
WJG https://www.wjgnet.com 5223 September 21, 2020 Volume 26 Issue 35

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2020 September 21; 26(35): 5223-5247

DOI: 10.3748/wjg.v26.i35.5223 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Stress granules in colorectal cancer: Current knowledge and 
potential therapeutic applications

Noémie Legrand, Dan A Dixon, Cyril Sobolewski

ORCID number: Noémie Legrand 
0000-0003-0516-0786; Dan A Dixon 
0000-0001-5631-4365; Cyril 
Sobolewski 0000-0002-9404-6290.

Author contributions: Sobolewski 
C, Legrand N, Dixon DA 
contributed to the writing of the 
manuscript; Sobolewski C 
contributed to the supervision of 
the manuscript; Dixon DA 
performed the critical revision of 
the manuscript for important 
intellectual content; all authors 
critically revised the manuscript 
and approved the final version for 
publication.

Supported by Geneva Cancer 
League, No. 1711; National 
Institutes of Health, No. R01 
CA243445; and National Cancer 
Institute Cancer Center Support 
Grant, No. P30 CA168524.

Conflict-of-interest statement: The 
authors declare no conflicts of 
interest.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 

Noémie Legrand, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva 
CH-1211, Switzerland

Dan A Dixon, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 
and University of Kansas Cancer Center, Lawrence, KS 66045, United States

Cyril Sobolewski, Department of Cell Physiology and Metabolism, Faculty of Medicine, 
University of Geneva, Geneva CH-1211, Switzerland

Corresponding author: Cyril Sobolewski, PhD, Research Associate, Senior Scientist, 
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 
CMU, 1 rue Michel-Servet, Geneva CH-1211, Switzerland. cyril.sobolewski@unige.ch

Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic 
compartments, involved in cellular adaptation to various stressful conditions (
e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain 
several scaffold proteins and RNA-binding proteins, which bind to mRNAs and 
keep them translationally silent while protecting them from harmful conditions. 
Although the role of SGs in cancer development is still poorly known and vary 
between cancer types, increasing evidence indicate that the expression and/or the 
activity of several key SGs components are deregulated in colorectal tumors but 
also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus 
suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore 
believed that SGs formation importantly contributes to various steps of colorectal 
tumorigenesis but also in chemoresistance. As CRC is the third most frequent 
cancer and one of the leading causes of cancer mortality worldwide, development 
of new therapeutic targets is needed to offset the development of chemoresistance 
and formation of metastasis. Abolishing SGs assembly may therefore represent an 
appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer 
chemotherapies. In this review, we summarize the current knowledge on SGs in 
colorectal cancer and the potential therapeutic strategies that could be employed 
to target them.
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Core Tip: Colorectal cancer (CRC) represent the second cause of cancer mortality 
worldwide. Although changes in genetic landscape associated with CRC development 
have been identified, most frequent mutations are currently undruggable. The development 
of chemoresistance represent a major cause of CRC-associated mortality and identifying 
mechanisms allowing cancer cells to avoid these treatments may considerably improve 
clinical outcomes. Current findings indicate that cancers cells can preserve their expressed 
mRNAs in harmful conditions by storing them in small cytoplasmic granules, called Stress 
granules (SGs), where they are kept translationally silent. Targeting these SGs proteins 
may therefore represent a novel and efficient therapeutic approach.
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INTRODUCTION
Colorectal cancer (CRC) represents the second cause of cancer mortality worldwide 
and the third most frequent cancer, with 1.8 million new cases and 881000 death in 
2018[1]. CRC development results from a long term-deregulated process starting with 
the development of small adenomas, which evolve toward large adenomas and CRC. 
In most of the cases CRC develops sporadically (70%) and occurs in an aging 
population (> 50 years), whereas inherited genetic disorders such as Familial 
Adenomatous Polyposis or Lynch Syndrome are relatively rare and occurs at a 
younger age (before 50). Although the causes of sporadic CRC remain unclear, several 
risk factors have been identified, including inflammatory bowel disease (IBD) (e.g., 
Crohn’s disease and ulcerative colitis), obesity, diabetes, sedentary lifestyle, alcohol 
consumption, high fat-containing diet, and aging. Therefore, with the prevalence of 
obesity and diabetes worldwide, CRC incidence is expected to dramatically increase in 
the future, making this cancer a major public health concern and a growing economic 
burden. CRC is mostly treated by surgery, chemotherapy (e.g., FOLFOX: Folinic acid, 
5-fluorouracil, oxaliplatin) and targeted therapy. However, despite these therapeutic 
options, the average survival rate of colon cancer between 2009 and 2015 was 63% (all 
SEER stages combined) and only 14% for distant CRC (American Cancer Society: 
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis 
staging/survival-rates.html). This high mortality rate is predominantly due to 
metastasis and the development of chemoresistance[2]. Therefore, greater efforts are 
needed in identifying and targeting the mechanisms involved in both these processes 
in order to improve patient outcomes.

The development of chemoresistance is a major feature of CRC-associated mortality. 
Several chemoresistance mechanisms have been identified, including the induction of 
pro-survival factors and downregulation of pro-apoptotic proteins, along with the 
induction of transporters or detoxifications enzymes (e.g., P-glycoprotein), which 
reduce the efficiency of chemotherapy. More recently, it has been proposed that cancer 
cells can adapt to stress conditions (e.g., oxidative stress, hypoxia, chemotherapy) by 
generating small cytoplasmic ribonucleoprotein (RNP) foci called stress granules 
(SGs), which protect expressed mRNAs from degradation. SGs represent membrane-
less cytoplasmic compartments containing mRNAs stalled at translation initiation. The 
mechanism underlying their formation is complex and tightly regulated by several 
proteins, which interact with mRNAs. SGs formation is also reversible, but in cases of 
prolonged stress, mRNAs are degraded into other cytoplasmic foci called processing 
bodies (P-Bodies). In cancer cells, SGs importantly contribute to cancer cell survival 
but also to resistance to various anti-cancerous agents. Several SGs components are 
upregulated in cancer cells as compared to their normal cellular counterparts. 
Moreover, several anti-cancerous agents elicit SGs assembly in cancer cells. Recent 
efforts aiming at identifying the mRNA/protein content of SGs have uncovered key 
players in carcinogenesis (e.g., oncogenes or tumor suppressors). Finally, impairment 
of SGs formation can re-sensitize several cancer types to chemotherapy or other anti-
cancer agents (e.g., sorafenib) and thus may represent an appealing approach in 
combination with current treatments (e.g., FOLFOX, FOLFIRI)[3]. In this review, we 
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discuss the role of SGs in colon cancer but also in pre-cancerous conditions favoring its 
development (e.g., inflammatory bowel disease). Because this cellular process has not 
been extensively studied in the context of CRC, we also discuss the current gaps in 
knowledge of SGs biology in CRC cells. Finally, we discuss potential therapeutic 
approaches that could be used to impact SGs assembly in cancer cells.

COMPLEXITY OF STRESS GRANULES FORMATION AND CAR-
CINOGENESIS
Basics of SGs assembly
SGs are non-membrane cytoplasmic compartments, composed of untranslated RNPs 
formed in stressful conditions. SGs exhibit liquid-like behavior allowing rapid 
exchanges of components (e.g., mRNAs and proteins) with the cytosol[4,5]. The 
formation of SGs is a dynamic and conserved process, triggered by various stress 
conditions (e.g., nutrients deprivation, osmotic shock, hypoxia, heat shock, ultraviolet 
irradiation, oxidative stress), but also various molecules (e.g., chemotherapy, 
endoplasmic reticulum stressors, translation/proteasome inhibitors). Proteomic-based 
approaches have identified many of proteins located within mammalian SGs (
https://msgp.pt/; http://rnagranuledb.lunenfeld.ca/). To date, more than 400 
proteins have been identified in stress granules, but their composition may vary 
between cell types and/or stimuli. Among them, about 50% are RNA-Binding 
Proteins, while the remaining proteins are presumably recruited through protein-
protein interaction and are involved in various cellular processes (e.g., cell cycle 
progression, apoptosis) or SGs assembly regulation.

