
Genetic variants in glutamine metabolic pathway genes predict 
cutaneous melanoma-specific survival

Ka Chen1,2,3,#, Hongliang Liu2,3,#, Zhensheng Liu2,3, Wendy Bloomer2,3, Christopher I. 
Amos4, Jeffrey E. Lee5, Xin Li6, Hongmei Nan6, Qingyi Wei2,3,7,*

1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third 
Military Medical University, Chongqing 400038, PR China

2Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA

3Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA

4Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, 
Hanover, NH, 03755

5Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, 
Houston, TX 77030, USA

6Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, 
Indianapolis, IN 46202, USA

7Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 
27710, USA

Abstract

Glutamine dependence is a unique metabolic defect seen in cutaneous melanoma (CM), directly 

influencing the prognosis and treatment. Here, we investigated the associations between 6,025 

common single-nucleotide polymorphisms (SNPs) in 77 glutamine metabolic pathway genes with 

CM-specific survival (CMSS) using two published genome-wide association study (GWAS) 

datasets. In the single-locus analysis, 76 SNPs were significantly associated with CMSS (P < 
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0.050, false-positive report probability < 0.2 and Bayesian false discovery probability < 0.8) in the 

discovery dataset, of which seven SNPs were replicated in the validation dataset and three SNPs 

(HAL rs17676826T>C, LGSN rs12663017T>A and NOXRED1 rs8012548A>G) independently 

predicted CMSS, with an effect-allele attributed adjusted hazards ratio of 1.52 (95% confidence 

interval=1.19–1.93) and P<0.001, 0.68 (0.54–0.87) and P=0.002 and 0.62 (0.46–0.83) and 

P=0.002, respectively. The model including the number unfavorable genotypes (NUGs) of these 

three SNPs and clinical variables improved the five-year CMSS prediction (P = 0.012). Further 

expression quantitative trait loci (eQTL) analysis found that the LGSN rs12663017 A allele was 

significantly associated with increased mRNA expression levels (P = 8.89×10−11) in 

lymphoblastoid cell lines of the 1000 Genomes Project database; In the analysis of the genotype 

tissue expression (GTEx) project datasets, HAL rs17676826 C allele and NOXRED1 rs8012548 G 

allele were significantly associated with their mRNA expression levels in sun-exposed skin of the 

lower leg (P = 6.62×10−6 and 1.37×10−7, respectively) and in sun-not-exposed suprapubic skin (P 
< 0.001 and 1.43×10−8, respectively). Taken together, these genetic variants of glutamine-

metabolic pathway genes may be promising predictors of survival in CM patients.
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Introduction

Cutaneous melanoma (CM) is the most aggressive and treatment-resistant form of skin 

cancers (1). According to American Cancer Society, CM mortality remains high and stable 

in the past two decades, while dramatic declining trends are observed in most of other 

cancers (2, 3). Therefore, it is imperative to further identify the factors that predispose 

patients to poor survival outcome and to improve rationally prediction of prognosis and 

management of personalized treatment for CM patients.

Initiated by Warburg’s seminal work, discoveries in metabolic alterations in cancer continue 

to raise tremendous interest (4–7). Glutamine dependency, the abnormally increased 

glutaminolysis, has been widely recognized as an important hallmark of cancer metabolism 

(5, 7–10). Glutamine, the most abundant free amino acid, plays a key role in cancer 

progression, including maintenance of carboxylic acid pools in the tricarboxylic acid cycle, 

sustaining cellular oxidative phosphorylation, and synthesis of the nonessential amino acids, 

purine, pyrimidines and fatty acids (9–11). To meet the dramatically increasing demand of 

glutamine in cancer, glutamine metabolism-related enzymes and transporters are 

overwhelmingly induced by oncogenes (7, 10, 12), and agents targeting glutamine 

metabolism including glutamine-mimetic compounds, inhibitors to glutaminase (GLS) or 

glutamate dehydrogenase (GDH) are proved to be effective in inhibiting cancer progression 

(10, 11, 13). Recently, glutamine addiction has also been identified in CM (1, 14, 15). 

