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a b s t r a c t 

As the demand for medical cares has considerably expanded, the issue of managing patient flow in hos- 

pitals and especially in emergency departments (EDs) is certainly a key issue to be carefully mitigated. 

This can lead to overcrowding and the degradation of the quality of the provided medical services. Thus, 

the accurate modeling and forecasting of ED visits are critical for efficiently managing the overcrowding 

problems and enable appropriate optimization of the available resources. This paper proposed an effec- 

tive method to forecast daily and hourly visits at an ED using Variational AutoEncoder (VAE) algorithm. 

Indeed, the VAE model as a deep learning-based model has gained special attention in features extraction 

and modeling due to its distribution-free assumptions and superior nonlinear approximation. Two types 

of forecasting were conducted: one- and multi-step-ahead forecasting. To the best of our knowledge, 

this is the first time that the VAE is investigated to improve forecasting of patient arrivals time-series 

data. Data sets from the pediatric emergency department at Lille regional hospital center, France, are em- 

ployed to evaluate the forecasting performance of the introduced method. The VAE model was evaluated 

and compared with seven methods namely Recurrent Neural Network (RNN), Long short-term memory 

(LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM Network (ConvLSTM), restricted Boltzmann ma- 

chine (RBM), Gated recurrent units (GRUs), and convolutional neural network (CNN). The results clearly 

show the promising performance of these deep learning models in forecasting ED visits and emphasize 

the better performance of the VAE in comparison to the other models. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The hospital emergency departments (EDs) are often the first 

ccess point delivering urgent care to patients with sudden ill- 

ess and injury without prior appointement [1] . This makes the 

perating of EDs more challenging and with resource constraints 

ue to the diverse needs of the patients, various treatment lev- 

ls, and unexpected times of patients’ arrival, different than the 

ther hospital departments [2] . All over the years, the demand for 

Ds services has been steadily increasing. Accordingly, EDs are con- 

ronted with high pressure engendered by the high patient flow, 

hich makes them among the most crowded entities of hospitals. 

umerous studies on EDs have revealed that these establishments 

ave more and more difficulties in fulfilling their missions. Inap- 
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ropriate management of crowding would result in inadequate ED 

unctioning [3] , which could lead to negative patient outcomes [4] . 

f course, improving healthcare in EDs is constrained by adequate 

ontrol of health expenditure and care process, and proactively 

anage the patient flow. 

Over the last decades, the demand for medical care has rapidly 

xpanded worldwide, which makes crowding in EDs a global 

hallenge. For instance, the 719 French emergency structures 

andled 21 million passages in 2016, 3.5% more than in 2015. 

his increase continues the trend observed for twenty years. In 

996, the number of ED visits stood at 10.1 million in France. 

t then increased, steadily, by 3.5% per year on average (DREES, 

018). There is a continuous increase in demands for ED services 

medical and surgical treatments) and EDs are usually confronting 

n influx of patients around the world [5–8] . The EDs overcrowd- 

ng is manifested by a prolonged waiting time and increasing 

atient length of stays in these healthcare establishments [9,10] . 

n addition, inadequate management of overcrowding affects the 

https://doi.org/10.1016/j.chaos.2020.110247
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110247&domain=pdf
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ob satisfaction of medical staff and the quality of treatment of 

atients [11,12] . Conventional practices of the EDs management of 

atient fluxproved to be very beneficial and should be maintained. 

owever, it is worthwhile to notice that they seem inefficient for 

andling situations with major perturbations (e.g., irregular influx, 

easonal, epidemic, heat waves, and cold waves). A potential solu- 

ion for improving EDs pro-activity is to predict the patient flux in 

dvance in order to give ED managers enough time to prepare for 

hese demands (planning, mobilize the necessary resources). 