The mechanisms involved in SGs formation are still unclear and several models 
have been proposed. SGs assembly is a multi-step process starting with the 
phosphorylation of eIF2α, which prevents the formation of the eIF2/GTP/tRNAi 
initiation complex[6] and leads to the dissociation of mRNAs from polysomes. 
However, this step is not mandatory for SGs assembly, as other non-canonical eIF2-
independent models of SGs formation have been described (e.g., change in the activity 
of the eIF4F complex, which is also involved in translation initiation)[7,8]. Currently two 
models of SGs formation have been proposed[9]. In the “core first” model, untranslated 
mRNAs are nucleated into oligomers through the binding of proteins (e.g., T Cell-
Restricted Intracellular Antigen-1, TIA1, G3BP1) having a Prion-Like Domain or 
Intrinsically Disordered Domains, which provide scaffolds necessary for the 
recruitment of other proteins (primary aggregation). These domains consist of polar 
residues, which favor liquid-liquid phase separation (LLPS) through electrostatic 
interactions. Due to these biophysical properties, SGs have been qualified as “liquid 
droplets”[10]. Then, the growth of these oligomers, through the addition of other 
untranslated RNPs give rise to the SGs “cores”. This step is supported by the 
microtubule’s cytoskeleton and motor proteins (e.g., dyneins, kinesins), which bring 
additional RNPs to the SGs[11]. Finally, the heterotypic associations of SGs components 
(e.g., G3BP1/TIA1; Polyadenylate-binding protein 1, PABP1) promote the growth and 
fusion of the granules (coalescence) and the recruitment of a dynamic shell, leading to 
the formation of large macroscopically visible SGs. However, this model has been 
challenged by the “LLPS First” model, where the nucleation of RNP generate phase 
separated droplets connected by weak interactions in which core granules are formed.

The formation of SGs is a tightly regulated process with participation of several 
signaling pathways and post-translational modifications (e.g., phosphorylation, 
acetylation)[12] of SGs components that regulate SGs assembly. For instance, 
phosphorylation of G3BP1 on ser149 by casein kinase 2 (CK2)[13] impairs SGs assembly, 
while arginine methylation, or deacetylation of G3BP1 by PRMT1/5 (protein arginine 
methyltransferase) and HDAC6[12], respectively[14,15], promotes their formation. Several 
signaling pathways regulate SGs assembly, including the PI3K or the Stress-Activated 
Kinase (p38/MAPK) signaling, which enhance SGs formation by activating mTORC1 
kinase in stress conditions[16]. These pathways are usually overactivated in many 
cancers, following mutations of their key regulators (e.g., AKT, PTEN), thus providing 
a favorable landscape for SGs formation. However, it is still unclear the role of 
mTORC1 in SGs assembly, as other studies have suggested an opposite mechanism 
where AMPK inhibits mTORC1 and induces SGs assembly[17]. These differences may 
originate from the different models and stimuli used to trigger SGs. Finally, SGs 
formation is a reversible process and the clearance of SGs can be mediated by: (1) 
Translation re-initiation (after stress dissipates); (2) Chaperone proteins; (3) 
Autophagy (also referred as “granulophagy”); (4) mRNA degradation in processing 
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bodies (P-Bodies); and (5) Proteasome-dependent degradation of SGs proteins.
While SGs formation is an adaptive response to physiological conditions where 

transient mRNA storage can occur, the role of SGs in human diseases have been 
recently recognized[6,18]. Dysregulation of SGs in various pathologies including 
neurodegenerative, viral infections, vascular diseases, and cancers indicate that SGs to 
be linked to disease progression. The mechanisms underlying SGs dysregulation in 
disease are not fully understood, yet aberrant expression of SGs components and 
altered pathway activity regulating their assembly and clearance appear to be 
contributing factors to the development of disease-associated SGs formation.

SGs and carcinogenesis
Overexpression of SGs assembly-related proteins, along with impairment of 
proteins/processes involved in their clearance are the main causes of SGs formation in 
cancers cells. Overexpression of nucleating proteins (e.g., G3BP1, TIA1, TIA-1-related, 
TIAR) is sufficient to trigger SGs formation in absence of stress[19]. Moreover, the 
stressful conditions present within the tumor microenvironment (e.g., hypoxia, 
oxidative stress, nutrient deprivation, chronic inflammation)[20], as well as specific 
molecules present (prostaglandin J2 and A1), promote SGs assembly in cancer cells[19]. 
Other factors including oxidized-low density lipoprotein or high-fat diet are also 
contributing factors to SGs formation[21]. These data suggest that lifestyle and chronic 
inflammatory/metabolic diseases (e.g., diabetes, fatty liver diseases, ulcerative colitis), 
which represent major risk factors for cancer development (e.g., hepatocellular 
carcinoma, CRC), may considerably influence SGs formation. Several anti-cancer 
treatments such as sorafenib, bortezomib, 5-FU, Oxaliplatin[19], FCCP [Carbonyl 
cyanide p-(trifluoromethoxy) phenylhydrazone][22] and radiotherapy[19] increase SGs 
assembly in cancer cells, which in turn renders them more resistant to these 
treatments. SGs are also implicated in controlling cancer-related processes including 
apoptosis and migration/invasion of cancer cells. Although the precise mechanisms 
are still unclear, the sequestration and inhibition of pro-apoptotic factors (e.g., TRAF2, 
RACK1) has been suggested[23]. Furthermore, several RNA-binding proteins (e.g., 
tristetraprolin, HuR) located in SGs regulate the stability and translation of cancer-
related mRNA transcripts involved in various cancerous hallmarks, including cell 
proliferation (e.g., MYC)[24], angiogenesis (e.g., VEGFA)[25], inflammation (e.g., 
cyclooxygenase-2, COX-2)[26] and cell death (antiapoptotic protein: BCL2, MCL1)[27,28]. 
SGs also inhibits cellular senescence by sequestering plasminogen activator inhibitor-1 
in fibroblasts[29]. As senescence represents an important barrier against  
carcinogenesis[30], these findings further support the oncogenic function of SGs. Finally, 
defective P-body formation is observed in several cancers (e.g., CRC)[6], and this 
together with the increased SGs assembly may act in concert to promote tumor 
progression.

The current methodologies to study SGs functions are mostly based on gain and loss 
of function analyses of SGs components, microscopy, and cell fractionation methods to 
isolate SGs. This latest methodology, coupled with transcriptomic and proteomic-
based approaches, have identified both proteins and mRNA transcripts associated 
with these granules. This information is publicly available in several databases (e.g., ; 
https://msgp.pt/;http://rnagranuledb.lunenfeld.ca/) and interestingly several 
transcripts and proteins have been associated to various cancer-related processes, 
suggesting that the role of SGs in carcinogenesis is largely underestimated. While the 
majority of studies utilize cell-based in vitro approaches, in vivo mouse models with 
constitutive deletion of specific SGs factors (e.g., TIA1KO or G3BP1KO mice) have been 
generated[31,32]. Further efforts utilizing tissue-specific and inducible knockout 
approaches will further aid in understanding the role of SGs play in development and 
progression of specific tumor types.

ROLE OF STRESS GRANULES IN COLORECTAL CANCER
Although the role of SGs has been studied in various cancers, their functions in the 
development of CRC and inflammatory bowel disease remain to be characterized. 
While more than 400 proteins have been identified in mammalian SGs (e.g., 
https://msgp.pt/), only few of them have been involved in SGs assembly and 
disassembly are abundantly expressed in epithelial and goblet cells of the colon (single 
cell sequencing of large intestine: https://tabula-muris.ds.czbiohub.org/) and also in 
the other cell types (e.g., enteroendocrine cells). In addition, several proteins (e.g., 
RNA-binding proteins, pro-apoptotic factors, cell cycle-related proteins) involved in 
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cancer-related processes in CRC are localized in SGs.

