specifically interesting because it
gives an indication why strong coupling has such an impact on
chemistry at room temperature. Moreover, it suggests that
current phenomenological models used to investigate collective-
coupling effects are less reliable when applied to molecular
systems.
The consistent quantum description of photons coupled to

matter is based on QED,31−33 which in its low-energy
nonrelativistic limit is given by the Pauli−Fierz Hamilto-
nian.33,34 For the case of optical and infrared wavelengths
(dipole approximation) the Pauli−Fierz Hamiltonian in the
Coulomb gauge can be further simplified29,32,35 and then reads
in atomic units
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While the Pauli−Fierz quantum theory as well as nonrelativistic
quantum mechanics are not relativistically covariant, for
equilibrium properties (the focus of this work) and low-energy
processes these theories have been proven to be highly
accurate.4 Here N is the number of charged particles (electrons
and nuclei/ions) with mass mi and charge Zi and p̂ = −i∇ is the
nonrelativistic momentum. Further, Mpt photon modes with
frequencyωα are coupled to the matter with the coupling λα that
contains the polarization vector and coupling strength of the
individual modes. These couplings and frequencies are
determined by the properties of the cavity. Further, q̂α and p̂α
= −i∂/∂qα are the photon displacement and conjugate
momentum operators, respectively, and the total dipole operator
is defined as ̂ = ∑ ̂= ZR r: i

N
i i1 . The inclusion of the quadrature of

the dipole operator in the Hamiltonian, i.e., the dipole self-
energy, is necessary for the stability of the light−matter
system.36

In the current work we will choose N = 3 and consider the
standard case of a single-mode cavity, i.e. Mpt = 1, with
polarization in the z direction (see Figure 1). To bring this

numerically very challenging problem into a more tractable form
we first re-express the Hamiltonian in terms of its center-of-mass
(COM) coordinates rci = ri − Rc, where the COM is given by

= ∑
∑R :c

m

m

ri i i

i i
. Next we can shift the COM contribution of the

total dipole operator to the COM momentum by a unitary
Power−Zienau−Woolley transformation (see section 1.1 of the
Supporting Information). The resulting eigenvalue equation can
be brought into the form
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where we made the wave function ansatz ψ′ = Φ′e Rik c . Here

= ∑Q Z: i itot
3 is the total charge of the three-particle system and

we have performed a photon-coordinate transformation such
that the frequency of the cavity becomes dressed

ω ω′ = + λ
ω( )1

M

Q1
2

tot . We already see that for charged

systems, i.e., Qtot ≠ 0, we get novel contributions from the
coupling of the COM motion with the quantized field that are
not taken into account in usual quantum-optical models.12

Therefore, in contrast to the usual Schrödinger equation, we will
be able to show that the COM motion (corresponding to the
continuous quantum number k) has an influence on the bound
states of the system. Such a contribution is to be expected,
because moving charges will create a transversal electromagnetic
field. Note that in our long-wavelength approximation this
contribution appears only for charged systems. For the full
(minimal-coupling) Pauli−Fierz Hamiltonian (i.e., beyond
dipole approximation), small deviations are also expected for
neutral systems.33

After separating off the COM coordinate with the above
transformations, we can represent the three relative COM
coordinates in terms of spherical−cylindrical coordinates,37 i.e.,
rci(R, θ,ϕ, ρ, ψ, ζ). Here ζ∈ ]−∞,∞[, {R, ρ}∈ [0,∞[, and the
radial coordinates obey {ϕ, ψ} ∈ [0, 2π[ and θ ∈ [0, π[. A
detailed description of the spatial coordinate representation is
given in section 1.3.1 of the Supporting Information. This allows
us to express the wave function by
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where Dm,k
l are the Wigner-D-matrices,37 with variational

coefficients Cl,m,n,k (see section 1.3.2 in the Supporting
Information). Photons are represented in a Fock number basis
|n⟩. Being formally exact, finite numerical precision is already
indicated by the number of basis states Nl, Nm, and Npt for the
angular and photonic basis states. The radial wave function φk is
represented numerically in perimetric coordinates on a 3D
Laguerre mesh37 of dimensionality Nmatter