With the presence of EDs overcrowding problem and limited re- 

ources (human and material), forecasting (hourly or daily) of pa- 

ient demand for ED care is certainly a key solution to mitigat- 

ng this problem [13] . Faced with the growing demand for emer- 

ency medical care [14,15] , EDs must integrate into their mode of 

peration a sufficient level of resilience (proactive capacity) that 

llows them to anticipate care requests (forecasting ED demands) 

nd quickly mobilize the necessary resources (adapt medical re- 

ources to the demand for care) [16–18] . The traditional medical 

esources organization can be ineffective in absorbing a high in- 

ux of patients, which frequently results in strain conditions that 

ncrease medical errors and medical staff stress and reduce the sat- 

sfaction of patients [8,19,20] . Thus, the accurate forecasting of ED 

isits is critical for mitigating ED overcrowding problem and en- 

ble controlling patient flow in an efficient way. Given a reliable ED 

emands forecasting, the hospital managers can choose the best 

trategy to handle the expected large number of ED demands and 

nsure optimal use of available resources. Also, such information 

an be used by hospital administrations to develop a proactive pa- 

ient flow strategy that makes better use of the available resources 

nd avoid overcrowding that may lead to strain situations [3,13,21–

3] . 

All over the years, several methods have been developed to 

mprove the quality of modeling and forecasting of ED demands. 

mong the existing models applied to forecast ED demands, time- 

eries models are the most widely used ones [13,24] . These meth- 

ds include autoregressive integrated moving average (ARIMA) and 

ts variants, and Holt-Winters methods [13,18] . For instance, in Araz 

t al. [25] , different univariate forecasting methods including Holt- 

inters, exponential smoothing, and ARIMA have applied to fore- 

ast ED visits elated to influenza in Omaha, Nebraska. Results 

howed that linear regression models provide improved forecast- 

ng when incorporating Google Flu Trends data as a predictor. 

n [26] , a seasonal ARIMA model has been applied to forecast ED 

isits at the Braga Hospital in Portugal. In [18] , a method based 

n a multivariate ARIMA model has been introduced for forecast- 

ng ED visits in Lille hospital France. Time-series models, such as 

RIMA and its extensions could reach a satisfactory performance 

hen or patients’ arrival time-series data exhibits regular varia- 

ions, but the forecast quality is obvious when the ED visits time- 

eries shows irregular variations. To bypass this shortcoming, non- 

arametric models and shallow machine learning methods, which 

re more flexible, are used in improving patients flow forecast- 

ng [19,27,28] . For instance, in Xu et al. [27] , the artificial neural

etwork is used to forecast daily ED visits. Also, in Handly et al. 

28] , a neural network methodology is applied for hospital admis- 

ion forecasting. In [29] , decision trees, Naive Bayesian classifiers 

ave been applied to predict inpatient length of stay using a geri- 

tric hospital dataset. Results indicate the naive Bayesian models 

utperform the C4.5 algorithm of the decision tree in predicting 

ength of stay. In [30] , artificial neural networks, and decision trees 

ave been applied to analyze and classify healthcare coverage. In 

ddition, due to their flexibility, machine learning methods have 

een employed in many healthcare domains such as heart disease, 

ealthcare coverage, burn and injured patients, hospital length 

f stay, care demands, and COVID-19 modeling and forecasting 

19,31–35] . 
2 
The objective of this paper is to anticipate the occurrence of 

train situation within EDs by forecasting the daily and hourly pa- 

ient arrivals. Accurately forecasting of ED visits is important to ef- 

ciently managing hospital resources, such as beds and staff re- 

ources (e.g., doctors and nurses), and optimally reducing delays 

n discharging patients, delays in tiding rooms, and waiting time. 

he aforementioned shallow methods are generally not suited to 

ncover implicit and relevant information. Recently, deep learning 

as developed as an important field of research in modeling and 

orecasting time series data, both in academia and industry [36–

1] . Deep Learning is the result of the concatenation of more layers 

nto the neural network framework [42,43] . Deep learning mod- 

ls are powerful tools to model implicit relationships between of 

rocess variable, enable complicated pattern recognition, and they 

re especially useful in describing time dependents in time series 

ata. Deep learning methods automatically extract informative fea- 

ures from large data [43] . The main goal of this paper is to pro-

ide an effective approach to forecast hourly and daily ED visits 

ased on deep learning framework. The contributions of this work 

re three folds. At first, a variational autoencoder (VAE) model is 

dopted to forecast ED visits. To the best of our knowledge, this is 

he first time that the VAE is investigated to improve forecasting of 

D visits time-series data. In addition, this study conducts a perfor- 

ance comparison of eight deep learning methods including Re- 

urrent Neural Network (RNN), Long short-term memory (LSTM), 

idirectional L STM (BiL STM), Convolutional L STM Network (ConvL- 

TM), restricted Boltzmann machine (RBM), Gated recurrent units 

GRUs), and convolutional neural network (CNN) are selected as 

ata-driven models for ED visits forecasting. Furthermore, to guide 

hort- and long-term ED management, both one- and multi-step- 

head forecast are considered in this study. Data sets collected 

rom the pediatric emergency department of Lille (France) are used 

o evaluate the performance of the eight deep learning models in 

orecasting daily and hourly patient arrivals. The remaining of this 

rticle is organized as follows. Section 2 provides a brief presenta- 

ion of the VAE model and how it can be applied for forecasting. 