SG nucleators and CRC
SGs nucleators refer to the proteins that are directly involved in the early aggregation 
phase of SGs formation and their sole overexpression is sufficient for spontaneous SGs 
assembly, even in absence of stress. Conversely, knockdown of these proteins severely 
impairs SGs assembly. Moreover, alteration of their expression occurs in preneoplasic 
conditions, such as ulcerative colitis, thus suggesting that defects in their expression 
are early alterations fostering CRC development.

UBAP2L: A component of the ubiquitin-proteasome pathway containing a ubiquitin-
associated (UBA) domain which binds to ubiquitin and multi-ubiquitin chains[33]. 
UBAP2L plays a key role in stress granules assembly even in stress-null con-
ditions[34,35]. The Arg-Gly-Gly (RGG) motif of UBAP2L plays a key role in SGs 
assembly[35] by mediating the recruitment of other components (e.g., RNPs)[35]. 
Importantly, this domain can be methylated by the protein arginine methyltransferase 
PRMT1, which impairs SGs formation[35]. The Domain of Unknown Function motif of 
UBAP2L is also necessary to bind to G3BP1/2[35]. Recent findings have suggested thus 
that UBAP2L acts upstream of G3BP1/2 and can form SGs core independently of 
G3BP1/2[36]. The function of UBAP2L in cancers is poorly known but increasing 
evidence indicates that UBAP2L promotes progression of hepatocellular carcinoma[37], 
prostate cancer[38] and glioblastoma[39]. The expression of UBAP2L in CRC is currently 
unknown (Table 1) but its knockdown in colon cancer cells (i.e., HCT116 and RKO 
cells)[40] hinders cell cycle progression[40] and induces apoptosis through activation of 
BAD, BAX, and the cleavage of Caspase-3 and Poly(ADP-ribose) Polymerase[40]. 
Although these results indicate an oncogenic function of UBAP2L in CRC, they are 
currently no studies documenting its function in SGs in CRC.

Ras GTPase-activating protein-binding protein (G3BP): A family of RNA-binding 
proteins composed of three different members, G3BP1, GBP2a and G3BP2b. Through 
their interaction with the SH3 domain of RasGAP (Ras GTPase activating protein), 
these proteins promote Ras signaling[41]. G3BP proteins contain a RNA recognition 
motif (RRM), which allows for interaction with the 40S subunit of ribosomes and RGG 
domains involved in mRNA binding[42]. Among them, G3BP1 is strongly 
overexpressed in a variety of cancers especially colon cancer[43] and exert oncogenic 
functions by promoting cancer cell proliferation, and inhibiting apoptosis[44]. 
Accordingly, downregulation of G3BP1 in colon cancer cells leads to a decrease of Ras 
signaling and cell growth arrest[43]. Despite the lack of a PLD, G3BP1 is an important 
SGs nucleator, as its sole overexpression is sufficient to trigger SGs assembly[45]. 
Although the mechanism involved is still unclear, recent studies have indicated that 
protein partners including CAPRIN1 or USP10, which promote and inhibit SGs 
assembly, respectively[46]. In CRC, the role of CAPRIN1 is currently unknown but a 
loss of USP10 expression was reported in 18.6% of CRC tumors[47]. Importantly, this 
loss was associated to distal metastasis and lymphovascular invasion.

The mechanism involved in G3BP1 overexpression is currently unknown but the 
RNA-binding protein Y-box binding protein (YB-1), which is overexpressed in CRC 
and ulcerative-associated lesions[48], may be involved in the increase of G3BP1 
translation as suggested in other cancers[49]. G3BP1 is also regulated by post-
translational modifications. G3BP1 phosphorylation on Ser149 by CK2 was reported to 
inhibits SGs formation[13]. However, the role of this phosphorylation is still 
controversial, as an erratum reporting that ser149 phosphorylation was unchanged 
during stress, has been published[50]. Arginine methylation in the RGG domain by 
protein arginine methyltransferase inhibits SGs formation[14]. Interestingly, this 
methylation is promoted by the Wnt/β-catenin pathway in mouse embryonic F9 
cells[15], suggesting that overactivation of this oncogenic pathway in CRC may account 
for the increased SGs assembly in colon cancer cells. Finally, acetylation of Lysine-376 
(K376) in the RRM domain, impairs the RNA binding function of G3BP1 as well as its 
interaction with PABP1, USP10 or Caprin1[12]. Accordingly, an increased acetylation of 
K376 was observed during SGs disassembly. HDAC6 and the CBP/p300 acetylase 
directly control the acetylation status of G3BP1[12] and thus HDAC6 inhibition impairs 
SGs formation[51]. While these findings indicate that the role of G3BP1 in SGs assembly, 
its role in CRC remains to be better characterized. Moreover, the other members of the 
G3BP family are potentially important for SGs assembly in colon cancer cells. For 
instance, G3BP2 overexpression can also trigger SGs formation in absence of 
stress[41,44]. The role of G3BP2 in CRC is currently unknown but in silico analysis of its 
mRNA level in CRC patients indicates an upregulation of G3BP2 in tumors as 
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Table 1 Expression and prognostic value of stress granule-associated proteins in colorectal cancer

Components Role in SG mRNA expression in 
tumors (GEPIA)

Expression in CRC 
patients (literature) Overall survival(GEPIA)

Overall survival
(Human Protein 
Atlas)

G3BP1 Promotes SG assembly Up Unknown No significant difference Better prognosis with 
high expression

G3BP2 Promotes SG assembly Up Unknown No significant difference Better prognosis with 
high expression

USP10 Promotes SG assembly Up (trend) Down in 18.6% of 
patients[47]

No significant difference Better prognosis with 
high expression

CAPRIN1 Promotes SG assembly Up Unknown No significant difference Better prognosis with 
high expression

UBAP2L Promotes SG assembly No significant 
difference

Unknown No significant difference No significant 
difference

TIA1 Promotes SG assembly Down (trend) sTIA1 (spliced variant) 
is Up[171]

Poor prognosis with high 
expression

Better prognosis with 
high expression

TIAL1 Promotes SG assembly Down (trend) Unknown Poor prognosis with high 
expression

No significant 
difference

DDX3 Promotes SG assembly No significant 
difference

Poor prognosis with 
high expression[57]

No significant difference Better prognosis with 
high expression

PABP1 Promotes SG assembly Up Unknown NA No significant 
difference

FMR1 Promotes SG assembly No significant 
difference

Unknown No significant difference Better prognosis with 
high expression

PDCD4 Promotes SG assembly Down (trend) Down[172] No significant difference No significant 
difference

ATXN2 Promotes SG assembly No significant 
difference

Unknown No significant difference No significant 
difference

ANG Promotes SG assembly No significant 
difference

Up No significant difference No significant 
difference

ZFP36 Promotes SG clearance 
and SG-P-Bodies fusion

Down Down[26] Poor prognosis with low 
expression (P = 0.16: trend)

No significant 
difference

ZFP36L1 Promotes SG-P-Bodies 
fusion

Down Unknown No significant difference No significant 
difference

ELAVL1 mRNA stabilization Up (trend) Up[26] No significant difference Better prognosis with 
high expression

CUGBP2 mRNA stabilisation No significant 
difference

Down[173] No significant difference Better prognosis with 
high expression

MSI-1 Promotes SG assembly No significant 
difference

Up[54] No significant difference No significant 
difference

KHSRP Unknown No significant 
difference

Unknown No significant difference No significant 
difference

BAG3 Promotes SG clearance No significant 
difference

Up[174] No significant difference Poor prognosis with 
high expression

PRMT1 Inhibition of SG 
formation

Up (trend) (Poor prognosis with 
high expression[119]

Better prognosis with high 
expression (not significant: 
marked trend)

Better prognosis with 
high expression

PRMT5 Inhibition of SG 
formation

Up (trend) Up[175] Better prognosis with high 
expression (not significant: 
marked trend

Better prognosis with 
high expression

HDAC6 Promotes SG assembly Down Up[176] Poor prognosis with high 
expression (not significant: 
marked trend

