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Abstract

In recent years, the field of natural products has seen an explosion in the breadth, resolution and 

accuracy of profiling platforms for compound discovery, including many new chemical and 

biological annotation methods. With these new tools come opportunities to examine extract 

libraries using systematized profiling approaches that were not previously available to the field, 

and which offer new approaches for the detailed characterization of the chemical and biological 

attributes of complex natural products mixtures. This review will present a summary of some of 

these untargeted profiling methods, and provide perspective on the future opportunities offered by 

integrating these profiling methods for novel natural products discovery.

Graphical Abstract

INTRODUCTION

Natural products have historically played a major role in the discovery and development of a 

diverse array of therapeutics including antibiotics, anticancer agents, antifungal drugs and 
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analgesics. The modern era of natural products discovery has been driven in large part by 

continued innovation in both bioassay screening systems and analytical methods for the 

discovery of secondary metabolites with unique structures and biological properties. These 

efforts have led to an impressive diversity of new drugs, and the discovery of countless 

bioactive small molecules with value as chemical probes and sources of inspiration for 

medicinal chemistry campaigns. However, despite significant developments in these areas, 

natural products discovery is still challenged by a number of issues that have hampered the 

field for over 50 years.

In 1981, Drs. Matthew Suffness and John Douros from the U.S. National Cancer Institute 

published an opinion piece in Trends in Pharmacological Sciences,1 in which they presented 

some of the problems and solutions associated with the then “new” field of anticancer drug 

discovery from natural sources, and discussed their outlook for the future. Reading their 

paper, it is remarkable how many of the challenges they identified remain substantial 

barriers to efficient discovery of bioactive natural products today. In this review of strategies 

for high-content biological and chemical characterization in natural product discovery, we 

will begin by revisiting some of the issues raised by Drs. Suffness and Douros in 1981, and 

briefly discuss our interpretations of these issues for the field as we see them in 2015.

“…most active materials are undetectable, and those that are tend to be discovered 

repeatedly.”

The issue of re-isolation was a problem then, and remains a significant challenge today. 

Despite dramatic advances in analytical hardware (high-field cryoprobe NMR and benchtop 

accurate mass LC-MS systems) it is a rare student that has not isolated a known compound 

at some time during their Ph.D. studies. Owing to of the large number of compounds now 

isolated from natural sources, rediscovery is becoming the norm rather than the exception in 

many instances. A number of metabolomics approaches have been developed to circumvent 

this issue, as will be discussed in more detail below, but new methods are still required to 

integrate these approaches with biological data in order to identify compounds with the 

highest value as novel bioactive lead compounds.

“…cytotoxicity tests are sensitive to any cell killing substance and give many false 

leads.”

Traditional colorimetric live/dead assays say nothing about target, with the result that active 

extracts from these assays must be selected based on raw potency, rather than mechanistic 

behavior. Given that even some new compounds will likely hit targets for which there are 

already drugs on the market, it is important that modern natural products discovery programs 

take advantage of multi-parametric profiling tools for screening where possible, and use 

these methods for the targeted discovery of compounds with novel biological functions. A 

number of unbiased biological profiling platforms are discussed below, including examples 

of their use for the discovery or characterization of natural products with unique biological 

properties.

“The design and development of in vitro screens which are specific for detection of 

key mechanisms of drug action is a challenging task.”
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This issue has largely been resolved, thanks to the development of a vast array of target- and 

pathway-based high-throughput screening platforms. However, because many of these assay 

platforms are relatively complex or time-consuming to run, it is still true that mechanistic 

assays are hard to implement broadly. There is therefore still a need for the creation of new 

unbiased screening tools that characterize bioactive extracts in terms of broad mode of 

action (MOA) classifications, as a complement to the two extremes of live/dead cytotoxicity, 

and target-based screening methods.

“The isolation and purification of active compounds present in minute quantities in 

a crude extract is a time consuming and difficult task…”

Just as was true in 1981, natural products discovery remains difficult! Despite the advances 

in hardware mentioned above and the development of numerous derivatization, labeling, and 

analytical methods for compound identification, detailed and unequivocal determination of 

the constitution and configuration of complex natural products is a time-consuming task that 

typically requires a significant investment of resources and material. The development of 

integrated tools that consider both biological MOA predictions and chemical constitution of 

natural products extracts is beginning to provide solutions to this issue by ensuring that 

compounds selected for full structural characterization are of the highest priority in terms of 

both structural and/or biological novelty. The third section of this review will discuss this 

integrated approach, including both the advantages and current limitations of these 

strategies.

