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Abstract.

BACKGROUND: Endothelial hyperpermeability is suggested to play a role in the development of microcirculatory perfusion
disturbances and organ failure following hemorrhagic shock, but evidence is limited.

OBJECTIVE: To study the effect of plasma from traumatic hemorrhagic shock patients on in vitro endothelial barrier
function.

METHODS: Plasma from traumatic hemorrhagic shock patients was obtained at the emergency department (ED), the
intensive care unit (ICU), 24 h after ICU admission and from controls (rn=38). Sublingual microcirculatory perfusion was
measured using incident dark field videomicroscopy at matching time points. Using electric cell-substrate impedance sensing,
the effects of plasma exposure on in vitro endothelial barrier function of human endothelial cells were assessed.
RESULTS: Plasma from traumatic hemorrhagic shock patients collected at ED admission induced a 19% loss of in vitro
endothelial resistance compared to plasma from controls (p <0.001). This loss was due to reduced cell-cell contacts (p <0.01).
Plasma withdrawn at later time points did not affect endothelial barrier function (p >0.99). Interestingly, in vitro endothelial
resistance showed a positive association with in vivo microcirculatory perfusion (r=0.56, p <0.01).

CONCLUSIONS: Plasma from traumatic hemorrhagic shock patients obtained following ED admission, but not at later
stages, induced in vitro endothelial hyperpermeability. This coincided with in vivo microcirculatory perfusion disturbances.

Keywords: Hemorrhagic shock, endothelial barrier function, microcirculation, plasma, endothelial permeability

1. Introduction

The endothelial barrier holds a key position in the regulation of paracellular and transcellular trans-
portation of liquids and solutes due to its semi-permeable properties [1]. Under normal conditions,
endothelial cells are tightly bound and permeability is limited to extravasation of water and electrolytes.
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However, as a result of a pathological insult, permeability increases and leads to extravascular leakage
of macromolecules with edema formation as a consequence [1].

Circulatory shock is one of the pathological conditions leading to endothelial hyperpermeability, and
is defined as a state of acute circulatory failure leading to decreased tissue oxygen delivery [2]. Based
on the underlying cause, shock can be characterized as cardiogenic, obstructive, disruptive and hypo-
volemic [2]. Hemorrhagic shock, a type of hypovolemic shock, is known to induce edema formation,
microcirculatory perfusion disturbances [3, 4] and multiple organ failure in patients [4]. Hemorrhagic
shock is accountable for 21% to 39% of deaths following trauma, of which the majority occurs in
the pre-hospital phase [5]. Little is however known regarding the exact mechanism causing edema
formation and microcirculatory perfusion disturbances following hemorrhagic shock, hampering the
development of potential treatment targets and strategies.

Most of our understanding regarding hemorrhagic shock-induced endothelial hyperpermeability is
derived from animal studies or from the evaluation of plasma markers involved in inflammation and
endothelial activation and injury. Inflammation, glycocalyx degradation, mitochondrial dysfunction
and disruption of endothelial junctions are mechanisms contributing to increased endothelial perme-
ability [6, 7]. However, the direct effect of plasma from patients following traumatic hemorrhagic
shock on endothelial permeability and its course remains unknown.

Therefore, we investigated the effect of plasma collected from patients following traumatic hemor-
rhagic shock over time on endothelial permeability using an in vitro bioassay for endothelial barrier
function. We subsequently studied its relation to in vivo microcirculatory perfusion and circulating
markers known to be associated with endothelial injury and permeability.

2. Materials and methods
2.1. Study protocol

The Microshock study was approved in the UK under Research Ethics Committees reference:
14/YH/0078 (Clinical trial registration: NCT02111109) [8]. The current study includes a subgroup
analysis of 16 adult patients from a single site (Birmingham, UK) [8]. These patients had evidence of
hemorrhagic shock as represented by a mechanism of injury consistent with blood loss. Eligible patients
needed to be intubated and ventilated, have a serum lactate concentration > 2 mmol.l1~! recorded at any
stage prior to admission to the intensive care unit (ICU), and received any blood products (e.g., packed
red blood cells (PRBC), fresh frozen plasma (FFP), cryoprecipitate) during the initial period of resus-
citation, prior to admission to the ICU. A process of deferred consent was approved by the research
ethics committee [8]. Characteristics and serum analyses of syndecan-1 and soluble thrombomodulin
[9, 10] and microcirculatory perfusion measurements of these patients [4] were published previously.