Poor prognosis with 
high expression

SIRT6 Promotes SG assembly No significant 
difference

Down[113] No significant difference No significant 
difference

Inhibition of SG No significant No significant EP300 Up[105] No significant difference
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formation difference difference

JMJD6 Promotes SG assembly No significant 
difference

Up[121] No significant difference but 
marked trend for a poor 
prognosis with high 
expression

No significant 
difference

CK2 Inhibition of SG 
formation

Up (trend) Up[177] No significant difference Poor prognosis with 
high expression

PRKAA1 (AMPK) Promotes SG assembly No significant 
difference

Up[126,127] No significant difference Better prognosis with 
high expression

MTOR Unclear No significant 
difference

mTORC1 Up[122] No significant difference No significant 
difference

TARDBP Promotes SG assembly No significant 
difference

Unknown No significant difference No significant 
difference

RBFOX2 Regulation of cell cycle Down Up[101] No significant difference No significant 
difference

RACK1 Regulation of apoptosis Up No significant difference No significant 
difference

ULK1 Promotes SG 
disassembly

Down Up[178] (Poor Prognosis No significant difference Poor prognosis with 
high expression

ULK2 Promotes SG 
disassembly

Down Down[179] No significant difference No significant 
difference

VCP Promotes SG 
disassembly

No significant 
difference

Up (poor prognosis 
with high 
expression)[180]

No significant difference No significant 
difference

The differential mRNA expression of stress granule proteins in colorectal cancer as compared to matched non-tumoral tissues were retrieved from the 
GEPIA database (http://gepia.cancer-pku.cn/detail; normal tissues: n = 349; tumors: n = 275) and compared with published studies. Survival analyses 
were retrieved from the GEPIA (cutoff-High: 80%; cutoff-Low: 20%) and the Human Protein Atlas Database (https://www.proteinatlas.org) using the best 
separation method between low and high expression of protein candidates. SG: Stress granule; NA: Not available.

compared to surrounding non-tumoral tissue (Table 1).

TIA1 and TIAR: TIA1 is an RNA-binding protein comprised of three RRMs necessary 
for the binding to AU-Rich Elements (AREs) within the 3’UTR of target mRNAs and a 
PLD in C-terminal, which promotes self-aggregation of the protein. In stress 
conditions (i.e., hypoxia, oxidative stress), TIA1 interacts with co-factors (e.g., TIAR) to 
promotes the sequestration of target transcripts into SGs and inhibits their translation. 
In CRC, TIA1 expression is reduced. The mechanisms involved in TIA1 silencing 
haven’t been fully depicted but current findings indicate that the overexpression of 
miR-19a in CRC tissues and cell lines directly reduces TIA1 expression[52]. In CRC, 
TIA1 acts as a tumor suppressor by binding to the 3’UTR of COX-2 mRNA, thereby 
inhibiting its translation[53]. This tumor suppressive function is further supported with 
better prognosis observed in patients expressing a high level of TIA1 (Table 1). 
Intriguingly, TIA1 also contributes to chemoresistance to 5-FU in CRC cells[54]. These 
data suggest that although TIA1 exerts a tumor suppressive function in CRC, its role in 
SGs assembly may paradoxically favor cancer cell survival.

DEAD-Box RNA helicase 3 (DDX3 also called CAP-Rf): A ubiquitously expressed 
protein having an ATPase and helicase activity involved in RNA metabolism (e.g., 
mRNA splicing, transcription). DDX3 inhibits translation by directly interacting with 
eIF4E and with the SGs component PABP1, as evidenced in HeLa cells[55], indicating 
that this protein is important for SGs assembly. The role of DDX3 in SGs assembly is 
independent of its ATPase and helicase activity and downregulation of DDX3 in HeLa 
cells leads to a reduction of SGs formation, a re-localization of PABP1 to the nucleus, 
and an increased susceptibility to death stimuli (i.e., osmotic stress induced by 
sorbitol)[55]. However, the role of DDX3 in CRC is unclear with studies reporting both 
oncogenic[56,57] and tumor suppressive functions[58]. High tumor DDX3 expression 
correlates with a reduced survival in CRC patients[57]. Moreover, DDX3 expression is 
upregulated in colon biopsies from patients with inflammatory bowel disease[59], which 
may provide a favorable landscape for SGs formation. Interestingly, the DDX3 
inhibitor RK-33 decreases expression of MMP-1, -2, -3 and -10 in HCEC1CT and 
HCEC2CT human colonic epithelial cells[59]. Interestingly, differentiation of HT-29 
colon cancer cells is associated to decreased of DDX3 levels, suggesting that SGs 
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formation is also influenced by the differentiation status of cancer cells[59].

G-quadruplex DNA structures (G4DNA): Current models of SGs formation have 
primarily focused on protein components triggering SGs assembly (e.g., G3BP, 
UBAP2L). However, recent studies have also highlighted the role of G-quadruplex 
DNA structures in liquid-liquid phase separation upon oxidative-stress-induced DNA 
damage. G4DNAs represent quartets of guanine linked by hydrogen bonds and 
organized as a planar ring[60]. Treatment of melanoma cells with hydrogen peroxide 
induces DNA damage and the production of ssDNA (single strand DNA), which 
forms G4DNA structures. Once exported into the cytosol, G4DNA interacts with 
various RNA-binding proteins involved in SG assembly, including YB-1, TIA1, TIAR, 
DHX36, and those involved in the control of the mRNA stability and translation (e.g., 
HuR)[60]. Accordingly, transfection of G4DNA is sufficient to trigger SG assembly in 
melanoma cells even in absence of stress, establishing G4DNA structures as potent SG 
nucleators[60]. The role of G4DNA in SG assembly in CRC cells has not been studied 
yet. However, increasing evidence indicate that G4DNA promotes CRC development 
and their inhibition with specific ligands (e.g., Emicoron) can promote antitumor 
activities[61].

tRNA-Derived stress-induced RNAs (tiRNA): Several non-coding RNAs, including 
microRNAs, long-non-coding RNAs and transfer RNAs have been involved in the 
adaptation of cells to stress stimuli[62]. Among them, tiRNA represent a novel class of 
non-coding RNAs generated in stress conditions by cleavage of mature tRNAs in the 
anticodon loop by angiogenin[62]. tiRNAs contribute to SGs formation by interacting 
with YB-1[62]. Moreover, tiRNAs can form G-quadruplex structures, which impair 
translation initiation by sequestering eIF4F complex[62]. Although the role of tiRNA in 
carcinogenesis is an emerging field, angiogenin is strongly upregulated in CRC as 
compared to non-tumoral tissues and promotes cancer progression by generating 
tiRNAs (e.g., 5’-tiRNA-val)[63]. Therefore, the accumulation of tiRNA together with the 
overexpression of nucleating proteins (e.g., G3BP) in colon cancer cells, provides a 
notable mechanism for SG assembly in absence of stress.

RNA-binding proteins controlling the expression of key oncogenes/tumor 
suppressors
During SGs formation, the binding of several RNA-binding proteins to their mRNA 
targets importantly regulate their stability and/or translation. Among them, 
Adenylate-Uridylate-rich elements binding proteins (AUBPs) represent critical post-
transcriptional regulators of gene expression, through their ability to bind to AREs 
within the 3’UTR of mRNA transcripts and promote their recruitment toward P-bodies 
or SGs. Aberrant ARE-dependent post-transcriptional regulation has been associated 
to a variety of cancers, including CRC, by favoring the overexpression of oncogenes (
e.g., c-myc) and pro-inflammatory mediators (e.g., COX-2), and the silencing of tumor 
suppressors (e.g., p53).