If the 20th century was the age of structure-driven natural products discovery, then the 21st 

century promises to be the age of function-driven natural products research. There remains a 

high degree of value in “old” natural products for which the biological attributes remain 

poorly characterized, but deriving accurate functional information for natural products 

libraries on a global scale remains a major challenge. This review will cover methods for 

untargeted chemical and biological characterization, and will present a perspective on future 

directions for the integration of these analytical platforms for the de novo prediction of 

natural product structures and MOAs from complex screening libraries.

CHEMICAL CHARACTERIZATION STRATEGIES

Preamble.

Chemical characterization of natural products has progressed dramatically from early 

studies, which relied heavily on degradation, derivatization and the synthesis of structural 

subunits to solve chemical structures2 to the modern scenario where even the largest and 

most complex structures can be determined using microscale analytical techniques.3,4 

Although many of these methods have seen incredible development since the creation of the 

earliest instruments5–7 this review will focus on the broad characterization of natural product 

libraries, rather than the development of techniques to aid in the structure determination for 

individual compounds. For recent reviews of the development of MS technologies and the 

use of NMR-based metabolomics in natural products, see Carter,8 Jarmusch and Cooks,7 and 

Robinette et al.9
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Thin-layer chromatography (TLC) emerged as the first method for parallelized 

characterization of natural product extracts, and is still widely used as a rapid, low-

resolution method for profiling chemical constitution of natural product extracts; however, 

high-performance liquid chromatography (HPLC) and hyphenated techniques have all but 

completely replaced TLC for most natural products discovery applications, because of their 

increased resolution and greater information content.10–12 The use of HPLC retention time 

in combination with ultraviolet and visible absorbance spectra allows the profiling and 

comparison of extracts within any screening library and has been used widely by industry 

and academia. In an early example Miller et al. used stream splitting and automated fraction 

collection in a compound-by-compound bioactivity and dereplication process for the 

discovery of clavulanic acid,13,14 paving the way for adoption of this approach by many 

other research groups. The primary disadvantages of these techniques are that HPLC 

protocols are time-consuming, analysis and dereplication are performed on a compound-by-

compound basis, and saving fractions is not practical for large libraries.10

The rapid improvement in resolution and throughput introduced by ultra-performance liquid 

chromatography (UPLC), bench-top HRMS, and advances in NMR experimentation and 

technologies like 1.7 mm cryogenic NMR probes have recently changed the chemical 

characterization landscape of natural products libraries from a compound-by-compound 

dereplication process to a situation where analysis can reveal an unbiased global view of all 

metabolites in a given library, as will be described below.

Mass Spectrometric Profiling Methods.

Owing to its sensitivity and relatively high throughput, MS-based techniques have come to 

the forefront of rapid chemical characterization. Studies have demonstrated the coverage and 

accuracy of such techniques for representative fungal compound libraries.15 The use of 

multivariate statistical methods such as principal component analysis has also been used to 

discover unique compounds from MS-based untargeted analysis of libraries of Myxococcus 
xanthus strains and Ascidian-associated Actinomycetales.16,17 Similarly, traditional 

metabolomics platforms including versions of XCMS have been used to discover novel 

compounds from organisms as well studied as Streptomyces coelicolor.18 In this last study 

structural characterization was assisted by the use of tandem MS, which allowed structural 

information to be incorporated into MS-based dereplication and discovery. More recently, 

MS2 fragmentation pattern matching has been used to develop Molecular Networking as a 

dereplication strategy for identifying known compounds and ascribing structural classes to 

unknown metabolites.19,20 The use of MS fragmentation patterns for compound 

identification is a standard tool in traditional metabolomics analysis (e.g., electron impact 

fragmentation in most GC-MS systems). However, the use of relative mass differences in 

fragmentation spectra to connect compounds from a given structural family, coupled with 

network analysis to visualize the relatedness of analytes in a given sample set, provide new 

opportunities for the rapid characterization and visualization of the metabolic capacity of 

sets of samples regardless of source origin or the availability of pure compound standards 

for every analyte. Finally, Müller and co-workers have developed a new approach to the 

acquisition of MS2 data for complex natural product samples, which generates a “scheduled 

precursor list” of features present in extracts of microbial cultures but not the corresponding 
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medium blanks, and uses this list to direct subsequent MS2 data acquisition.21 Advances 

such as this improve the coverage of relevant molecules over traditional MS2 selection 

methods that rely on signal intensity for fragmentation selection, and are indicative of the 

new approaches to data acquisition being developed and are moving the field towards the 

comprehensive untargeted metabolomics profiling of complex natural products mixtures.