Unlike glutamine-independence in melanocytes, melanoma cells, irrespective of their 

genetic backgrounds [e.g., mutated B-Raf Proto-Oncogene (BRAF), NRAS Proto-Oncogene 

(NRAS), or p53], all depend on glutamine for growth (1, 15–17), consuming up to seven-
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fold more glutamine than melanocytes (15, 17, 18), whereby glutamine specifically provides 

a strong anaplerotic input, contributing to the biosynthesis of fatty acid and proline in 

hypoxia. In light of the glutamine’s essential role in CM, it is important to comprehensively 

understand the regulation of glutamine metabolism in CM patients.

Multiple genetic alterations, either germline or somatic, have been reported to be involved in 

oncogenic transformation and progression of CM (19),(20, 21). Glutamine dependence in 

cancer may be due to one or a combination of deletions, polymorphisms or alterations in the 

genes of the glutamine/glutamine family amino acid metabolic process and glutamine 

transporters. Few studies have investigated the roles of genetic variants of the glutamine 

pathway genes in prognosis of melanoma. One study found that genetic variants of the 

glutamine transporter SLC1A5 (ASCT2) were associated with prognosis of hepatocelluar 

carcinoma patients (22). In the present study, we aimed to determine whether common 

genetic variants involved in the glutamine metabolism process are associated with CM-

specific survival (CMSS) using two published genome-wide association study (GWAS) 

datasets, which may help identify promising prognostic biomarkers and support scientific 

foundation on the possible metabolism-based therapeutics.

Materials and Methods

Study populations and genotyping data

Two GWAS datasets were used in the present study: the discovery dataset and the validation 

dataset. The discovery dataset was from The University of Texas MD Anderson Cancer 

Center (MDACC) and the validation dataset was from the Nurses’ Health study (NHS) and 

the Health Professionals Follow-up Study (HPFS) conducted by Harvard Brigham and 

Women’s Hospital. The study protocols were approved by Institutional Review Boards at 

both MDACC and Harvard Brigham and Women’s Hospital with a written consent from 

each of the subjects.

In the MDACC GWAS study, 858 non-Hispanic white patients diagnosed with histologically 

confirmed CM were accrued for a hospital-based case-control study between March 1998 

and August 2008. The complete information (19, 21) for demographic and prospective 

clinicopathological data of the patients were obtained from a standard life-style 

questionnaire and/or extracted from patient medical charts. The genotypes were called by 

using the BeadStudio algorithm at John Hopkins University Center for Inherited Disease 

Research. Genome-wide imputation was conducted with the MACH software based on the 

1000 Genomes Project, phase 1 v2 CEU data (23). SNPs with a minor allele frequency 

(MAF) ≥ 0.05, a genotyping rate ≥ 95%, and Hardy-Weinberg equilibrium P values ≥ 

1×10−5 were included in the final analysis. The MDACC dataset can be accessed at the 

Database of Genotypes and Phenotypes (dbGaP: http://www.ncbi.nlm.nih.gov/gap) with an 

accession number phs000187.v1.p1 (24). The detailed genotyping information and data 

quality control have been reported (19, 25).

In the Harvard NHS/HPFS GWAS study, the two cohorts of NHS and HPFS were 

established in 1976 and 1986, respectively (26). In the NHS, the information on CM 

development was first collected in 1984 and 90% of participants had completed health-
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related information for >20 years. In the HPFS, the related information was first collected in 

1984 and the average follow-up rate over 10 years was>90%. Eligible subjects in both 

cohorts were participants with histopathologically confirmed invasive melanoma, diagnosed 

at any time after baseline up to the 2008 follow-up cycle. All subjects were non-Hispanic 

whites in the United States. In the final analysis, 409 patients were included in the data after 

quality control. Genotyping was performed using the Illumina HumanHap610 array. 

Genome-Wide imputation was also performed using the MACH program based on the 1000 

Genomes Project (Utah Residents with Northern and Western European Ancestry data, 

phase I v3) (27, 28). SNPs with imputation quality r2≥ 0.8 and MAF≥ 0.05 were included in 

the final analysis.

Gene and SNP selection

Based on the database of the Molecular Signatures Databases and literatures (13, 29, 30), 84 

autosome genes of the glutamine/glutamine family amino acid metabolic process and 

glutamine transporters were selected to further investigation (Supporting information Table 

1). After excluding seven genes in the X chromosome, SNPs within the remaining 77 genes 

and their 2-kb flanking regions were extracted from the MDACC GWAS dataset.