2.2. Blood sampling

Blood was collected in both citrate and z-serum clotting activator tubes (for plasma and serum
samples respectively) at three different time points, which include arrival at the emergency department
(ED), admission at the ICU (ICU) and 24 hours after admission at the ICU (ICU+24 h) (Fig. 1A). To
reach n =8 per time point as derived by our power calculation, plasma was withdrawn from 16 patients
in total as it was difficult to include plasma at three time points from the same patient. Eight patients
had available blood samples at two time points, the remaining patients had an available blood sample
at one time point. Plasma was also collected from eight age- and sex-matched controls. For serum
samples, blood from z-serum clotting activator tubes was centrifuged at 1,620 G for 10 min at 4°C. For
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Fig. 1. Study protocol and in vitro experimental set-up. (A) Blood was collected (for plasma and serum samples respectively)
and sublingual non-invasive incident dark field videomicroscopy was performed at three different time points: after arrival at
the emergency department (ED; n=_8), after admission at the intensive care unit (ICU; n=8) and 24 hours later 1CU+24 h;
n=238). (B) Human endothelial cells were seeded and culture until a monolayer was formed. After starvation in 1% human
serum albumin (HSA), endothelial cells were exposed to plasma from traumatic hemorrhagic shock patients collected at
ED admission, ICU admission or 24 h later. Measurements were performed using electric cell-substrate impedance sensing
(ECIS; experiment I.) or via immunofluorescence imaging (IF imaging; experiment IL.).

plasma samples, blood from citrate tubes was centrifuged at 2,000 G for 20 min at 4°C, and then the
supernatant was additionally centrifuged at 13,000 G for 2 min at 4°C to achieve platelet-free plasma.
The platelet-free plasma and serum samples were stored at —80°C.

2.3. Cell culture

For cell culture experiments, the following materials were used: bare medium (bM199) consisting
of Medium 199 supplemented with penicillin 100 U.ml~! and streptomycin 100 mg.ml~! (all from
Biowhittaker, Verviers, Belgium); complete medium (cM199) consisting of bM199 supplemented
with 10% heat inactivated new-born calf serum (Gibco, Grand Island, NY, USA), 10% heat inactivated
human serum (pooled serum of 10-20 healthy donors, stored at 4°C, Sanquin CLB, Amsterdam,
the Netherlands), 2mmol.1=! glutamine (Biowhittaker, Verviers, Belgium), 5 U.ml~! heparin (Leo
Pharmaceutical Products, Weesp, The Netherlands), 150 pg.ml~! crude endothelial cell growth factor
prepared from bovine hypothalamus; 1% HSA solution (dilution of human serum albumin in bM199;
Sanquin, Amsterdam, the Netherlands) and Trypsin (Gibco, Grand Island, NY, USA).
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Human umbilical vein endothelial cells (HUVECSs) were isolated and cultured as described before
[11, 12]. Briefly, endothelial cells were isolated from human umbilical cords obtained from healthy
donors from Amstelland Hospital (Amstelveen, the Netherlands) and subsequently cultured on gelatin-
coated well plates in cM199 medium at 37°C, in an atmosphere of 95% air and 5% CO,.