Nuclear Magnetic Resonance Profiling Methods.

While less common than MS-based techniques, developments in NMR experimentation and 

instrumentation have led to a significant rise in the use of NMR-based metabolomics for the 

profiling of crude extracts in recent years. The discovery of iotrochotrazine by 1H NMR 

comparisons of extracts enriched for compounds obeying Lipinski’s “rule of five” 

exemplifies the utility of this strategy.22 Similar to MS approaches, standardized acquisition 

and databases can be used to identify chemical constituents from crude mixtures.23 The 

primary advantages of NMR-based chemical profiling over MS-based strategies are that (1) 

the analysis is quantitative, unlike MS-based approaches where poor ionization or ion 

suppression by other metabolites can preclude the observation of all constituents in an 

extract, and that (2) structural information is more readily derived from the data, particularly 

if 1H spectra are augmented with TOCSY or phase-sensitive HSQC experiments. The 

structural information inherent in two-dimensional (2D) experiments has been used 

extensively for the characterization of chemical components of insect and spider venom, 

fireflies, and ladybugs.24–27 Integration of NMR spectroscopy with biological data has been 

used to identify pheromones in Caenorphabditis elegans through differential analysis by 2D 

NMR spectroscopy (DANS).28 Similar to MS-based metabolomics strategies, this study was 

able to identify specific signals corresponding to the ascarosides that have synergistic effects 

with other pheromones and were therefore unidentifiable by activity-guided fractionation. 

This elegant approach lays the foundation for integrating biological and chemical profiling 

for the discovery of molecules correlated with a specific phenotype in a given biological 

assay.

PROFILING STRATEGIES FOR BIOLOGICAL CHARACTERIZATION

Initial Remarks.

Natural product screening has made significant progress since the early development of disk 

diffusion assays for microbial pathogens and colorimetric live/dead screens for mammalian 

cell lines. Recent developments in screening hardware and informatics now offer a wealth of 

readily accessible tools for the detailed biological characterization of compound libraries 

against almost any target system. These advances are providing opportunities for the early 

mode of action (MOA) prediction for bioactive compounds, which in turn is driving a 

“function-first” selection process for lead discovery and development (Figure 2).29

Although there are many examples of innovative screening systems for specific molecular 

targets and processes, we will restrict our focus in this review to unbiased assay systems that 

offer tools for the broad classification of bioactive compounds independent of specific 

MOAs, because of the inherent value that these tools offer the natural products chemist in 

terms of early global characterization of complex natural product libraries. Within this 
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general area, the majority of development has been focused on four main target systems: 

mammalian cancer cell lines, yeast, bacteria and early vertebrate models. Each of these will 

be discussed in turn, highlighting recent advances and the advantages and limitations of each 

system for natural products research.

Mammalian Cell Screening.

Multiparametric screening in mammalian cells was first pioneered as a systematic strategy 

for the evaluation of compound mode of action by the development of the NCI 60-cell-line 

screen from 1985–1990.30 This platform is the original “high-content” screening platform 

for natural products research, and has been used successfully to determine the MOAs of 

numerous natural products. For example, extracts containing salicylihalamides, potent 

vacuolar ATP-ase inhibitors, were first identified based on their particular NCI 60-cell-line 

profile.31 This platform is still in regular use and is very information rich, but is logistically 

impractical for widespread library screening, given the quantities of material required to 

screen against the entire 60-cell-line panel, and the inherently low throughput of such a 

system.

In recent years, cytological profiling, broadly defined as multiparametric evaluation of 

cellular response to compound treatment, has gained increasing attention as a complement to 

target-based and colorimetric live/dead screening assays. Cytological profiling is most 

commonly performed on mammalian cell lines, and can incorporate a variety of analytical 

techniques, including microarrays, MS-based metabolomics, gene signatures, and high-

content automated microscopy.32–36 Several of these approaches have been employed for the 

investigation of natural product libraries, as outlined below.