In silico functional analysis as a biological validation

For those validated SNPs as significant ones, bioinformatics functional prediction was 

performed firstly by using two online tools: RegulomeDB (http://www.regulomedb.org) and 

HaploReg (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php) (31, 32). 

Then, the expression quantitation trait loci (eQTL) analysis was conducted by using data 

from multiple sources: lymphoblastoid cell data of 373 European individuals from Genetic 

European Variation in Health and Disease Consortium (GEUVADIS) and the 1000 Genomes 

Project (phase I integrated release 3, March 2012) (27); the whole blood, skin or the 

subcutaneous adipose tissue data from the genotype tissue expression (GTEx) project (33); 

tumor and adjacent normal tissue data from the Cancer Genome Atlas (TCGA) database 

(34).

Statistical methods

CMSS was defined as the primary endpoint of the present study, for which survival time 

started at the date of diagnosis of CM and ended at the date of CM-related death or the last 

follow-up. Deaths with non-CM causes were considered censored. The associations between 

SNPs and CMSS (in an additive genetic model) were analyzed by both univariable and 

multivariable Cox proportional hazards regression models using the GenABEL package of R 

software, with adjustment for age, sex, Breslow thickness, tumor stage, tumor cell mitotic 

rate and ulceration of tumor in the MDACC GWAS dataset and for age and sex in the 

Harvard NHS/HPFS GWAS dataset. Bayesian measure of the false-positive report 

probability (FPRP) (35) correction was applied to limit the probability of false-positive 

findings as a relatively large number SNPs had been tested. We chose the less stringent 

FPRP for multiple test correction, because the vast majority (5089 out of 6209) of the SNPs 

included in the analysis were imputed with a high LD with the 1124 genotyped SNP (Fig. 

1A). Only those SNPs with an FPRP value < 0.2 were considered worthy of subsequent 

validation in the Harvard NHS/HPFS GWAS dataset. We also used false discovery rate 
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(FDR) and another Bayesian measure (BFDP: Bayesian false discovery probability with a 

cutoff value of 0.8 for identifying noteworthy associations, which refines the criteria for 

FPRP) for identifying noteworthy associations (36). Linkage disequilibrium (LD) analysis 

was performed by using HaploView 4.2 according to European populations from the 1000 

Genome Project with pairwise r2=0.8 as a cut-off value.

The stepwise Cox regression model including validated SNPs and clinical variables was 

performed to choose the independent SNPs. Meta-analysis was conducted using PLINK 

1.09. Cochran’s Q statistics and I2 were carried out to access an inter-study heterogeneity. 

Fixed-effects models were used when no heterogeneity was found between two studies (Q 

test P values >0.1. and I2< 25.0%); otherwise, random-effects models were used. The 

number of unfavorable (risk) or protective genotypes (NUGs) was used as a genetic risk 

(protective) score to assess the combined effect of all independent and significant SNPs. 

Manhattan plot and quantile-quantile plot were performed using qqman package of R 

software. Kaplan-Meier survival curves and Log-rank tests were performed to visually 

evaluate the effects of NUGs on CMSS. The receiver operating characteristic (ROC) curve 

and time-dependent area under the curve (AUC) were constructed from the logistic 

regression model with the survival ROC package of R software. Statistical significance of 

the improvement in AUC was analyzed by the Delong’s test. All analyses were performed 

using SAS (version 9.1.4; SAS Institute, Cary, NC), unless otherwise specified. Fig. 1A 

provides the study follow chart, illustrating procedures of analyses performed in the present 

study.

Results

Basic characteristics of the two GWAS datasets

The analysis included 858 patients from the MDACC GWAS dataset and 409 patients from 

the Harvard NHS/HPFS GWAS datasets, and basic characteristics of these subjects had been 

previously described (21) (Supporting information Table 2). In the MDACC GWAS dataset, 

the age of patients ranged between17 and 94 years at diagnosis (52.4 ± 14.4 years), and there 

were more men (496, 57.8%) than women (362, 42.2%). Meanwhile, more patients had a 

stage I/II disease (709, 82.6%) than a stage III/IV disease (149, 17.4%), with a median 

follow-up time of 81.1 months, during which 95 (11.1%) patients died of CM. In addition, 

univariable Cox regression analysis indicated that age, sex, regional/distant metastasis, 

Breslow thickness, ulceration, and mitotic rate were significantly associated with CMSS. In 

the NHS/HPFS GWAS dataset, the age of the included patients was between 34 and 87 years 

at diagnosis (61.1 ± 10.8 years), and 66.3% (271) of the patients were women. Compared 

with that of the MDACC patients, the median follow-up time of the patients was relatively 

longer (179.0 months), during which 48 (11.5%) patients died of CM, and only age was 

significantly associated with CMSS in univariable Cox regression analysis of the NHS/

HPFS GWAS dataset, because other clinicopathologial variables were not available.