2.4. Electric cell-substrate impedance sensing

Electric cell-substrate impedance sensing (ECIS; Applied BioPhysics, Troy, NY, USA) was used to
measure impedance of endothelial cells as previously described [13]. Confluent, passage one HUVECs
pooled from three donors were transferred to gelatin-coated 96-wells ECIS culture plates (Applied
BioPhysics, Troy, NY, USA) pre-treated with 10 mM L-cysteine (Merck, Darmstadt, Germany). After
72 hof culturing in cM199 medium, the ECIS device was used for continuous, multi frequency scanning
to confirm a confluent monolayer. Confluent monolayers were washed with and exposed to 1% human
serum albumin (HSA) in bare medium for 60 min followed by addition of 10% platelet-free plasma
collected from traumatic hemorrhagic shock patients or age- and sex-matched controls. Impedance was
recorded for 2 hours until steady state was reached at multiple frequencies ranging from 250-64000 Hz
using ECIS software (v1.2.210.0 PC; Applied Bio-Physics). A schematic overview of the experimental
set-up is shown in Fig. 1B. Plasma concentration and exposure time were based on previously performed
experiments [12] and confirmed in pilot experiments.

Resistance is one of the parameters that is derived from impedance measurements and represents
quality and function of the cell barrier [13]. Impedance was also used to calculate cell—cell integrity
(Rb) and cell-matrix integrity (o). All measurements were performed in triplicate and normalized to
baseline.

2.5. Immunofluorescence imaging

Immunofluorescence was used to visualize cell structures of interest. HUVECs were seeded on
5 pM fibronectin-coated coverslips. After reaching a confluent monolayer, cells were washed with and
exposed to 1% HSA for 60 min followed by 2 hour stimulation with 10% platelet-free plasma from
either traumatic hemorrhagic shock patients collected upon arrival at the ED (n=5) or age- and sex-
matched controls (n = 8) (Fig. 1B). Cells were washed with bM 199 and fixed with 4% paraformaldehyde
at room temperature. Upon fixation, cells were permeabilized with 0.2% Triton X-100 in PBS for 3 min
and unspecific staining was blocked by incubation with 1% HSA. Cells were incubated with a primary
antibody against VE cadherin (C-19, 1:400, Santa Cruz, Dallas, TX, USA) and a secondary antibody
against donkey anti-goat Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA). DAPI (Thermo Fisher
Scientific, Waltham, MA, USA) and acti-stain phalloidin 670 (Cytoskeleton, Denver, CO, USA) were
used to stain nuclei and F-actin, respectively. Coverslips were mounted in Mowiol mounting solution
(Sigma Aldrich, Zwijndrecht, The Netherlands). Imaging was performed with a Zeiss Axiovert 200M
Marianas™ digital imaging inverted microscope system using a 63x Zeiss oil objective (Zeiss, Breda,
the Netherlands).

2.6. Microcirculatory perfusion measurements

Microcirculatory perfusion has previously been reported for 58 patients included in the Microshock
study [4]. Briefly, sublingual microcirculatory perfusion was measured using non-invasive incident
dark field (IDF) videomicroscopy (Cytocam, Braedius Medical, Huizen, the Netherlands). In vivo
microcirculatory perfusion measurements were performed at time points corresponding to blood sam-
pling (Fig. 1A). At least four video clips of 5 seconds (100 frames) duration were recorded and stored
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de-identified for blinded analysis. Microcirculatory videos were analyzed by a single operator using
automated vascular analysis (AVA) v.3.02 (Microvision Medical, Amsterdam, The Netherlands) by
manually tracing all vessels by hand. These video analyses give values for total vessel density (TVD),
perfused vessel density (PVD) and proportion of perfused vessels (PPV) according to the current best
practice guidelines for reporting microcirculatory variables [4]. Here, in vivo microcirculatory perfu-
sion measurements of the 16 patients that were included in the present study were used for additional
analysis.

2.7. Serum analysis

Serum concentrations of angiopoietin-1, angiopoietin-2, soluble Tie2 (R&D Systems, Minneapolis,
MN, USA) and von Willebrand factor (Abcam, Cambridge, MA) were analyzed using commercially
available enzyme-linked immunosorbent assays. Serum levels of both syndecan-1 and soluble throm-
bomodulin have previously been reported of the patients in this cohort [9, 10], and were included in
additional analyses in the current study.

2.8. Statistical analysis

Data were analyzed using Graphpad Prism 7.0 (Graphpad Software, La Jolla, CA, USA).