Image-Based Screening.—Image-based screening was first widely adopted in industry 

because early systems were expensive, and required substantial informatics support to 

analyze the resulting image files. More recently, the hardware cost has dropped and the 

analytical software has improved, making this a routine tool in academic screening centers. 

Image-based screening has been used to develop a number of unbiased whole cell 

phenotypic screening platforms.32,37 In our own laboratory we have developed a modified 

version of the platform initially reported by Altschuler and co-workers32 in order to create a 

tool suitable for the examination of complex natural product libraries.38 This tool 

characterizes cell morphology using a set of structural and cell cycle fluorescent stains to 

extract hundreds of size and shape metrics for cells under drug pressure at sub-lethal 

concentrations. Subsequent informatics analysis compares these size and shape metrics to 

those for untreated control cells, and uses the differences in these values to create a 

numerical fingerprint that provides a graphical representation of the phenotypic differences 

between treated and control cells.

We have demonstrated that this tool can be used to classify the MOA of active constituents 

from complex natural product mixtures. Subsequent image-guided peak library fractionation 

can be used to pinpoint active compounds, and directly verify the cytological profiling 

signatures of these individual constituents, making the platform a powerful one for the 

discovery of natural products with unique phenotypic profiles (Figure 3).
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A complementary approach that uses a combination of fluorescence and brightfield imaging 

for the characterization of cellular phenotypes was recently reported by Osada and co-

workers.39 This platform, termed MorphoBase, uses imaging data for two cell lines (HeLa 

and srcts-NRK) to characterize the phenotypic effect of compounds on cell development, and 

compares these phenotypic profiles to those of over 200 reference compounds of known 

mode of action to make direct predictions about the pathways or processes being disrupted 

by test compounds/extracts. MorphoBase has been used in conjunction with a proteomic 

profiling platform termed ChemProteoBase40 for the de novo prediction of the mode of 

action of a new fungal metabolite, pyrrolizilactone.41 In this work, both MorphoBase and 

ChemProteoBase identified strong clustering between pyrrolizilactone and test compounds 

known to inhibit proteasome function. Subsequent in vitro evaluation of 20S proteasome 

function confirmed this prediction, with the strongest inhibition of trypsin-like activity, 

providing an elegant demonstration of the use of unbiased profiling platforms for the direct 

prediction of bioactive natural products of unknown MOA.

Overall, image-based screens offer a large amount of biological annotation for natural 

product screening libraries in a format and timeframe that is appropriate for medium-

throughput primary screens that number in the thousands of wells. We expect that the 

continuing improvements in screening hardware and software tools (e.g., the ability to 

perform high-throughput live cell imaging) will further lower the barrier to entry for these 

screening platforms, and that image-based profiling is likely to become a mainstay of future 

natural product discovery programs.

Gene Expression Profiling Platforms.—In addition to image-based approaches, a 

number of powerful gene profiling methods have been developed that are of relevance to the 

natural products community. The “Connectivity Map”, developed by researchers at the 

Broad Institute, was the first MOA profiling tool to compare the gene expression profiles of 

test compounds to a set of known bioactive molecules.42 This platform is finding widespread 

use in the biomedical community beyond the prediction of compound MOAs, and has 

already been cited over 1000 times since its publication in 2006. In the natural products area, 

this system has been used to profile compounds from a range of sources, including a recent 

study that used Connectivity Map profiles to compare the bioactivity of intact Gila monster 

venom to the drug Byetta®, which is a synthetic derivative of a lead compound derived from 

this venom mixture currently in clinical use to treat diabetes.43

Another gene profiling method recently applied to the characterization of natural product 

modes of action is the Functional Signal Ontology (FUSION) system developed by 

researchers at the University of Texas Southwestern Medical Center.44 This powerful 

platform uses the gene expression signatures of six key genes in HCT116 cells, as well as 

two genes with low variance as internal controls, to map the effect of treatment with either 

miRNAs, siRNAs, or natural product extracts. The team was able to demonstrate that these 

selected genes displayed non-colinearity of response under different treatment conditions, 

but that treatments of siRNAs or miRNAs from related pathways gave related FUSION 

signatures, and that FUSION signature matching can be used to accurately characterize the 

pathways targeted by specific bioactive natural products. More recently, this platform has 

been used to identify DDR2 as the molecular target of a new family of alkaloid natural 
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products, discoipyrroles A – D, demonstrating the power of this untargeted approach for 

molecular target determination for natural products.45

Yeast Profiling.