SNPs and CMSS

In the discovery MDACC GWAS dataset, Cox regression analysis was firstly performed to 

assess associations of a total of 6,209 common SNPs of the glutamine metabolism-related 
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pathway genes with CMSS. Manhattan plot of associations between these variants and 

CMSS in MDACC dataset is shown in Fig. 1B. The quantile-quantile plot of the observed P 
values showed a uniform distribution (Fig. 1C). In a single locus analysis, 252 SNPs were 

found to be significantly associated with CMSS at P < 0.05 in an additive genetic model, of 

which 76 SNPs were still considered noteworthy after the correction by the FPRP < 0.2 and 

BFDP < 0.8. Then, these 76 SNPs were further subjected to validation in the Harvard NHS/

HPFS GWAS dataset. As shown in Table 1, seven SNPs in three genes identified in the 

discovery phase remained statistically significant (P < 0.05), of which rs17676826 in 

histidine ammonia-lyase ( HAL) was significantly associated with a poorer survival, while 

the other five SNPs of Lengsin ( LGSN) and rs8012548 in NADP-dependent 

oxidoreducatase domain-containing protein 1 (NOXRED1) were associated with a better 

survival in both datasets. Additionally, the noteworthy associations were also assessed by 

FDR (Supporting information Table 3). Subsequent meta-analysis of these SNPs from both 

datasets showed that these associations remained statistically significant, and there was no 

evidence for heterogeneity in these seven SNPs between the two GWAS datasets.

Three independent SNPs as CM survival predictors

We further performed functional prediction with RegulomeDB and HaploReg30 for these 

validated SNPs (Supporting information Table 4). As indicated by RegulomeDB, the score 

of HAL rs17676826 was 4, and functional annotation of this SNP in HaploReg demonstrated 

that it overlaps with an enhancer, potentially disrupting four motifs [i.e., Zinc finger and 

BTB domain-containing protein 3 (Zbtb3)] and affecting the mRNA expression. As for the 

five SNPs in LGSN, LD analysis showed that they were in high LD (r2>0.8) (Fig. 1D), of 

which LGSN rs12663017 may disrupt eight motifs [i.e., Forkhead Box A (FOXA), Histone 

Deacetylase 2 (HDAC2), and E1A Binding Protein P300 (EP300)] and affecting mRNA 

expression of the corresponding gene. Additionally, LGSN rs12663017 is located very close 

to the 3’-UTR (untranslated region, 247 bp at the 3’ of LGSN), whereas SNPs rs2253428 

and rs2253430 in complete LD (r2=1) with the lead variant rs12663017 were located at 3’-

UTR. According to the HaploReg, NOXRED1 rs8012548 may disrupt the motif of paired 

like homeodomain 2 (Pitx_2) and spermatogenic leucine zipper 1 (Spz1), affecting the 

mRNA expression. Moreover, two highly linked SNPs with NOXRED1 rs8012548 [i.e., 

transmembrane emp24 domain-containing protein 8 (TMED8) rs10141317, r2 = 0.93; 

TMED8 rs3742737, r2 = 0.94] were identified as missense variants. The above-mentioned 

online functional predictions suggested that these SNPs were biologically functional.

Comprehensively considering the predicted functions, P values and LD, we selected three 

SNPs of HAL rs17676826, LGSN rs12663017 and NOXRED1 rs8012548 as the tagSNPs. 

Then we used initial stepwise Cox regression analyses to identify whether these three SNPs 

were independent predictors of CMSS. The results suggested that these three tagSNPs were 

statistically significant independent predictors of CMSS (Table 2).