At least a 20% reduction (A =230 Ohm) in in vitro endothelial resistance with a standard deviation
of 140 Ohm following exposure to plasma of traumatic hemorrhagic shock patients was expected [12].
With a significance level (o) of 0.05 and beta of 0.9 group sizes of n=8 were calculated.

Continuous data are expressed as mean = standard deviation for normally distributed data, or median
followed by the interquartile range (Q1-Q3) for non-normal data. Normality of distribution was tested
with the Shapiro-Wilk test. Changes in endothelial resistance over time were evaluated using two-
way ANOVA with Bonferroni post-hoc analyses. An one-way ANOVA with Bonferroni post-hoc
analysis or Kruskal Wallis test was used to evaluate differences between groups for normally and non-
normally distributed data, respectively. Associations between in vitro endothelial resistance with patient
characteristics and microcirculatory perfusion parameters were analyzed using Pearson’s correlation
coefficient or Spearman’s rank correlation coefficient for normally and non-normally distributed data,
respectively. P values < 0.05 were considered statistically significant.

3. Results

3.1. Patient characteristics

Sixteen traumatic hemorrhagic shock patients enrolled in the Microshock study with available blood
samples were included. Patient characteristics and clinical parameters are listed in Table 1. Patients
had a median age of 38 (23 — 53) years, were mostly male (94%) and had an injury severity score (ISS)
of 27 (15 — 34), lowest systolic blood pressure of 94 (62 — 109) mmHg and highest lactate level of 5.9
(3.5 — 13.1) mmol.I"!. Median sequential organ failure assessment (SOFA) score on admission was
10 (6 — 12). Median time between ED admission and ICU admission was 4 (2 — 8) h, median hospital
stay was 18 (6 — 42) days and mortality rate was 25%.
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Fig. 2. Loss of in vitro endothelial barrier function. Human endothelial cells were exposed to plasma from traumatic hemor-
rhagic shock patients collected at admission at the emergency department (ED), intensive care unit (ICU), 24 hours (ICU+24 h)
after admission at the ICU and from controls (all n=_8). Endothelial resistance after plasma exposure over time (A) and after
2 hours of plasma exposure (B). A: Data represent mean and were tested with a two-way ANOVA with Bonferroni post-hoc
analysis. B: Data represent mean £ SD and were tested with a one-way ANOVA with Bonferroni post-hoc analysis. *p < 0.05,
*p<0.01, **p<0.001 compared to ED admission.

3.2. Plasma from traumatic hemorrhagic shock patients induced endothelial hyperpermeability

Plasma obtained directly at ED admission decreased in vitro endothelial resistance with 19% com-
pared to plasma from controls (p < 0.001, Fig. 2A and B). This reduction in in vitro endothelial resistance
was absent following exposure to plasma obtained at ICU admission and 24 hours later compared to
controls (both p >0.99). Compared to ED admission, plasma collected at ICU admission and 24 hours
later increased endothelial resistance (p <0.05, p<0.01, Fig. 2A and B).

Patients following traumatic hemorrhagic shock showed a decrease in hematocrit over time (Table 1).
No association was found between hematocrit and in vitro endothelial resistance (r=-0.33, p=0.11).

3.3. Plasma from traumatic hemorrhagic shock patients impaired endothelial cell-cell integrity

Two parameters can be modelled from endothelial resistance measurements, which distinguish
between cell-cell (Rb) and cell-matrix (alpha) integrity (Fig. 3A). Plasma collected at ED admission
decreased cell-cell integrity by 35% compared to plasma from controls (p <0.01), but no differences
were measured between the remaining time points and controls (Fig. 3B). No differences in cell-matrix
integrity were found between all time points (Fig. 3C).

Increased intercellular gap formation was observed using immunofluorescence staining of human
endothelial cells exposed to plasma from traumatic hemorrhagic shock patients collected at ED admis-
sion compared to plasma from controls, which was paralleled by a reorganization of actin filaments
from cortical actin distribution to fibers that stretch throughout the endothelial cell body, indicating
increased stress-fiber formation (Fig. 3D).