The baker’s yeast, Saccharomyces cerevisiae, is a popular model system for studying 

mammalian cell biology thanks to the conservation of many of the genes implicated in 

human disease.46 Saccharomyces cerevisiae has therefore become a powerful model 

organism for studying the mode of action of bioactive small molecules.47 This has been 

aided by the creation of an ordered 5100-member gene deletion mutant library for all non-

essential genes,48–50 that permits the systematic evaluation of the effect of test compounds 

on gene deletion mutants for the prediction of compound MOAs. Coupled with the 

systematic evaluation of synthetic interactions between 5.4 million gene-gene pairs that has 

created a comprehensive gene interaction network map for S. cerevisiae,50–52 this platform 

now represents a mature and powerful strategy for exploring chemical genetic properties of 

small molecules, including natural products.

Synthetic lethality screening uses the hypersensitivity of single gene deletion mutants to 

treatment with test compounds to indirectly report on compound molecular targets. If a 

single gene is non-essential, but treatment of that deletion strain with a bioactive small 

molecule causes lethality, then the small molecule must disrupt a compensatory pathway that 

is complementary to the function of the deleted gene product. By using the susceptibility of 

gene deletion mutants to test compounds in conjunction with the global genetic interaction 

network map, it is therefore in theory possible to determine the specific target of any 

individual compound, provided that this target has a homologue in S. cerevisiae, and that the 

compound is active against this yeast protein.

There have been several recent examples of the use of this technology for the determination 

of natural product MOAs, including the discovery that the macrocyclic lipopeptide 

papuamide B targets phosphatidylserine in yeast,53 and the determination that the marine 

sponge metabolite girolline targets Elongation Factor 2, and therefore exerts its anti-

inflammatory activity through inhibition of protein synthesis at the elongation step.54

Antibiotic Screening.

Antimicrobial assays were some of the earliest assays used in natural products discovery, 

including the original serendipitous discovery of penicillin, and are still in widespread use 

around the world for the early characterization of natural product extract libraries. Although 

simple assays such as disk diffusion, cross streak, and well-plate liquid culture growth 

assays against individual pathogens are rapid and cheap, the number of published natural 

products with antibiotic activities now means that rates of rediscovery using these methods 

are extremely high. To overcome this limitation, a number of unbiased antibiotic screening 

platforms have been developed that provide multi-parametric characterization of the effects 

of natural product extracts on bacterial cell development. These tools provide direct 

information about compound class and/or MOA for active constituents, and can be used to 

rapidly triage large natural product libraries so that development effort is focused on those 

few extracts with highest potential for the discovery of new classes of antibiotics.
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BioMAP Screening.—The BioMAP screening platform, developed in our laboratory in 

2012, uses a panel of Gram-positive and Gram-negative bacterial pathogens to create activity 

profiles across the panel, in analogous fashion to the NCI 60-cell-line screen described 

above.55 By comparing these BioMAP profiles to profiles for a suite of commercially 

available antibiotics, it is possible to identify extracts that contain members of known classes 

of antibiotics, and to prioritize extracts with unique BioMAP signatures for further 

development. We have used this platform to discover new classes of antibiotics,55 and to 

profile large numbers of pure compounds and extracts from collaborative partners from 

academia and industry. This technology is readily transferable to any research laboratory 

with access to basic microbiology facilities and a standard plate reader, and has successfully 

been implemented by other research groups, including institutions in developing nations 

such as Indonesia.

Bacterial Cytological Profiling.—Although BioMAP profiling is very efficient at 

identifying extracts with unique antibiotic profiles, it does not provide information about the 

molecular targets or MOAs of these active constituents. To address this issue, a number of 

research groups have turned to image-based screening to explore antibiotic MOA profiles. 