For each of the three independent SNPs, univariable and multivariable Cox regression 

analysis were further performed to evaluate their effects on death risk with adjustment of 

other clinicopathological covariates (Table 3). In the MDACC dataset, risk of death was 

significantly increased with the number of HAL rs17676826 C allele (Ptrend = 0.001) but 
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was significantly decreased with the number of LGSN rs12663017 A and NOXRED1 
rs8012548 G alleles (Ptrend = 0.024 and 0.021, respectively). Similarly, consistent trends 

were observed in the Harvard NHS/HPFS dataset (Ptrend = 0.029, 0.025 and 0.030, 

respectively) and in the MDACC and NHS/HPFS combined dataset (Ptrend = 0.029, 0.004 

and 0.030, respectively). In addition, regional association plots for variants in HAL, LGSN 
and NOXRED1, including the 50-kb regions flanking the neighborhoods of these genes, are 

shown in Supporting information Fig. 1.

Combined effects of the three independent SNPs

To better evaluate the joint effect of the three independent SNPs on risk of death, the risk 

genotypes (i.e., HAL rs17676826 TC+CC, LGSN rs12663017 TT and NOXRED1 
rs8012548 AA) were combined into one variable as a genetic score as the number of 

unfavorable genotypes (NUGs) (Table 3). The trend test indicated that an increased number 

of NUGs was associated with an increased risk of death in the MDACC (P < 0.001), NHS/

HPFS (P = 0.010) and the combined (P = 0.012) datasets. We further divided the combined 

NUGs into a low-risk group (0–1 NUGs) and a high-risk group (2–3 NUGs) and found that 

the HR for the high-risk group was 2.04 fold (CI =1.32–3.15, P = 0.001), 1.66 fold (CI= 

0.94–2.92, P = 0.082) and 1.90 fold (CI= 1.37–2.66, P < 0.001) for the MDACC, NHS/

HPFS and the combined datasets, respectively, compared with the low-risk group. For the 

illustrative purpose, Kaplan-Meier survival curves of these associations of the NUGs with 

CMSS are depicted in Figs. 2A–2B and Supporting information Fig. 2.

Stratified analyses for associations between NUGs and CMSS

Additional stratified analysis was carried out to investigate whether the combined effect of 

unfavorable genotypes on CMSS was modified by clinical variables in the MDACC dataset. 

Compared with those with 0–1 NUGs, individuals with 2–3 NUGs showed a poorer survival 

in the presence of clinicopathologic risk factors in the stratified subgroups of > 50 years old, 

male, female, with regional/distant metastasis, Breslow’s thickness > 1mm, ulceration and 

mitotic rate > 1mm2, and no heterogeneity was observed among these subgroups 

(Supporting information Table 4).

The ROC curve and time dependent AUC

We further estimated predictive value of the NUGs with time-dependent AUC and ROC 

curves using the combined MDACC and NHS/PFS datasets. As shown in Fig. 2C, the time-

dependent AUC plot indicated an improved prediction performance with the addition of 

NUGs to the model with clinicopathologic risk factors (age and sex) from the beginning of 

the follow-up and remaining over time, compared with clinicopathologic factors only. As for 

classification of five-year CMSS (Fig. 2D), the AUCs were increased from 61.25% to 

67.34% (P = 0.012), which were statistically significant after adding NUGs into the model 

with clinicopathologic risk factors.

The eQTL analysis using 1000 Genomes Project database

To evaluate correlations between SNPs and their corresponding mRNA expression levels, we 

primarily used the RNA-Seq data of lymphoblastoid cell lines from 373 European 
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descendants included in the database of the 1000 Genomes Project. As shown in Figs. 3A, 

LGSN rs12663017 TA and AA genotypes (or the A allele) were significantly associated with 

increased mRNA expression levels of LGSN (trend test in an additive model: P = 8.89 × 

10−11), but this trend was not observed for HAL rs17676826 (P = 0.341) and NOXRED1 
rs8012548 (P = 0.079).