ection 3 presents the used data and discusses the ED visits fore- 

asting results (hourly, daily, one-step, and multistep forecasting) 

nd comparisons. Finally, conclusions are outlined in Section 4 . 

. Methodology 

.1. Variational autoencoders 

Variational Autoencoders (VAEs) come out as one of the most 

ffective deep models to learn relevant from complex data in 

n unsupervised way [42,44] . They are an important class of 

enerative-based models that have gained attention in the machine 

earning community [42] . A particularly attractive feature of VAEs 

s their dimensionality reduction capability, which allows for com- 

ressing high dimensional data into a lower-dimensional represen- 

ation enabling flexible generation of new data and quantitative 

omparisons. The VAEs are powerful tools to approximate com- 

lex data distributions and could be constructed efficiently with 

tochastic gradient descent [44] . In addition, VAE can better solve 

he overfitting problem in the traditional autoencoders and im- 

rove data sampling via a regulation process during the training. 

oreover, the superior performance of VAEs for generating differ- 

nt types of complex data has been demonstrated in many applica- 

ions, such as handwritten digits, faces, forecasting based on static 

mages, and modeling urban networks [45] . In this paper, VAE is 

ntroduced to forecast ED visits time series data. Fig. 1 depicts a 

chematic illustration of the structure of a VAE. 

Essentially, a VAE is composed of an encoder and a decoder 

imilar to conventional autoencoders. Basically, the encoder and 

ecoder are neural networks. The role of the encoder is encoding 
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Fig. 1. Variational autoencoders (VAEs). 
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he input data, X into a latent space as distribution, q( z | x ). The la-

ent (called hidden) space possesses much fewer dimensions com- 

ared to the input data. It is worth pointing out that the encoder 

hould be constructed to learn an effective compression of the in- 

ut data into this lower-dimensional space. After that, a sample, 

 ~ q( z | x ), can be obtained from the code distribution. The role of

he decoder p ( x | z ), which is a neural network, is to generate the

ata point x from the input z . Finally, the error of reconstruction is 

omputed and backpropagated via the network. Basically, the de- 

oder enables obtaining the datapoint x from low-dimensional la- 

ent representation z . However, it is worthwhile to notice that this 

rojection based on the decoder results in some loss of informa- 

ion. The loss of information is reduced during the training of a 

AE model by minimizing the difference between original input 

nd the encoded-decoded data. 

Towards this end, the loss function, L (q ) , is minimized by the 

AE based on training data. The loss function of the VAE consists 

f the reconstruction loss (on the output layer), and a regularizer 

on the latent layer). The reconstruction loss aims to make an ef- 

ective encoding-decoding process, while a regularizer enables reg- 

larizing the latent space structure to get the distributions from 

he encoder as similar as possible to a predefined distribution 

Gaussian distribution is the most commonly used in the litera- 

ure). 

 (q ) = E z ∼q(z | x ) 
(
logp(x | z ) )︸ ︷︷ ︸ 

Reconstruction term 

− KL 
(
q(z | x ) || p(z ) 

)︸ ︷︷ ︸ 
Regularization term 

, (1) 

The key role of the first term of (1) is to reinforce the de-

oder to efficiently learn data reconstruction. Indeed, the larger 

alue in this term is an indicator of unsuited reconstruction of the 

ata x from its corresponding latent z and vice versa. The regular- 

zer is defined by the Kulback-Leibler (KL) divergence between two 

robability distributions of the encoder (q( z | x )) and of the prior 

f the latent variable ( z , |p( z )). Here the KL is used to quantify

he closeness between the two distributions. The minimization of 

he loss function with respect to the parameters of the encoder 

nd decoder is performed using the gradient descent method over 

he training phase. Of course, minimizing the loss function is per- 

ormed for guaranteeing the obtention of regular latent space, z , 

nd appropriate sampling of new observation based on z ~ p ( x | z ).

ore details about the VAE model can be found in Doersch [46] . 