MOA determination using cell imaging is challenging for bacterial targets, because bacterial 

cells are typically 100 times smaller than mammalian targets such as HeLa cells, making it 

technically difficult to acquire images of high enough resolution for cytological profiling in 

a high-throughput manner. In addition, most automated microscopy systems do not have pre-

programmed modules to directly score images of bacterial cells, complicating the analytical 

component of this approach. Notwithstanding these challenges, two bacterial cytological 

profiling strategies have recently been reported.

The first, developed in our laboratory, uses high-throughput imaging of a chromosomally 

GFP-tagged strain of V. cholerae at 40 x magnification and a bespoke image analysis 

software platform to quantify cell size and shape features.56 These size and shape features 

are used to provide a numerical description of the phenotypes of individual cells under 

varying concentrations of either test extracts or training set antibiotics of known MOA. The 

progression of phenotypes is then compared to those for the training set antibiotics and these 

phenotypic “trajectories” used to predict compound MOAs. In the initial study 58 antibiotics 

were profiled to generate the training set phenotypic trajectories. Comparing these 

trajectories to those of a set of natural product extracts identified four bioactive compounds 

with predicted MOAs. Of these, three (novobiocin, cosmomycin D, cycloprodigiosin) had 

predicted MOAs that concurred with previous literature, while the fourth 

(pentachloropseudilin) had its MOA predicted for the first time.

In a second study, cells were examined at higher magnification, using FM4–64 to stain cell 

membranes, DAPI to stain the nucleus, and SYTOX green to stain cells with permeabilized 

membranes.57 The platform was used to examine the effects on cell morphology of 41 

antibiotics from 26 separate structural classes, and was able to demonstrate a strong 

clustering of compounds by phenotype that closely paralleled the known MOAs for these 

compounds. In addition, the authors examined a novel antibiotic natural product, 

spirohexenolide A, and proved that it rapidly collapses the proton motor force using a 

combination of bacterial cytological profiling and complementary secondary assays. This 
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approach provides more detailed information about cell shape and the fate of specific 

cellular components, but at a lower throughput than the previous study. The development of 

motorized SCLM stages and automated 100 x water immersion objectives offer new 

opportunities for further method development in this area, though this has yet to be applied 

to natural product MOA determination.

Zebrafish Imaging.

In vivo imaging represents another substantial advance for natural product screening. Just as 

the early conotoxin screening in whole animals revealed a wealth of neurological activities 

for individual components of these complex mixtures,58 so in vivo screening in zebrafish 

(Danio rerio) is providing a new strategy for the broad evaluation of natural products 

libraries. Advantages of this strategy include: a whole animal response; the ability to 

simultaneously measure both efficacy and off-target toxicity; the identification of 

developmental defects; the measurement of neurological and behavioral factors; and the 

ability to perform live animal time-resolved assays that look at temporal effects of 

compounds on animal health and survival.59

Although zebrafish have now been used for a wide array of targeted assays,60–62 and as a 

tool for downstream target identification or validation,63 there are still few examples of 

untargeted phenotypic screening in zebrafish, particularly for natural products.

One innovative system that has recently been developed incorporates both in vivo zebrafish 

screening and micro-scale fractionation for the simultaneous bioassay and physical 

characterization of plant extracts.64,65 This system has been used to identify both 

angiogenesis inhibitors from African plant extracts,66 and anticonvulsant compounds from 

Philippine medicinal plant Solanum torvum.67

Zebrafish screening has also been developed in industry, with Novartis reporting the results 

from profiling their in-house collection of 12,000 purified natural products.68 This 

impressive study, likely the largest of its kind, identified 114 phenotypic hits from this 

primary screen, including 50 compounds that caused developmental arrest without necrosis. 

This set of compounds contained molecules known to disrupt the mitochondrial electron 

transport chain, leading the authors to hypothesize a similar mechanism for other 

compounds displaying this phenotype. Subsequent transcriptional profiling of these 

compounds revealed that many of them did indeed target specific complexes of the 

mitochondrial electron transport chain, but also revealed instances where these two profiling 

systems did not agree, highlighting the importance of careful secondary screening for MOA 

predictions derived from high-throughput multiparametric profiling primary screens.