3 . In practice, radial
integrals are solved numerically by a Gaussian quadrature (see
section 1.3.3 in the Supporting Information), whereas angular
integrals are solved analytically. Corresponding numerical
parameters are given in section 2.1 and convergence tests in
section 2.2 of the Supporting Information. We note that for an
uncoupled setup (i.e., λ = 0) m and l correspond to the usual
magnetic and angular quantum number, respectively. In this
case, the expansion of eq 3 becomes highly efficient because the
Hamiltonian assumes a block diagonal shape and it can be solved
for each pair m and l independently (reducing the dimension of
the problem to 3).37−39 Further simplifications can be made
based on the parity invariance of the uncoupled problem. For

Figure 1. Schematics of the cavity−matter setup used here and
exemplified for the HD+molecule.We assume the relevant cavity mode
polarized along the z-direction. The relative COM coordinates rci are
given with respect to the COM Rc.
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our coupled problem, however, these symmetries are broken.
Yet, because of the choice of the polarization direction, we
preserve cylindrical symmetry with respect to the lab frame, and
i t c an be shown tha t ⟨Φ ′ l ′ ,m ′ , n ′ |H ′ |Φ ′ l ,m , n ⟩ =
δm′,m⟨Φ′l′,m′,n′|H′|Φ′l,m,n⟩. Hence, the coupling only mixes
angular momenta and Fock states, which implies that the
original 10-dimensional problem can be reduced to 6
dimensions. Different spin-states can be distinguished by
(anti)symmetrization of the matter-only wave functions. This
is possible because we have at most 2 indistinguishable particles
for bound 3-body problems and the Pauli−Fierz Hamiltonian in
the long-wavelength limit is spin-independent. Note that our
exact diagonalization approach might also be suitable to
investigate chiral cavities ab initiowith onlyminor modifications.
They offer promising perspectives to control material properties
by breaking time reversal symmetry (unpublished results).
After having discussed how we exactly solve the problem of

real systems coupled to the photons of an optical cavity
numerically exactly, let us turn to the obtained results. As a first
example we consider parahelium coupled to a cavity. We
perform a scan of different frequencies, ω, centered around the
2S−2P resonance frequency ω2S2P = 0.6 eV, with an imposed
coupling of λ2S2P = 0.027 (i.e., a coupling strength of g = 0.074
eV). To be consistent with the traditional quantum optics
perspective, we kept ω λ/ constant for all calculations. This
implies ω ∝ g, and thus, our dispersion relations scale with
respect to the coupling strength g, which would be the natural
parameter choice for the traditional Jaynes−Cummings (JC)
model.40 The first observation that can be made in the
dispersion relation of Figure 2 is that the spectrum of the
Pauli−Fierz Hamiltonian becomes more intricate when
compared to the usual Schrödinger Hamiltonian. The reason
being that to eachmatter excitation we get photon replica spaced

by roughly the corresponding photon frequency. This can be
best observed for small frequencies, where we see clusters of
eigenenergies. In our case, we get 5 replica, where we have
chosen the number of photon states Npt = 6. However, in
principle we would get infinitely many discrete replicas at higher
energies, which is an indication of the photon continuum.
Moreover, if we simulated many modes, one would observe a
continuum of energies starting at the ground state.22,33 This
photon continuum is necessary to capture fundamental physical
processes like spontaneous emission and dissipation,22 but it
makes the identification of excited states difficult (in full QED
they turn into resonances31,33). That is why we have
supplemented the energies in Figure 2 with their color-coded
oscillator strengths. This allows us to associate the eigenenergies
with large oscillator strengths to genuine resonances, i.e., they
correspond to excited states with a finite line width. In a many-
mode case the photon replica with smaller oscillator strength
then constitute this line width.22 At the 2S−2P transition
(indicated with a vertical line) we find a Rabi splittingΩ = 0.148
eV into the upper and lower polariton (indicated with two
horizontal lines), which is of the order ofΩ/ω2S2P≈ 0.24; hence,
we are in the strong-coupling regime.12 Furthermore, we have
indicated the predictions from the ubiquitous JC model based
on the bare 2S and 2P states with yellow crosses. Because this
model was constructed for atomic transitions on resonance, it
captures the Rabi splitting quite accurately, but for larger
detuning parameters (i.e., off-resonance) it becomes less reliable
(see also section 3.1 in the Supporting Information). The JC
model also gives a good approximation to the multiphoton
replicas. However, because the JCmodel takes into account only
the 2S and 2P bare-matter states in our case, all the other
excitations are not captured. At this point it becomes important
to highlight that the considered strong-coupling situation is hard
to engineer on the single-atom level, and usually the collective
polarization of an ensemble of atoms or molecules is used to
achieve a similar Rabi splitting.3,5,6 In most cases the theoretical
description of collective coupling is then based on simplified
few-level approximations, such as the Jaynes−Cumming
approximation. The above result shows that such a few-level
approximation captures the basic behavior of the electronic 2S−
2P transition for a single atom quite accurately and hence seems
a good starting point for a collective-coupling model, e.g., the
Dicke model for a dilute gas.12 Yet, as discussed below, this can
change when we consider more complex systems such as
molecules.
Let us switch from the atomic to the molecular case and