Tristetraprolin (TTP): TTP (ZFP36) belongs to a family of Cys-Cys-Cys-His zinc finger 
proteins and is an immediate-early response gene, whose expression can be induced 
by diverse stimuli such as insulin[64,65], TGF-b[66,67], LPS[68] and TNFa[69]. TTP is the best-
characterized AU-Rich Element binding protein (AUBP) involved in promoting ARE-
mediated mRNA decay. This process occurs through TTP-dependent delivery of ARE-
mRNAs to P-bodies and recruit mRNA decay enzymes involved in deadenylation, 
decapping, and exonucleolytic decay[66,70-72]. TTP is also localized in SGs under 
conditions of energy deprivation[22]. However, the presence of TTP in SGs appears to 
be context-dependent as in models of oxidative stress, TTP is excluded from SGs due 
to phosphorylation of TTP by MK2[22]. Current findings suggest that TTP is involved in 
the shuttling between SGs and P-bodies[22] and SG-P-bodies fusion[73], and thus can 
contribute to SG clearance. TTP is considered as a tumor suppressor due to its capacity 
to reduce the expression of key inflammatory cytokines and also control expression of 
several factors involved in CRC carcinogenesis (e.g., COX-2, VEGFα)[74-76]. Accordingly, 
TTP expression is strongly reduced in colorectal tumors[26,77] as well as in early 
adenomas and adenocarcinomas, suggesting that early reduction of TTP may promote 
the establishment of a neoplasic phenotype. However, the link between TTP loss and 
SG dynamics in colon cancer cells remains unexplored.

Butyrate response factor 1 (TIS11b, ERF-1, cMGI, Berg36, ZFP36L1): An RNA-
binding protein encoded by the ZFP36L1 gene, which belongs to the ZFP36 family[78,79]. 
Similar to TTP, BRF1 contains a tandem zinc finger domain bearing a double zinc 
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finger motif (Cys-Cys-Cys-His) and promotes the decay of various cancer-promoting 
transcripts (e.g., VEGFA, cIAP2) by targeting them to P-bodies[79]. BRF1 is also a SG 
component and its overexpression promotes SG and P-body fusion[73]. However, the 
role of BRF1 in CRC is limited with only one study showing that 17-beta-oestradiol 
induces BRF1 in COLO205 colon cancer cells[80]. Nevertheless, in silico analyses of its 
mRNA level in CRC patients (Table 1) indicate a significant reduction of its expression 
similar to TTP, which may account for the deregulated expression pattern of various 
oncogenic transcripts. This downregulation may also reduce SG-P-body fusion in 
cancer cells, warranting further investigation.

HuR: A ubiquitously expressed RNA-binding protein encoded by the ELAVL1 gene, 
which belongs to the “Embryonic-Lethal Abnormal Vision in Drosophila” (ELAV) 
family[81]. HuR possess two tandem RRMs, followed by a hinge region and a third 
RRM. The HuR nucleocytoplasmic shuttling domain within the hinge region is 
subjected to phosphorylation by various kinases, which regulate the nucleo-
cytoplasmic shuttling of the protein[82]. In the cytoplasm, HuR binds and stabilizes 
mRNA transcripts bearing an AU-rich sequences within their 3’UTR, by competing or 
displacing destabilizing factors (e.g., microRNAs, TTP)[26]. Moreover, HuR can directly 
bind and sequester miRNAs (e.g., miR-16, miR-21), thereby preventing the 
downregulation of their mRNA targets[83,84]. In stress conditions, HuR accumulates in 
SGs and promotes stabilization of various oncogenic transcripts[85]. However, other 
studies have suggested that the formation of SGs is dispensable for mRNA 
stabilization[86]. HuR is overexpressed in CRC as compared to normal tissues and 
exerts an oncogenic function by stabilizing the mRNAs of cancer and inflammatory-
promoting factors involved in cancer cells proliferation, survival, and migration[26]. 
Moreover, HuR expression is also increased in colonic epithelial cells from patients 
with inflammatory bowel disease[87], thus adding another early event potentially 
fostering CRC development.

CUGBP2 (CUG-Binding Protein ELAV-like family member 2): CUGBP2 is a member 
of the CUGBP-ETR-3-like factors family that is ubiquitously expressed. This protein 
contains two N-terminal RRMs and one C-terminal RRM. CUGBP2 is a SG-associated 
RNA-binding protein involved in stabilizing and impairing the translation of bound 
target mRNAs[88]. Its expression is strongly reduced in various cancers and in CRC, 
CUGBP2 downregulation is mediated by Prostaglandin-E2 and its overexpression 
promotes apoptosis and mitotic catastrophe induced by radiation in colon cancer 
cells[89]. Furthermore, CUGBP2 overexpression in HCT-116 cells triggers cell cycle 
arrest in G2/M and an induction of apoptosis due to a direct binding to the 3’UTR of 
Mcl-1 mRNA and an impairment of its translation[90].

Musashi-1 (Msi-1): An RNA-binding protein, which promotes mRNA stability and 
translation inhibition[91]. Msi-1 is overexpressed in a variety of cancers and contributes 
to the overexpression of oncogenes (e.g., oncotachykinin 1 in breast cancer)[92] or 
cancer-promoting factors[91]. Msi-1 is also overexpressed in CRC and its knockdown 
severely impairs tumor growth in vitro  and in vivo [93,94]. Moreover, Msi-1 
overexpression enhances the development of CD44 positive-colon cancer stem cells 
and promotes chemoresistance in cells treated with 5-FU, by enhancing SGs 
assembly[54].

K-homology splicing regulator protein (KSRP): An RNA-binding protein involved in 
mRNA stability, splicing, transcription, as well as microRNA biogenesis[95,96]. In CRC, 
KSRP acts as a tumor suppressor by promoting the mRNA decay of β-catenin and 
iNOS transcripts[97,98]. In stress conditions (e.g., oxidative stress), KSRP localizes in 
SG[99,100]. However, it is unclear the role of KSRP in SGs and whether this event occurs 
in colorectal cancer cells.

Other proteins involved in CRC development
Proteome-based analysis has revealed more than 400 different proteins to be 
associated with SGs, and cross comparison with CRC-associated genes reveals 89 
proteins (Figure 1A). Based on gene ontology analyses these proteins are involved in 
biological processes (negative regulation of apoptosis, cell adhesion, DNA repair) and 
pathways (e.g., PI3K, cell cycle) promoting colon carcinogenesis (Figure 1B and C). 
Moreover, gene set enrichment analysis indicates a significant enrichment of SG-
associated genes in tumors as compared to non-tumor tissues (Figure 1B), with several 
oncogenes (e.g., CDK1, SND1, HSPD1) upregulated in CRC. Together, these data 
suggest that the SGs proteome represents an important “reservoir” of cancer-related 
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Figure 1  The stress granule proteome contains several colorectal cancer-associated proteins. A: Venn diagram merging a list of colorectal cancer 
(CRC) -associated genes (retrieved from Metacore software) and the mammalian stress granule (SG) proteome from https://msgp.pt; B: Gene ontology analysis of 
SG proteome using KEGG pathway and biological processes analysis. Enrichment is represented with a-log10 P-Value. Processes and pathways in red are those 
involved in cancer development; C: Gene-Set Enrichment Analysis (version 3.0, Broad Institute, Cambridge, MA, United States) of the SG proteome on CRC patients 
(GSE113513). The top 20 genes upregulated in CRC patients as compared to non-tumoral tissues are represented in a heatmap. The enrichment score was 
calculated using the number of genes ranking at the top or the bottom of the gene list (permutation type: Phenotype; with 1000 permutations). The Signal2Noise was 
used for ranking genes. A nominal P value < 0.05 and an FDR < 0.2 were considered significant.

factors, suggesting that the role of SGs in CRC is largely underestimated. Moreover, 
how various factors such as the genetic landscape (mutations), tumor etiology, lifestyle 
factors, and the gut microbiota influence the composition of the SGs proteome and 
tumor transcriptome is currently unknown. Therefore, it is likely that a different 
composition of SGs may differentially affect cancer-related processes based on 
intrinsic and external factors.