Certainly, the development of new screening systems in live animal models offers the 

potential for the rapid and detailed profiling of complex libraries, with the capacity to 

examine broader physiological characteristics of extracts and lead compounds than is 

possible using simple cell-based or enzyme assays. It will be interesting to see how these 

tools continue to evolve in the coming years as assay platforms develop in terms of liquid 

handling and image/ phenotype analysis.
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Overall, multi-parametric screening tools are offering new opportunities to the natural 

products community for the rapid and efficient classification of complex natural product 

libraries. These tools provide new methods for the early prioritization of extracts and 

compounds with unique biological properties, and are a valuable complement to traditional 

live/dead screening systems for the discovery of next-generation therapeutic lead 

compounds. With the widespread availability of screening centers in academic institutions, 

development and implementation of these screening tools is well within the reach of most 

natural products research groups. Given the obvious benefit that such screening methods 

offer for natural products discovery, we expect that these approaches will enjoy increasing 

prominence within the natural products community in the coming years.

INTEGRATING CHEMICAL AND BIOLOGICAL DATASETS

Bioinformatics tools are becoming essential in natural products research, as advances in 

experimental throughput and the complexity of data obtained from genomic, chemical, and 

biological profiling make manual interpretation difficult or impossible. As previously 

mentioned, many laboratories have now developed sophisticated platforms to discover and 

classify biosynthetic gene clusters, to connect biosynthetic gene clusters to their gene 

products, and to classify complex small molecule libraries based on their chemical 

signatures.20,28,69–71 Recently, the integration of proteomics, metabolomics, and genomics 

has allowed genes, enzymes, and their small molecule products to be connected 

informatically for the discovery of bioactive compounds,72 providing examples of how 

integrated multiparametric profiling can be used to solve complex analytical problems, such 

as the connection of genes to molecules. While these techniques are powerful and have 

significantly advanced our understanding of natural products genomics and biosynthesis, 

there are a number of difficulties that preclude the facile integration of multiparametric 

chemical and biological screening information for natural products discovery.

Challenges with Multiparametric Data Integration.

The requirement for the integration of chemical constitution and biological screening 

techniques favors MS based chemical profiling strategies because of their throughput, 

resolution, and sensitivity; however, most developed metabolomics techniques require binary 

control and experimental groups looking for the correlation of genes with a defined 

outcome. Therefore, these analyses require the library to be manually curated. Instead, 

integrated profiling strategies require the use of untargeted metabolomics approaches that 

report on the presence of all constituents, whether or not the structures of all of these 

components are known. These tools can be developed with relative ease to create lists of 

individual components (defined by retention time and HRMS properties) and their 

distribution throughout the natural products library, but, connecting these components to 

specific structures is a much more challenging task which currently hampers the use of this 

approach for broad scale library characterization.

Concentrations, Timescales and the Analysis of Mixtures.—Since natural 

products libraries are extremely complicated mixtures, often with large variations in the 

concentration of different analytes, dynamic range is an issue for both screening and 
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metabolomics platforms. This large variation in concentrations requires both the chemical 

profiling strategy and the biological screen to be sensitive, but to have the ability to 

characterize compounds at a range of concentrations. Typically, this is done by selecting a 

concentration for profiling that gives useful data for the majority of extracts, and performing 

a second profiling experiment at higher dilution factor for extracts that give either a strongly 

cidal readout in the profiling assay, or a saturated signal in the chemical analysis (typically a 

problem for accurate mass analyses such as ESI-qTOF). Furthermore, it is important that the 

analyses are configured such that the lower limits of detection are similar for the two 

systems. This is important because without this bioactive compounds can be ignored, either 

because they were observed in the metabolomics system but not classified as active, or 

because the extract was classified as active, but the compound concentration was below the 

detection limit in the chemical analysis.

Technical Requirements for the Integration of High-Content Datasets.—Some 

of the major challenges in integrating high-content datasets involve how the data are 

processed and integrated. Generalizable strategies for either chemical or biological 

annotation such as those described above are useful; however, directly integrating data from 

these analytical platforms is often difficult or impossible using existing tools. For example, 

while multivariate statistical methods such as principal component analysis are effective for 

discovering unique compounds from MS-based metabolomics libraries, it is difficult to 

confidently assign biological information to the resulting components when these statistical 

methods are extended to include high-content screening.