The eQTL analysis using the GTEx project database

Then, we further conducted the eQTL analysis using data from the GTEx. In skin tissues 

from the donors, the HAL rs17676826C allele was associated with a significant increase in 

mRNA expression levels in sun-exposed skin of the lower leg (P = 6.62×10−6, Fig. 3B–a) 

and in sun-not-exposed suprapubic skin (P = 0.0011, Fig. 3B–b); the NOXRED1 rs8012548 

G allele was associated with a significant decrease in mRNA expression levels in sun-

exposed skin of the lower leg (P = 1.37×10−7, Fig. 3B–c) and sun-not-exposed suprapubic 

skin (P = 1.43×10−8, Fig. 3B–d), and the two highly-linked variants (i.e., rs10141317 and 

rs10141317) were also associated with a significant decrease in NOXRED1 mRNA 

expression levels in sun-exposed skin of the lower leg (rs10141317 T allele, P = 4.10 

×10−7and rs3742737 T allele, P = 3.10 ×10−7) and sun-not-exposed suprapubic skin 

(rs10141317 T allele, P = 1.60 ×10−8and rs3742737 T allele, P = 1.10 ×10−8); whereas there 

was no data about LGSN rs12663017 in skin tissues.

Additionally, according to the GTEx portal, LGSN the rs12663017A allele was associated 

with a significant increase in mRNA expression levels (P = 3.90×10−9, Fig. 3B–e) in the 

whole blood from the donors, and the same trends were observed in its six highly-linked 

variants (data not shown); the NOXRED1 rs8012548G allele was associated with a 

significant decrease in mRNA expression levels in subcutaneous adipose tissue (P = 

2.20×10−5, Fig. 3B–f) from the donors.

The eQTL analysis using the TCGA database

We also performed SNPs and mRNA expression correlation analysis by using the expression 

data in tumor tissues from 473 cases of CM from the TCGA database; however, there was no 

significant association between HAL rs17676826 and its mRNA expression levels (P = 

0.412 in additive model); the other two tag SNPs were not included in the TCGA dataset.

Furthermore, associations between mRNA expression and lung cancer overall survival in 

TCGA database were investigated by using OncoLnc (http://www.oncolnc.org/). According 

to OncoLnc, CM patients with higher NOXRED1 mRNA expression levels in tumor tissue 

showed a better overall survival (P = 0.025) in TCGA database; Kaplan-Meier survival 

curves for NOXRED1 in CM with the bottom quartile vs. top quartile of NOXRED1 mRNA 

expression levels were shown in Fig. 3C. However, no significant associations were found 

between the HAL or LGSN mRNA expression and CM overall survival in TCGA database 

by using OncoLnc.

Discussion

To our knowledge, this is the first report about the associations between genetic variants in 

the glutamine metabolism pathway genes and CMSS. Using publically available genotyping 
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data from two published GWAS datasets, we revealed that genetic variants of HAL 
rs17676826, LGSN rs12663017 and NOXRED1 rs8012548 either individually or jointly 

modulated the survival of patients with CM. Remarkably, the effect was consistent across 

analyses of different datasets and through stratified analyses, and the genotype-survival 

association was pronounced even in the presence of clinicopathological risk factors, such as 

Breslow thickness and mitotic rate. Moreover, these genetic variants were found to influence 

their mRNA expression levels. These findings suggest that genetic variants in the glutamine 

metabolism pathway genes may have biological roles in CM progression, possibly through a 

mechanism of modulating expression of these genes, which would provide new scientific 

insights into metabolism-based therapeutics for cancer.

HAL, located on chromosome 12q23.1, encodes the histidine ammonia-lyase. Histidine is 

one of the glutamine family amino acids, which are disposed of through conversion to 

glutamate (37). HAL, mainly existing in the epidermis and liver, catabolizes histidine to 

trans-urocanic acid (UCA), an ultraviolet (UV) radiation-absorbing molecule in the stratum 

corneum, which can be photoisomerized to cis-UCA, when exposed to UV, especially UV-B 

(38–40). Moreover, cis-UCA mimics the effects of UV-B-mediated immuno-suppression, 

which has been recognized as an important factor related to skin cancer development (38–

40). In the present study, we found that rs17676826, located in the intron region of HAL, 

was associated with a poorer survival in CM patients. The rs17676826 position overlaps 

with an enhancer activity cluster, which is classified as a genic enhancer by the 15-state core 

model and as a transcribed 3’ enhancer by the 25-state model, according to the Haploreg 

database (32). Furthermore, histone modification markers H3K4me1, H3K4me4 and 

H3K27ac are all contributing to the chromatin state assignment at this SNP location. 