Several SG-associated proteins affect cancer hallmarks and pathways. For instance, 
under stress conditions the RBFOX2 (RBP fox-1 homolog 2) localizes in SGs and 
promotes cell cycle progression by decreasing RB1 protein expression in colon cancer 
cells[101]. Accordingly, RBFOX2 was found strongly upregulated in colon tumors, while 
RB1 was downregulated as compared to normal tissues. The pro-apoptotic factor 
RACK1 (Receptor for Activated C Kinase), which binds to and activates the stress 
responsive MTK1 MAPKKK[23], is sequestered into SGs in stress conditions and 
impairs its pro-apoptotic function. This effect has been also observed with 
chemotherapeutic agents such as 5-FU in HeLa cells, thus suggesting that RACK1 
overexpression in CRC may also contribute to CRC chemoresistance[102]. In CRC, 
RACK1 is overexpressed and acts as a tumor promoter correlated with clinical 
outcomes[103]. Finally, PDCD4, another pro-apoptotic factor[104] is also localized in SGs[21] 
but it is currently unclear whether its sequestration in SGs impairs its pro-apoptotic 
function.

Post-translational modifications and SGs formation in CRC
Although several post-translational modifications of key proteins involved in SGs 
assembly have been identified, these alterations have yet to be studied in the CRC 
context. Nevertheless, it has been observed that the expression and activity of the 
proteins involved in modifying SGs factors can be altered in CRC.

Acetylation and deacetylation of SGs components: Acetylation of SG-associated 
proteins importantly regulate SGs assembly with several acetylases and deacetylases 
linked to this regulation. As previously discussed, acetylation of K376 of G3BP1 by the 
CBP/P300 acetylase is a key modification impeding SGs assembly by impairing its 
RNA binding function, as well as its interaction with PABP1, USP10 or Caprin1[12]. 
However, this link in CRC is unclear considering that the expression of CBP/P300 is 
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upregulated in CRC[105,106]. Conversely, the histone deacetylase HDAC6 directly 
interacts and deacetylates G3BP1 and promotes SGs formation[12]. In agreement with 
these findings, SG disassembly is associated with increased acetylation of K376[12] and 
inactivation of HDAC6 catalytic domain impairs SGs formation in 293T cells[51]. The 
interaction of HDAC6 with G3BP1 is prevented by G3BP1 phosphorylation on 
Ser149[51]. Moreover, microtubules contribute to SG growth by supplying additional 
RNPs and other SG-associated proteins, are also subjected to acetylation modifications 
that markedly alter their dynamics. HDAC6 is also a microtubule-associated 
deacetylase[107] and its activity reduces tubulin-α acetylation on Lys40 in NIH3T3 cells 
and increases cell motility[107]. The activity of HDAC6 on microtubules and other motor 
proteins (e.g., dyneins) promotes SGs formation[51]. Taken together, these findings 
indicate that HDAC6 displays pleiotropic functions to promotes SGs assembly. While 
the role of HDAC6 in SGs assembly in CRC is currently unknown, its overexpression 
is observed in colorectal tumors compared to adjacent normal tissue and this may 
considerably favor SGs assembly[51]. Moreover, HDAC6 inhibitors can sensitize CRC 
cells to oxaliplatin[108].

SIRT6 is a NAD+-dependent deacetylase, which directly interacts with G3BP1. 
SIRT6 deficiency promotes G3BP1 phosphorylation at Ser149 and reduces SGs 
assembly[109]. Similar to HDAC6, the link between SIRT6 and SGs in CRC has not been 
established and discrepant observations have been reported regarding SIRT6 level in 
human CRC with studies reporting downregulation[110,111] or overexpression[112]. 
Nevertheless, SIRT6 overexpression correlates with a better prognosis in CRC patients 
and inhibits tumor progression[113,111].

Casein Kinase-2 (CK2): Phosphorylation of G3BP1 on Ser149 by CK2 impairs SGs 
formation in U2OS osteosarcoma cells[13]. This link has not been explored in CRC and 
the role of CK2 in colon cancer is currently unclear, with studies reporting both 
oncogenic and tumor suppressive functions[114,115]. CK2 expression and activity is 
increased in animal models of ulcerative colitis[116], suggesting that its altered 
expression represents an early alteration, potentially involved in colorectal 
carcinogenesis. In colon cancer cells, CK2 overexpression sensitizes cells to 5-FU[117,118] 
and promotes the degradation of several cancer-promoting transcripts by enhancing 
TTP function[115]. In contrast, CK2 enhances colon cancer cell viability by promoting 
COX-2 expression and PGE2 production[114].

Methylation of SG components: Protein Arginine Methyltransferase 1/5 (PRMT1/5) 
methylates several SGs components including G3BP1, G3BP2, FUS/LTS and UBAP2L. 
This methylation impairs the interaction of these SGs components (e.g., 
UBAP2L/G3BP1) and inhibits SGs assembly[35]. Paradoxically, various studies indicate 
an increase of SGs formation in colorectal cancer, PRMT1 and 5 are upregulated in 
tumors[119] (Table 1), suggesting that colon cancer cells adapt to circumvent this 
negative regulatory mechanism. A potential mechanism involves the histone arginine 
demethylase JMJD6 (Jumonji domain-containing 6), which promotes SGs formation by 
demethylating G3BP1[120]. In colon cancer JMJD6 is upregulated and exerts oncogenic 
functions (e.g., negative regulation of p53 signaling)[121]. Therefore, SG formation in 
colon cancer may depend on a fine-tuned equilibrium between PRMTs and JMJD6 
activities.

AMPK/mTORC1 signaling: The role of AMPK and mTORC1 signaling in SGs 
formation is intriguing because in many models, SGs formation has been associated to 
a reduction of mTORC1 activity and/or activation of AMPK. However, in CRC 
mTORC1 activity is increased[122] and the link between mTORC1 inhibition and SGs 
assembly is likely to be cell type and context dependent[123]. In agreement with this, 
increased activity of mTORC1 by PI3K or p38 MAPK kinases has been associated to 
SGs formation in breast cancer cells[16]. These pathways are commonly overactive in 
CRC[124,125], and the downstream activation of mTORC1 may represent an important 
event triggering SGs assembly in colon cancer cells. The complexity mTORC1 
signaling is further enhanced by AMPKα, which is an negative upstream regulator of 
mTORC1 signaling, in promoting SGs assembly[17] and is frequently upregulated in 
CRC[126,127]. Besides its regulatory function on SGs assembly, mTORC1 is also localized 
to SGs in stress conditions, thus impairing protein synthesis[128]. Once the stress signals 
dissipate, DYRK3 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 3) 
promotes the re-localization of mTORC1 to the cytosol to facilitate protein 
synthesis[128]. However, this regulatory mechanism remains to be demonstrated in the 
context of CRC.
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SGs clearance in CRC
In addition of overexpression of nucleating proteins, alteration of SGs clearance 
contribute also to increased SGs in cancer cells. In this section, we discuss the various 
mechanisms involved in SGs dissolution and deregulated in colon cancer cells.

HspB8-HSP70-Bag3 complex: Several chaperones proteins are required for SGs 
clearance. In particular, the HspB8-HSP70 complex and co-chaperone protein Bag3 is 
involved in the “quality control” of SGs composition by preventing accumulation of 
misfolded ubiquitinated proteins in SGs[129]. Through an interaction with p62, an 
autophagy receptor accumulating in SGs[130], the complex targets misfolded proteins 
for degradation by autophagy[131]. Although they are currently no studies pertaining to 
HSPB8 in CRC, HSP70 and Bag3 are frequently overexpressed in CRC and contribute 
to cancer progression[132,133]. Although the HspB8-HSP70-Bag3 complex favors the 
maintenance of a normal SGs proteome function[129], this complex can also promote 
SGs disassembly in cases where stress persists. While this function remains to be better 
defined, some studies suggest that SGs clearance is mediated by autophagy[129].

Autophagy-dependent SGs clearance: Autophagy plays an important role in SGs 
clearance (also called “granulophagy”)[134]. Interestingly, autophagy and SGs are 
concomitantly increased in cancer cells[134] and have been recognized as important 
survival mechanisms in cancer cells, thus suggesting that these two processes act in 
concert to favor cancer cells survival. The role of autophagy in CRC development has 
been well characterized and like for many cancers, autophagic flux is strongly 
increased in CRC[135]. However, the link between autophagy and SGs clearance in CRC 
is currently unknown.