3.4. Microcirculatory perfusion and in vitro endothelial barrier function

In vitro endothelial resistance was positively associated with in vivo microcirculatory perfusion, as
represented by the proportion of perfused vessels and perfused vessel density (PPV: r=0.56, p<0.01,
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Patient characteristics
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Patients (n=16)

Age (years) 38 (23 -53)
Men 15 (94%)
Injury Severity Score 27 (15-34)
SOFA score

ED admission 10 (6-12)

7 days after admission 5(2-21)
Macrocirculatory variables

Lowest systolic blood pressure (mmHg) 94 (62 — 109)

Hematocrit (1.171)
ED admission

0.37 (0.32-0.41)

ICU admission 0.29 (0.27 - 0.34)
ICU+24h 0.28 (0.24 - 0.36)*
Lactate (mmol.I™!)
ED admission 542.3-16.1)
ICU admission 3.0(1.7-4.0)
ICU+24h 1.5 (1.1 -3.5)*
Base excess; (mEq.I™!)
ED admission -8.6 (-21.3--24)
ICU admission -3.0(-5.8--0.4)
ICU+24h -2.7(4.7-2.1)
Type of trauma
Penetrating (1) 4 (25%)
Blunt (n) 12 (75%)
Clinical outcomes
Hospital stay (days) 18 (6 —42)
Mortality rate; () 4 (25%)
Resuscitation fluids in first 24h
Packed RBCs (units) 4(3-6)
Fresh frozen plasma (units) 2(1-4)
Crystalloids (1) 44 2.7-57)
Colloids (1) 00-0)

Noradrenaline dose (pg.kg.min™")

0.22 (0.11 - 0.58)

ED: emergency department; ICU: intensive care unit; ICU+24h: 24 hours
after admission at the ICU; RBCs: red blood cells. Data are presented as
median (IQR) and tested with a Kruskal Wallis test. *p <0.05 compared to

ED admission.

Fig. 4 and PVD: r=0.38, p=0.07), but not total vessel density (TVD: r=0.08, p=0.73), measured at
matching time points.

3.5. Early changes in circulating markers and in vitro endothelial barrier function

Patients showed an increase over time in circulating angiopoietin-2 (p <0.01), whereas circulating
angiopoietin-1, soluble Tie2 and von Willebrand factor levels remained unchanged (Table 2). Circulat-
ing levels of syndecan-1 and soluble thrombomodulin have previously been reported [9, 10]. Similar
results were found if circulating markers were corrected for hematocrit (data not shown). No associa-
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Fig. 3. Impaired in vitro endothelial cell-cell integrity. Rb and alpha can be modelled from endothelial resistance measure-
ments, which distinguish between cell-cell (Rb) and cell-matrix (alpha) integrity (A). Human endothelial cells were exposed
to plasma from traumatic hemorrhagic shock patients collected at admission at the emergency department (ED), intensive
care unit (ICU), 24 hours (ICU+24 h) after admission at the ICU and from controls (all n=8). Cell-cell integrity (Rb; B),
cell-matrix integrity (alpha; C) and representative images of endothelial cells stained for VE cadherin (adherents junctions;
green), F-actin (stress fibers; white) and DAPI (nuclei; blue) (D) after 2 hours of plasma exposure. Data represent mean + SD
and were tested with a one-way ANOVA with Bonferroni post-hoc analysis, **p <0.01 compared to ED admission.
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Fig. 4. Microcirculatory perfusion associated with in vitro endothelial barrier function. Association between proportion of
perfused vessels and in vitro endothelial resistance determined after exposure to plasma collected at corresponding time
points. Data are presented with a linear regression with 95% CI and tested with a Pearson’s correlation test.