It is our opinion that an integration strategy should aim to correlate every detectable 

chemical feature with undefined phenotypes or screening profiles. In this way, the data 

should draw hypotheses about the biological activity of each detectable compound in the 

library for a global view of the chemical and chemical-genetic potential in the library. This 

resource would be invaluable for dereplicating known compounds, identifying modes of 

action, finding new biological activities using orthogonal screens, and discovering new 

compounds. For example, when newly developed biological screens are relatively low 

throughput, we can avoid re-screening samples containing frequent nuisance molecules like 

hydroxamic acid-containing metal chelators, pan-specific kinase inhibitors like 

staurosporine, or grossly cytotoxic anthracyclines by cherry picking the natural products 

library to avoid extracts previously annotated by multiparametric screening systems as 

containing these compound classes. The prediction of the broad MOAs of bioactive 

molecules can also be useful to avoid inclusion of extracts containing compounds with 

potential negative host interactions such as those associated with DNA damage, highlighting 

just a couple of situations where the target-independent characterization of biological and 

chemical properties of natural products libraries can be used to improve the discovery 

workflow for next-generation natural products-based therapeutics.

As an example of the ways in which such a strategy can be applied, we have recently 

developed a new integrated profiling platform, termed Compound Activity Mapping, which 

profiles natural products libraries using a combination of image-based cytological profiling 

and untargeted UPLC-TOF metabolomics to directly identify and characterize all bioactive 

constituents of any natural products screening library against HeLa cells (Figure 4). This 
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tool is capable of generating networks that cluster extracts and their bioactive constituents 

based on biological and chemical similarities, such that each cluster contains a list of related 

compounds predicted to cause a specific phenotypic effect on HeLa cell development, and 

the extracts that contain these bioactive constituents. Using this tool we are discovering a 

wealth of new bioactive constituents from our microbially-derived natural products library, 

as well as providing phenotypic annotations for a large number of known compounds, some 

of which have not previously been characterized in terms of mammalian cell MOA.

FUTURE PERSPECTIVE

A rapid expansion in the resolution and throughput of academic screening data is currently 

taking place as high-throughput screening centers become more prevalent in universities and 

research institutes. Coupled with increasingly affordable and reliable MS tools and advances 

in the use of NMR methods for direct analysis of complex mixtures, we are poised to “open 

the box” on natural product discovery and transition from the traditional “grind and find” 

model, to a scenario in which we possess a priori knowledge about the constitution and 

MOA of all bioactive constituents of any screening library in advance of the isolation and 

detailed biological evaluation of individual compounds. Expansion of this approach to 

include whole genome sequence data for producing organisms is an obvious next step for 

improving the accuracy and coverage of molecular identification, and is close to becoming a 

reality as robust and affordable sequencing and genome assembly methods come of age. By 

extending this strategy from single profiling approaches to the integration of multiple 

profiling methods, each of which provides complementary but orthogonal information about 

the constitution and function of secondary metabolites from natural products libraries, we 

can now consider the possibility of developing universal characterization methods that 

describe the precise constitutions and biological activities of all members of any complex 

natural product library. The implications of developing such tools are widespread, with 

many fields set to benefit. Areas of future application of these technologies include 

chemotaxonomy, chemical ecology and interspecies interactions, botanicals research, natural 

product drug discovery, and human microbiome research, to name a few. The era of “Big 

Data” is here for natural products; it is already changing the field, and we are only beginning 

to see the impact that multiparametric biological and chemical evaluation of will have on 

natural products discovery. It is an exciting time to be involved in natural products research, 

and we are fascinated to see what new discoveries this next generation of sophisticated tools 

will bring.
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Figure 1. 
Summary of advantages and limitations of common chemical profiling strategies for natural 

products libraries.
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Figure 2. 
High-throughput versus multiparametric screening strategies, illustrating the differences in 

lead selection approaches and discovery workflows between live/dead and multiparametric 

screening methods.
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Figure 3. 
(A) Images of control cells, test cells treated with purified natural products, and their 

corresponding cytological profiles (B) Example of the use of cytological profiling-driven 

peak library screening and bioactive compound discovery for piericidin A, an inhibitor of 

the mitochondrial electron transport chain.
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Figure 4. 
Output from Compound Activity Mapping platform, indicating the network generated using 

metabolomics data alone (left), the resulting Compound Activity Map generated by the 

integration of chemical and biological profiling datasets (center) and an example of a 

bioactive compound annotated using this platform (right).
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