Valosin-containing protein (VCP/p97): An ATPase, which belongs to the AAA family 
(ATPases-associated with diverse cellular activities)[136]. Together with several 
cofactors, VCP interacts with ubiquitinated proteins and promotes their extraction 
from protein complexes for degradation[136]. This function is required during SGs 
disassembly[137]. In addition, VCP is essential for autophagosome maturation[138]. 
Accordingly, in several diseases (e.g., Inclusion body myopathy, Paget Disease), VCP 
mutations leads to a reduction of autophagy and an accumulation of SGs. VCP is also 
subjected to post-translational modifications, in particular phosphorylation by Unc-51-
like kinases 1 and 2 (ULK1 and 2), which activates Vcp/p97 and causes SGs 
disassembly[137]. In CRC, ULK1 is overexpressed, while ULK2 is downregulated in 
tumors and the respective impact of these alterations on SG dynamics is unknown.

P-Bodies: Similar to SGs, P-bodies are also non-membrane RNA-protein complexes 
and their assembly is triggered by various stimuli including stress or inflammation[73]. 
In contrast to SGs, P-Bodies are mostly involved in mRNA decay and do not contain 
any translation initiation and elongation factors, but contain enzymes required for 
deadenylation (CAF-1, CCR4), decapping (DCP1/2), 5’ to 3’ degradation (XRN1) of 
mRNA transcripts[139,140]. mRNA degradation by P-bodies importantly contributes to 
SGs dissolution and disruption of P-body formation is likely to foster SGs 
accumulation[77]. Our full current understanding of the crosstalk between SGs and P-
bodies is limited but appears to be a determinant of the fate of cancer-related 
transcripts. Some proteins like tristetraprolin (TTP) or BRF1, are localized in both 
compartments and can mediate the shuttling of mRNAs and promotes SG-P-body 
fusion[73,141]. Thus, the loss of TTP and BRF1 expression and activity in colon cancer 
cells may considerably alter SGs clearance. Moreover, the loss of TTP expression has 
been associated with a reduction of P-bodies in CRC cells[66,77].

SGS AS POTENTIAL BIOMARKERS AND THERAPEUTIC TARGETS
SGs as potential biomarkers
SGs importantly contribute to cancer cell survival to harmful conditions and represent 
an important barrier to chemotherapy. Assessing the expression of SGs nucleators in 
CRC biopsies may therefore represent a predictive approach to evaluate patient 
response to chemotherapy. However, the expression levels of several SGs components 
as well as their links with the clinical outcome are limited or unclear. Only one study 
has suggested that the presence of TIA-1 in tumor infiltrating lymphocytes represents 
a favorable survival predictive marker in colorectal cancer patients[142]. The use of 
public available database combining transcriptomic and survival analyses of CRC 
patients (GEPIA database: http://gepia.cancer-pku.cn/) can be useful to correlate the 
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expression level of SGs components with clinical outcomes (Table 1). However, these 
correlations only consider respective mRNA levels in the analyses and these 
alterations do not necessarily translate at the protein level. As shown in Table 1, 
several discrepant findings between published observations and the transcriptomic 
data (e.g., USP10, PRMT1) can be observed. These discrepancies may also originate 
from heterogeneity between the patients and clinical samples evaluated. Finally, 
assessing the expression of individual SGs components may be insufficient 
considering that these proteins act in concert to promote SGs assembly. While using 
bioinformatic approaches to identify potential novel SG-based correlations are a 
notable starting point, validation efforts are still required to conclude the relevance of 
SGs as potential biomarkers for CRC.

SGs as therapeutic target
Inhibiting SGs formation may re-sensitize cancers cells to physiological death stimuli 
and anti-cancer agents (chemotherapy), as evidenced in various pre-clinical 
models[143]. Several strategies impairing SG assembly or SG-oncogenic activities have 
been developed and tested in various cancer cell types, which are discussed in the 
following section (Table 2).

Reducing the expression of SGs nucleators: As previously discussed, the inhibition or 
silencing of several proteins can efficiently prevent SGs assembly in cancer cells (e.g., 
G3BP1, UBAP2L). Therefore, developing therapeutic strategies to limit these SGs 
components specifically in cancer cells may represent a novel approach to reducing 
tumor growth and to re-sensitizing cells to chemotherapy. Although there are 
currently no studies assessing the therapeutic potential of inhibiting SGs in CRC, one 
approach using delivery of specific siRNAs (e.g., Aptamers) as a means to reduce 
expression of specific oncogenic targets has shown anti-tumor efficacy in CRC[144]. Such 
approaches could be also applied for microRNA delivery as a means to control the 
expression of SGs nucleators. Moreover, various small molecules have been shown to 
reduce the expression of SGs components in CRC cells, such as resveratrol or EGCG 
(Epigallocatechin-Gallate) for G3BP1[145,146]. Similarly, the peptide GAP161 can 
efficiently reduce G3BP1 activity and may represent a valuable tool to prevent SGs 
formation. This peptide markedly inhibits colon cancer cell proliferation by inducing 
apoptosis and sensitizing cells to cisplatin-induced apoptosis[43]. Furthermore, GAP161 
reduces tumor growth in vivo, as evidenced in xenograft models. However, these 
antitumoral properties have been associated to an impairment of its interaction with 
RasGAP, so it is unclear whether SGs assembly is prevented in this model.

Targeting G4DNA/RNA structures: The importance of G4DNA/RNA structures in 
SGs assembly suggest them as novel therapeutic targets in various cancers. In 
agreement, the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13-trimethyl-8Hquino) 
displays anti-tumor properties. However, this molecule also induces side effects such 
as cardiovascular alterations, suggesting caution regarding its clinical use. 
EMICORON, another G-quadruplex ligand displays also anti-tumor properties[147]. In 
colon cancer, EMICORON markedly reduces cancer progression[147] and potentiates 
chemotherapy in colon cancer cell lines[147].

A number of angiogenin inhibitors have been also developed and may reduce 
tiRNA accumulation in cancer cells. Among them, chANG, an antiangiogenin peptide, 
has been studied in colon cancer and shows antiangiogenic activity[148]. Moreover, a 
neutralizing monoclonal antibody to angiogenin prevents HT-29 colon cancer tumor 
progression in a xenograft model[149].

Targeting the AMPK/mTORC1 axis: SGs assembly is frequently associated to 
mTORC1 inhibition. Therefore, restoring normal mTORC1 activity has the potential to 
inhibit SGs assembly. However, increased activity of mTORC1 by PI3K or p38/MAPK 
kinases has been associated with SGs formation in MCF-7 breast cancer cells[150] and 
use of mTORC1 inhibitors may represent a potential therapeutic approach. Targeting 
upstream regulators of mTORC1, such as AMPK, which is a potent inhibitor of 
mTORC1 may also potentially impair SGs formation in cancer cells. The AMPK 
inhibitor Compound-C, efficiently prevents SGs assembly induced by a cold shock in 
yeast[151] and displays anti-cancer properties in colon cancer cells[152].