Table 2
Circulating serum markers

ED admission ICU admission ICU+24h p-value

(n=38) (n=8) (n=38)
Angiopoietin-1 (ng.ml~") 47.1 (36.8 —62.2) 43.0 (25.5-66.7) 44.5 (44.3 -50.7) p=0.87
Angiopoietin-2 (ng.ml~") 47 3.5-6.5) 6.8 (5.0-12.5) 12.7 (6.4 —20.5) p<0.01
Soluble Tie2 (ng.ml~") 11.8 (6.9-17.1) 15.3 (12.0 - 20.8) 13.4 (8.1 —24.6) p=0.31
Von Willebrand factor (U.ml~") 2.5(1.9-3.2) 22(14-34) 33(2.3-6.3) p=0.17

ED: emergency department; ICU: intensive care unit; ICU+24h: 24 hours after admission at the ICU. Data are presented as
median (IQR) and tested with a Kruskal Wallis test.

tion was found between in vitro endothelial resistance and angiopoietin-1 (r=-0.57, p=0.15), soluble
Tie2 (r=-0.33, p=0.43), syndecan-1 (r=-0.14, p =0.78), soluble thrombomodulin (r=0.21, p = 0.66)
and von Willebrand Factor (r=-0.40, p=0.33) at ED admission, whereas a negative correlation was
found between in vitro endothelial resistance and circulating angiopoietin-2 levels (r=-0.78, p < 0.05).

4. Discussion

In the present study, we showed that plasma from patients following traumatic hemorrhagic shock
induced endothelial hyperpermeability, due to disturbed cell-cell integrity, using an in vitro bioassay
for endothelial barrier function. This plasma-induced hyperpermeability occurred at an early stage fol-
lowing trauma and hemorrhagic shock, whereas plasma collected at the ICU until 24 h after admission
at the ICU did not induce endothelial hyperpermeability. Interestingly, endothelial hyperpermeability
was associated with in vivo microcirculatory perfusion disturbances. These results suggest that in an
early stage of traumatic hemorrhagic shock, alterations in plasma induce in vitro endothelial hyperper-
meability, but that these changes do not persist at later stages following fluid resuscitation and ongoing
treatment of patients.

Current knowledge regarding hemorrhagic shock-induced hyperpermeability is restricted to animal
studies [14—18] or in vitro studies investigating the effect of rodent plasma on endothelial barrier
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function [19]. Animal studies showed an early increase in endothelial permeability following hemor-
rhagic shock [14, 15], which even further increased following fluid resuscitation [16—18]. This was
confirmed by a study showing that rodent plasma, collected after fluid resuscitation, induced in vitro
rodent endothelial hyperpermeability [19]. However, evidence regarding the effect of human plasma
from patients following traumatic hemorrhagic shock on endothelial barrier is limited. Rahbar and col-
leagues [20] showed that plasma from trauma patients with low colloid osmotic pressure did not affect
in vitro endothelial resistance compared to healthy controls, whereas plasma from trauma patients
with normal colloid osmotic pressure even increased in vitro endothelial resistance, suggesting solely
trauma improves endothelial barrier function. However, these patients did only suffer from trauma
without evidence of hemorrhagic shock and plasma was only withdrawn upon arrival at the emergency
department. To our knowledge, we are the first to report that plasma obtained from patients following
traumatic hemorrhagic shock after admission to the emergency department, but not after admission to
the ICU, induced in vitro endothelial hyperpermeability. These results increase our knowledge regard-
ing the impact of traumatic hemorrhagic shock on endothelial permeability and its course following
standard treatment.

Standard treatment strategies, consisting of fluid therapy, may impact the magnitude of the observed
effect on endothelial barrier function. Crystalloids and noradrenaline are factors known to worsen
interstitial edema [14, 21], while fresh frozen plasma may protect in vitro endothelial barrier function
[14]. We showed that plasma collected at ICU admission and 24 hours later did not affect in vitro
endothelial barrier function compared to controls. The absence of endothelial hyperpermeability at
these time points could not be explained by hemodilution as we previously showed that hemodilution
rather worsens than improves in vitro endothelial barrier function [12]. We previously also showed
that plasma from patients undergoing cardiac surgery with cardiopulmonary bypass impaired in vitro
endothelial barrier function which continued in the first postoperative days regardless of hemodilution
and blood transfusion [22]. Taken together, this suggests that hemorrhagic shock-induced hyperperme-
ability was transient as plasma obtained after fluid resuscitation and ongoing treatment did not induce
in vitro endothelial hyperpermeability.