consider transitions due to the nuclear motion. We here
consider the HD+ molecule and the lowest ro-vibrational L0−
L1 transition with a Rabi splitting ofΩ = 0.1× 10−2 eV. A similar
dispersion plot as previously given for He can be seen in Figure
3a. The first difference is that we now have two vertical lines. The
black vertical line corresponds to the (now dressed) resonance
frequency ω of the system. The charged molecule slightly shifts
the frequency of the empty cavity. The JCmodel, which does not
take into account this effect, predicts the resonance at the
magenta vertical line. In the HD+ case, where we find the exact
valueΩ/ω ≈ 0.23, the JC model predicts instead a value of 0.28
with the a wrong Rabi splitting of 0.149 × 10−2 eV. In addition,
the JC model underestimates polaritonic energy levels for all
evaluated cavity frequencies in the ro-vibrational regime. This
relatively strong deviation is due to the missing dipole self-
energy term in the JC model, and it highlights that few-level
atomic quantum-optical models are in principle less reliable

Figure 2. Rabi dispersion relation for parahelium in a cavity. The bright
polaritonic states, located at the ΔE = E2P − E2S resonance frequency
(vertical line) of the uncoupled system, are indicated by the two
horizontal lines. They are associated with a high (red) dipole transition
oscillatory strength, while corresponding dark many-photon replicas
and improbable 2S − iS transitions have a small oscillator strength
(blue). The yellow crosses (+) indicate energies derived from the JC
model based on a 2S and 2P two-level approximation and using the
respective parameters for the cavity detuning frequencies and photon
mode numbers.
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when applied to molecular systems (see also section 3.2 in the
Supporting Information). As already anticipated in the theory
part, the COM momentum in the z direction will have an
influence on the eigenstates of HD+, because we consider a
charged system. Indeed, while Figure 3a was calculated for zero
momentum, in Figure 3b we see the dispersion plot for a finite

COM kinetic energy = 0.24k
M2
z
2

× 10−2 eV ∝ T = 28.66 K.

Interestingly, the spectrum itself does not change, yet the
eigenfunctions do change (additional information is provided in
section 3.2 in the Supporting Information). Consequently,
previously dark transitions (small oscillator strength, blue)
become bright (large oscillator strength, red). Therefore, the
absorption/emission spectra, which depend on the oscillator
strength, get modified because of this COM motion and
excitations to higher-lying states become more probable.
Overall, the effect of the finite COM momentum appears to
be strong for the infrared energy range. Note that we find similar
results for H2

+, which are shown in section 3.3 in the Supporting
Information. Because for realistic situations we will always have a
thermal velocity distribution, these spectral modifications will

become important. Specifically, when we think about chemical
reactions, where the properties of charged subsystems are
essential, these modifications could help to explain the so far
elusive understanding of cavity-modified chemistry at room
temperature. They suggest that the phenomenological models of
collective strong coupling might not be accurate enough and do
not account for all relevant aspects of cavity-modified chemistry
in the infrared regime.
Another interesting result with relevance for polaritonic

chemistry is the formation of bound polaritonic states below41,42

and above the proton dissociation limit of H2
+ (see green region

in Figure 4). Because we treat the nuclei/ions quantum-
mechanically, we do not have to approximate the Born−
Oppenheimer surfaces in our present approach for a simple
picture of dissociation. Therefore, we can identify the
dissociation energy limit and the emergence of novel bound
polaritonic states based on the expectation value of the proton−
proton distance and by variation of the finite numerical grid (see
section 3.3 in Supporting Information). It is important to note
that there are no dipole-allowed transitions to excited bound
states available for the uncoupled case; that is, there are only S-