Therefore, rs17676826 probably affects gene expression levels by modifying the 

accessibility of chromatin during the transcription. Consistent with that, the rs17676826 C 

allele was found to be associated with a significant increase in mRNA expression levels of 

HAL in the sun-exposed lower leg skin and sun-not-exposed suprapubic skin. Additional 

Haploreg data show that this SNP changes the match to some regulatory motifs, such as 

Zbtb3, which play important roles in cancer cell growth via gene expression of 

detoxification enzymes for reactive oxygen species (41). Overall, these provide a possible 

explanation to the mechanism underlying the observed association between rs17676826 and 

CMSS.

LGSN, located on chromosome 6q12, encodes a glutamine synthetase I family protein called 

lengsin that was previously reported to be a constitutive lens-specific protein but without the 

glutaminase activity (42). Recently, lengsin was identified as a novel tumor-associated 

antigen and revealed its essential role in cell survival (42, 43). In the present study, we found 

that CM patients with genotypes of LGSN rs12663017 TA+AA had a better CMSS. This 

SNP and its highly-linked SNPs, rs2253428 and rs2253430, are located very close to or 

within the 3’-UTR of the gene, which indicates that these SNPs may influence the fate of 

LGSN mRNA and thus proteosynthesis. Consistent with that, we found the LGSN 
rs12663017A allele was associated with a significant increase in mRNA expression levels of 

LGSN in whole blood and lymphobplastoid cell lines. Additionally, as indicated in the 

Haploreg database (32), rs12663017 can disrupt some important transcription regulators, 

Chen et al. Page 9

Mol Carcinog. Author manuscript; available in PMC 2020 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including FOXA, EP300 and HDAC2, which suggests that this SNP is also likely affect gene 

expression by modifying the remodeling of chromatin during transcription.

NOXRED1, located on chromosome 6q12, encodes the NADP-dependent oxidoreducatase 

domain-containing protein 1, formerly named C14orf148. According to the Go annotation 

(http://www.geneontology.org/), NOXRED1 is a probable oxidoreductase and belongs to the 

pyrroline-5-carboxylate reductase-like protein (PYCR) family (44). In general, glutamine is 

degraded to glutamate, which then can consecutively be converted to proline by PYCR. 

Many studies have proved that proline is essential for cancer cell growth and that the 

elevated proline pool may enhance production of collagen and new extracellular matrix 

deposition, facilitating tumor invasion (18, 45–47). In the present study, our findings 

revealed that carriers of the NOXRED1 rs8012548 G variant genotypes had a better CMSS. 

According to the annotation of HaploReg (32), the NOXRED1 rs8012548G allele might 

have some effects on regulatory motifs, including Pitx2 and Spz1, which were associated 

with tumor progression in procollagen lysyl hydroxylase translation (48) and toll-like 

receptor (TLR) activation (49), respectively. Additionally, it should be noted that the 

association between rs8012548 and CMSS could have been correlated with the other two 

highly-linked missense variants (rs10141317 and rs3742737) in TMED8. These two 

TMED8 variants may have substantial functions as they are located at the promoter enhancer 

and DNase I hypersensitive sites, likely to disrupt many motifs in various cells and tissues. 

Consistently, we found that the rs8012548 G allele, the rs10141317 T and rs3742737 T 

alleles were involved in transcriptional regulation as evidenced by eQTL analysis from the 

1000 Genomes and GTEx projects. Notably, we found that these three SNPs were associated 

with significant decrease in mRNA expression levels in sun-exposed or sun-not-exposed 

skin, which supports an oncogenic effect of NOXRED1. However, in the TCGA database, 

CM patients with higher NOXRED1 mRNA expression levels in tumor tissue showed a 

better survival. These contradictions might be attributed to many factors including the 

limited samples of the two databases. Therefore, further functional investigation of 

NOXRED1 are needed, especially for the experimental work.

There were some limitations in the present study. Firstly, there was no available information 

about glutamine or nutritional status, nutrition-based treatment and systemic therapies 

received by the patients. Secondly, although we adjusted in the models for variables (age, 

sex, Breslow thickness, regional/distant metastasis, ulceration, and mitotic rate) that could 

confound our observations of a genetic effect on CMSS for the discovery in the MDACC 

analysis, only age and sex were adjusted in the validation in the Harvard NHS/HPFS dataset. 