Targeting microtubules: The integrity of microtubules and motor proteins is required 
for RNP transport during SGs formation. Accordingly, microtubule destabilizing 
agents such as vinblastine or nocodazole can prevent SGs assembly, while drugs 
stabilizing them (e.g., paclitaxel) promote SGs formation[153]. However, vinblastine is 
currently not used clinically for CRC treatment due to its gastrointestinal toxicity[154]. 
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Table 2 Potential therapeutic approaches to impair stress granule function in cancer cells

Strategies Target Models Known impact on 
SGs

Anticancer effect on 
CRC Clinical trials for CRC (ID)

Targeting proteins involved in SG assembly

EGCG G3BP1 Lung cancer[146] Reduction of SG 
assembly

Yes[181] NCT02891538; 
NCT02321969; NCT01239095

Resveratrol G3BP1 CRC[145] Unknown Yes[145] NCT00433576; NCT00920803

GAP161 peptide G3BP1 CRC[43] Unknown Yes[43] None

RK-33 DDX3 CRC[182] Unknown Yes[182] None

Targeting G4DNA/RNA structures

EMICORON G4DNA CRC[147] Unknown Yes[147] None

chANG angiogenin CRC[148] Unknown Yes[148] None

(mAb), 26-2F angiogenin CRC[149] Unknown Yes[149] None

Targeting AMPK/mTORC1 axis

Compound C AMPK Yeast[151]CRC[152] Impairs SG assembly 
in yeast[151]

Yes[152] None

Rapamycin mTORC1 CRC[183] Unknown Yes[183] NCT00409994; NCT03439462

Everolimus mTORC1 Breast[16] SG inhibition Yes[184] NCT01154335; 
NCT00419159; NCT01387880

Temsirolimus mTORC1 CRC[185] Unknown Yes[185] NCT00593060; 
NCT00827684; NCT01183663

Targeting HDACS/SIRTs

OSS_128167 SIRT6 Pancreas cancer[161] Unknown Unknown No

A-452 HDAC6 CRC[158] Unknown Yes[158] None

C1A HDAC6 CRC[157] Unknown Yes[157] None

ACY-1215 HDAC6 CRC[108] Unknown Yes[108] None

MPT0G612 HDAC6 CRC[159] Unknown Yes[159] None

Targeting SGs-associated RNA-binding proteins controlling cancer-related factors

MS-444 HuR CRC[166] Unknown Yes[166] None

DHTS HuR CRC[186] Unknown Yes[186] None

Resveratrol RBFOX2 CRC[101] Unknown Yes[101] NCT00433576; NCT00920803

Targeting microtubules

Paclitaxel Microtubules Green monkey kidney 
fibroblasts (CV-1 cells)[153]

Promotes SG 
formation

Yes[187] NCT00598247; 
NCT00024401; NCT00667641

Vinblastine Microtubules Green monkey kidney 
fibroblasts (CV-1 cells)[153]

Prevents SG assembly Yes[188] None

Several approaches can be used to efficiently reduce stress granule assembly and their oncogenic activities. This table provides some examples for each 
strategy. Some of them have been tested in colorectal cancers models and others have reached clinical trials (https://clinicaltrials.gov/). SG: Stress granule; 
CRC: Colorectal cancer.

Identifying new microtubule destabilizing agents with less side effects may potentially 
provide beneficial outcome to CRC patients. Several microtubule destabilizing agents 
have been developed and are currently used for the treatment of other cancers, such as 
eribulin for breast cancer[155,156].

HDAC and SIRT inhibitors: HDAC6 and SIRT6 activity promote SGs formation in 
cancer cells[51,109]. Several HDAC6 inhibitors have been developed such as A452, C1A, 
ACY-1215, MPT0G612, and have been shown to reduce CRC tumor growth and 
sensitize to cells to chemotherapeutic agents[108,157-159]. Targeting SIRT6 with specific 
inhibitors may also represent a potential approach to impair SGs assembly. However, 

https://clinicaltrials.gov/
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only few SIRT6 inhibitors have been developed (e.g., OSS_128167)[160-162] and their 
effects on SGs assembly and CRC is currently unknown.

Targeting autophagy: The clearance of SGs is mediated by autophagy[163] and 
increasing autophagic flux in cancer cells may potentially lower the amount of SGs 
and re-sensitize cancer cells to chemotherapy. Alternatively, autophagy has been 
considered as an important survival mechanism of CRC cells and several molecules 
impairing autophagy have been implicated as novel therapeutics[135]. However, it 
remains to determine whether autophagy impairment can lead to an impairment of 
SGs clearance, which may potentially favor cancer cell survival and tumor recurrence.

Targeting SGs-associated RNA-binding proteins controlling cancer-related factors: 
Several RBPs are localized in SGs and control the translation/stability of various 
cancer-related transcripts (i.e., oncogenes, tumor suppressors). Targeting these 
proteins may represent an appealing approach to reduce the oncogenic properties of 
SGs in CRC. In that sense, several strategies aiming at inhibiting HuR expression and 
activity have been proposed[164]. Among them, the HuR inhibitor MS-444, a polyketides 
purified from microbial extracts, represents an interesting candidate due to its potent 
anti-cancerous properties in various cancers (e.g., colorectal cancer, pancreatic cancer, 
malignant glioma)[165,166]. MS-444 prevents HuR cytoplasmic export by inhibiting its 
homodimerization, thereby reducing the stability of its mRNA targets. Moreover, the 
anti-tumor properties of MS-444 was further observed in a mouse model of Familial 
Adenomatous Polyposis (i.e., APCMin mice)[87], thus showing the effectiveness of this 
molecule in vivo.

Finally, molecules preventing the sequestration of pro-apoptotic factors within SGs 
may also represent a potential approach to reduce cancer cell survival. For instance, 
resveratrol can prevent RBFOX2 localization in stress granules, thus inhibiting cancer 
cell proliferation[101].

CONCLUSION
Due to the aging population and increased incidence of chronic bowel diseases, 
coupled with less than optimal lifestyle habits, an increased incidence in CRC cases is 
expected in the near future[167]. Further investigation into the molecular mechanisms 
associated with colon carcinogenesis is therefore needed in order to identify new 
targets for novel therapeutic approaches. Increasing evidence indicate that SGs are key 
players involved in CRC tumorigenesis and chemoresistance. Based on current 
findings, the assembly of SGs and their role in CRC development relies on multiple 
changes in the factors involved in SG nucleation and clearance (Figure 2). Early 
alterations of SGs components in preneoplastic conditions (e.g., IBD) may also allow 
altered cells to survive and accumulate further defects contributing to tumorigenesis. 
Moreover, the link between other chronic diseases such as diabetes and obesity, which 
are important risk factors for CRC development, represent new areas where SGs 
assembly needs to be clarified. Other potential contributing factors, such as gut 
microbiota dysbiosis should also be considered as a potential driver of SGs formation 
in cancer cells. Beside the proteins discussed in this review, several other SG 
components have been identified and have been recognized as regulators of SGs 
assembly in other cancer types, such as FMRP, ATX-2, the RNA helicase DDX3X[168], 
TDP-43[169], DYRK3[128], PDCD4[21] or FUS[170], and continued work will determine the 
function of these proteins in CRC. Other proteins, which are associated with SGs are 
also important regulators of cancerous processes (e.g., cell cycle progression, cancer 
cell migration and invasion). Although the role of these factors in SG biology is 
currently unclear, their storage in these granules may represent an important “reservoir
”, favoring cancer cell survival in stress-related conditions. As CRC remains one of the 
deadliest cancers worldwide, employing strategies aimed at impairing SG assembly 
may re-sensitize cancer cells to chemotherapy and improve clinical outcomes. Such 
approaches may provide beneficial effects to CRC patients, along with other cancers 
where clinical options are limited and only a few therapeutic options exist. In this 
review, we discussed several strategies that could be employed to reduce SG 
formation in cancer cells. However, the efficiency of such approaches in colorectal 
cancer and SG assembly needs to be firmly established. Moreover, the potential side 
effects that could be associated with these strategies (e.g., the G-quadruplex ligand 
RHPS4 which induces cardiovascular side effects) need to be carefully evaluated using 
in vivo models. Moreover, the role of some regulators of SGs formation in CRC is still 
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Figure 2  The molecular landscape underlying stress granules formation in colorectal cancer. Stress granules (SGs) assembly in colorectal cancer 
cells is associated with several alterations in the expression of proteins involved in SG nucleation or clearance. The stress-related conditions within the tumor 
microenvironment and various antitumor agents can further promote SGs assembly. Several SG-associated proteins (RNA-binding proteins or others) contribute to 
various cancer-related processes such as cell cycle progression, apoptosis inhibition, angiogenesis, and chemoresistance. Illustrations were retrieved from Servier 
Medical art (https://smart.servier.com/). SG: Stress granules.

unclear (e.g., mTORC1, AMPK) and thus a better understanding of their function in SG 
formation in CRC is required prior to any therapeutic interventions.
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