Microcirculatory perfusion disturbances are present in an early stage in patients following traumatic
hemorrhagic shock [3, 4, 9]. However, contrasting results exist regarding the course of restoration
following fluid resuscitation [3, 4, 9]. In the present patient population, microcirculatory flow improved
following standard treatment [4, 9]. In accordance, we showed that plasma obtained after standard
treatment did not affect in vitro endothelial permeability and that in vitro endothelial resistance was
positively associated with in vivo microcirculatory perfusion. Taken together, these results support
endothelial hyperpermeability as underlying problem in the development of microcirculatory perfusion
disturbances [23].

As a first step in determining a biomarker for endothelial hyperpermeability following traumatic
hemorrhagic shock, we studied circulating levels of proteins associated with glycocalyx degradation,
endothelial injury and endothelial permeability, including the angiopoietin/Tie2 system. Animal studies
showed that therapeutically targeting the angiopoietin/Tie2 system, a key regulator of the endothelial
barrier, reduced microvascular leakage [17, 18] and restored microcirculatory perfusion [17] following
hemorrhagic shock and fluid resuscitation. The angiopoietin/Tie2 system consists of the endothelium
specific tyrosine kinase receptor Tie2 with binding sites for angiopoietin-1 and angiopoietin-2 [24].
Angiopoietin-1 maintains endothelial barrier function, whereas angiopoietin-2 is released during stress
and induces vascular leakage. Previous studies showed that in patients with traumatic hemorrhagic
shock, circulating angiopoietin-2 levels associated with endothelial activation, injury severity and
detrimental clinical outcome [25]. Interestingly, we found that circulating angiopoietin-2 levels were
negatively associated with endothelial resistance at ED admission. As circulating angiopoietin-2 levels
increased over time, it seems that angiopoietin-2 alone is not responsible for the barrier disruptive
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effect. This is in line with a murine study where angiopoietin-2 only induced microvascular leakage
in combination with a vasoactive cytokine [26]. Further investigation is warranted to elaborate on
the role of angiopoietin-2 in the development of endothelial hyperpermeability following traumatic
hemorrhagic shock.

Other studied markers included syndecan-1, von Willebrand factor and soluble thrombomodulin.
Shedding of syndecan-1, a marker for endothelial glycocalyx degradation, is found to be associated
with increased mortality in patients following hemorrhagic shock [20, 25, 27]. Von Willebrand factor
and soluble thrombomodulin are markers reflecting endothelial injury and activation, respectively [28].
In the current setting we did not find a relation between circulating syndecan-1, von Willebrand factor,
soluble thrombomodulin and in vitro endothelial hyperpermeability, however, it remains interesting
to further elaborate the role of these markers on endothelial hyperpermeability following traumatic
hemorrhagic shock.

4.1. Limitations

There were several limitations to the present study. First, a relatively small number of patients was
included in the present sub-study. Although powered for in vitro endothelial barrier measurements,
additional analyses, such as determining a biomarker of interest, were limited and no hard conclusions
could be drawn. Interesting is however, that although sample size was small and samples came from
a heterogenic population, significant differences were found in endothelial permeability.

Secondly, the majority of the patients included in this sub-study were male, making it difficult to
translate the findings to the female population. However, the population of patients with traumatic
hemorrhagic shock is known to be predominantly male. Also, animal studies showed that the female
gender exhibits microvascular protection [29], suggesting that the effects of plasma from female
patients on in vitro endothelial barrier function should be studied separately.

Finally, the effect of plasma was studied on “healthy” endothelial cells in an in vitro setting, which
limits translation to the in vivo situation. However, previous studies confirmed the representability of
these cells as a model for endothelial barrier function [12, 13, 30].

5. Conclusion

We report that early changes in plasma from patients following traumatic hemorrhagic shock induced
endothelial hyperpermeability as determined by an in vitro bioassay of endothelial barrier function,
which coincided with in vivo microcirculatory perfusion disturbances. Both effects diminished at later
stages after fluid resuscitation and ongoing treatment of patients. Future investigations should focus
on early alterations in circulating markers to identify potential treatment targets and strategies.
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