However, no heterogeneity was observed, when the two datasets were combined, which 

indicates that the observed effect of each SNP on CMSS from the two studies was 

consistent. Lastly, no direct biological experiments were conducted for functional 

validations. Further functional studies are warranted to investigate the exact function of these 

SNPs or genes on melanoma progression. Because we did not use the FDR as the multiple 

test correction, it is possible that our findings could be of false discovery, and thus additional 

validation is warranted. Also, additional larger validation studies with multiethnic groups are 

also needed to confirm our results, because our prognosis-predicting model was based on a 

non-Hispanic white patient population.
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In conclusion, the present study identified the roles of genetic variants in HAL 
(rs17676826), LGSN (rs12663017) and NOXRED1 (rs8012548) in CMSS as assessed in 

two independent GWAS datasets. Given the importance of glutamine metabolic alteration in 

the progression of cancer cells, these genetic variants may represent promising prognostic 

biomarkers and potential subtype classification indicators for personalized metabolic 

therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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eQTL expression quantitative trait loci

BFDP bayesian false discovery probability

ROC receiver operating characteristic
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Figure 1. 
Screening for independent functional SNPs in the glutamine metabolic pathway genes to 

predict CMSS. (A) Study flowchart; (B) Manhattan plot and (C) quantile-quantile plot of 

associations between variants of the glutamine metabolic pathway and CMSS in MDACC 

dataset. There are 252 SNPs with P < 0.05 and 76 SNPs with FPRP< 0.2 and BFDP < 0.8 in 

the total 6, 209 SNPs of glutamine metabolic pathway. The blue horizontal line indicates P = 

0.05. The red horizontal line indicates FPRP = 0.2 and BFDP = 0.8. (D) LD plots of 

validated five SNPs in LGSN. CMSS, cutaneous melanoma-specific survival; MDACC, The 
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University of Texas MD Anderson Cancer Center; SNP, single-nucleotide polymorphism; 

BFDP, bayesian false discovery probability; GWAS, genome-wide association study; HWE, 

hardy Weinberg equilibrium; MAF, minor allele frequency; LD, linkage disequilibrium.
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Figure 2. 
The combined risk genotypes and survival prediction. Kaplan-Meier survival curves of the 

combined risk genotypes in the MDACC + NHS/HPFS datasets (A), and dichotomized 

groups of the NUG in the MDACC + NHS/HPFS datasets (B); ROC curves and AUC 

estimation for prediction of melanoma-specific survival using the MDACC + NHS/HPFS 

datasets, (C) Time-dependent AUC estimation, based on age, sex and the risk genotypes of 

the three independent genes, and (D) Five-year melanoma-specific survival ROC curves (P = 

0.012). NUG, number of unfavorable genotypes; MDACC, The University of Texas MD 

Anderson Cancer Center. ROC, Receiver operating characteristic; AUC, Time-dependent 

area under the ROC curve.
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Figure 3. 
Associations between the risk genotypes and their corresponding mRNA expression levels. 

(A) The eQTL in 373 Europeans from the 1000 Genomes Project for (a) HAL rs17676826, 

(b) LGSN rs12663017 and (c) NOXRED1 rs8012548 in the additive model; (B) the eQTL 

from the GTEx project using the additive model for HAL rs17676826 in skin tissues from 

sun-exposed lower leg skin (a) and sun-not-exposed suprapubic (b), NOXRED1 rs8012548 

in skin tissues from sun-exposed lower leg (c) and sun-not-exposed suprapubic (d), LGSN 
rs12663017 in the whole blood (e), and NOXRED1 rs8012548 in subcutaneous adipose (e). 

Chen et al. Page 18

Mol Carcinog. Author manuscript; available in PMC 2020 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Kaplan-Meier survival plot for NOXRED1 in CM patients from TCGA database. 

Survival analyses based on different mRNA expression levels of NOXRED1 in the bottom 

quartile vs. top quartile in 458 CM patients of European descents from TCGA database, 

which were analyzed by OncoLnc (http://www.oncolnc.org). eQTL, expression quantitative 

trait loci analysis. GTEx, Genotype-Tissue Expression; CM, cutaneous melanoma; TCGA, 

The Cancer Genome Altas.
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