Figure 3. (a and b) Rabi dispersion relation for HD+ in a cavity for COMmotion Ekin = 0 and Ekin = 0.24× 10−2 eV, respectively. The bright polaritonic
states at the dressed L0−L1 transition (vertical black line) are indicated by the two horizontal lines. The magenta vertical line shows the prediction of
the JC model, which does not account for the net-charge frequency dressing. Dark (blue) and bright (red) states can be identified by corresponding
dipole oscillator strengths. The yellow crosses (+) indicate energies derived from the JC model.
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type many-body eigenstates below the proton dissociation
energy limit. Hence, if we couple to the cavity with a frequency
close to the dissociation energy, e.g., ω = 2.15 eV and λ = 0.051,
the Rabi model breaks down and no Rabi splitting is observed.
Yet, while we find (dark) S-type states (blue dots) that follow the
expected matter-only dissociation, multiple bright bound states
(red dots) emerge, which can persist beyond the proton
dissociation energy limit. These states, which are bright photon
replicas of the bound matter-only S-states, employ the captured
photons to bind the otherwise dissociating molecule. How
strongly these states influence the molecular dissociation
process has to be investigated in more detail in the future. It
will depend also on whether they correspond to long-lived
excited states or short-lived metastable states.
In this work we have provided numerically exact references for

cavity-modified chemistry and we have demonstrated that the
thermal velocity has a direct impact on properties of charged
systems, as well as the emergence of bound polaritonic states
beyond the dissociation-energy limit. We have done so by an
exact diagonalization of the Pauli−Fierz Hamiltonian for three
particles and one mode in center-of-mass coordinates and used
further symmetries to reduce the originally 10-dimensional
problem to a 6-dimensional problem. We have shown that the
resulting spectrum shows the onset of the photon continuum
and hence is no longer obvious to interpret. Furthermore, for ro-
vibrational transitions we have shown that the ubiquitous
Jaynes−Cummings model is not very accurate and that for
charged systems important properties like the oscillator strength
are modified for nonzero center-of-mass motion. Because this
can be connected to the thermal velocity, we found a so far
neglected contribution for cavity-modified chemistry at a finite
temperature. All these results highlight that at the interface
between quantum optics and quantum chemistry well-
established “common knowledge” is no longer necessarily
applicable and that currently used quantum-optical models
potentially require a further refinement when chemical proper-

ties are considered. To get a basic understanding of polaritonic
chemistry and material science we need to revisit standard
results and establish possibly new scientific facts, and numeri-
cally exact calculations of the basic QED equations are an
integral part of this endeavor.
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Angulo, J.; Yuen-Zhou, J. Can Ultrastrong Coupling Change Ground-
state Chemical Reactions? ACS Photonics 2018, 5, 167−176.
(20) Vurgaftman, I.; Simpkins, B. S.; Dunkelberger, A. D.; Owrutsky, J.
C. Negligible Effect of Vibrational Polaritons on Chemical Reaction
Rates via the Density of States Pathway. J. Phys. Chem. Lett. 2020, 11,
3557−3562.
(21) Schaf̈er, C.; Ruggenthaler, M.; Rubio, A. Ab Initio Nonrelativistic
Quantum Electrodynamics: Bridging Quantum Chemistry and
Quantum Optics from Weak to Strong Coupling. Phys. Rev. A: At.,
Mol., Opt. Phys. 2018, 98, 043801.

(22) Flick, J.; Welakuh, D. M.; Ruggenthaler, M.; Appel, H.; Rubio, A.
Light−Matter Response in Nonrelativistic Quantum Electrodynamics.
ACS Photonics 2019, 6, 2757−2778.
(23) Luk, H. L.; Feist, J.; Toppari, J. J.; Groenhof, G. Multiscale
Molecular Dynamics Simulations of Polaritonic Chemistry. J. Chem.
Theory Comput. 2017, 13, 4324−4335.
(24) Vendrell, O. Collective Jahn-Teller Interactions through Light-
Matter Coupling in a Cavity. Phys. Rev. Lett. 2018, 121, 253001.
(25) Triana, J. F.; Sanz-Vicario, J. L. Revealing the Presence of
Potential Crossings in Diatomics Induced by Quantum Cavity
Radiation. Phys. Rev. Lett. 2019, 122, 063603.
(26) Csehi, A.; Kowalewski, M.; Halaśz, G. J.; Viboḱ, Á. Ultrafast
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