.2. The proposed VAE-based forecasting strategy 

In our work, the ED visits time-series data is smoothed to re- 

ove outliers and enhance data quality. To this end, an exponen- 
3 
ially weighted moving average (EWMA) filter is applied to the col- 

ected data to smooth the data and remove outliers. The smoothed 

ata points based on EWMA filter are computed as 

s t = νy t + (1 − ν) s t−1 

s 0 = μ0 
(2) 

here y t is the number of ED visits at time t, S t , is the fil-

er output at time t , and ν ∈ [0, 1] is the smoothing parameter 

hat defines the depth of the memory of EWMA. Here, the data 

s slightly smoothed to keep the most variability in the original 

ata. 

After that, the smoothed data is normalized within the inter- 

al 0 and 1. The normalization of the smoothed data, s is given 

y: 

 

 = 

(s − s min ) 

(s max − s min ) 
(3) 

here s min and s max denotes respectively the minimum and maxi- 

um of the smoothed ED visits time series data. After the forecast- 

ng process, this normalization is reversed so that the forecasted 

ata correspond to the original ED visits time series. This is done 

s follows: 

 = ̃

 s ∗ (s max − s min ) + s min . (4) 

Dataset is then split into training and testing sub-datasets. The 

raining dataset is formed using the sliding window of fixed length 

alled time-steps or lag ( Fig. 2 ) algorithm. This result in mapping 

f sequence of values Sx to its next value Sy , which is required

or supervised learning (e.g., RNN models), however unsupervised 

earning approach needs only Sx (e.g., VAE). 

As discussed above, the VAE is naturally an autoencoder trained 

ased on unsupervised learning. The main objective of a VAE 

odel is to extract and discover features from the underlining 

raining dataset and map them to a new feature space (encoding) 

sing the statistical variational inferences. In this paper, we pre- 

rain the VAE via unsupervised learning to initialize a deep neural 

etwork (DNN) for forecasting ED visits time-series data. To this 

nd, we introduce the output layer of the VAE model a predictor 

ayer. The predictor layer has 1 unit, i.e., the output of the predic- 

or ( Fig. 3 ). The goal of the predictor layer is to map the output of

he VAE model into a scalar data point that can be compared with 

he original time-series data. 

At first, the parameters of the VAE model are computed in the 

raining, where the target DNN is initialized. We add a new layer 

ith a single output to the VAE model for forecasting (see the 

owchart). This first step is usually called pre-training, which is ac- 

omplished through unsupervised learning to obtain a better local 

ptimum or even the global optimal region. Next, the fine-tuning 

tep is performed to optimize the model parameters via supervised 

raining. The coupled VAE and forecaster layer is ready to forecast 

he next value of a given data sequence. Indeed, after the pretrain- 

ng, the whole structure of the VAE is fine-tuned in order to opti- 

ize its parameters and improve its performance. Specifically, this 

hase is done via supervised learning using the backpropagation 

BP) algorithm which adjusts the weight matrices and bias of the 

etwork to achieve the optimal states of the parameters that mini- 

ize the loss function of the actual data and predicted data. Actu- 

lly, fine-tuning the model parameters aim to derive the network 

o reach the global optima using the mapping of historical data ar- 

anged into a sequence with the next value for each sequence in 

he training dataset. The flowchart of VAE-based forecasting is dis- 

layed in Fig. 4 . 



F. Harrou, A. Dairi, F. Kadri et al. Chaos, Solitons and Fractals 139 (2020) 110247 

Fig. 2. Training dataset preparation using sliding window. 

Fig. 3. Proposed VAE-based forecasting framework. 
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.3. Evaluation metrics 

For performance comparisons, the following indexes have been 

dopted to quantify the forecasting of PED visists: Coefficient of 

etermination ( R 2 ), Root Mean Square Error (RMSE), mean absolute 

rror (MAE), and explained variance (EV). 

 

2 = 

∑ n 
i =1 [(y i, − ȳ ) · ( ̂  y i − ȳ )] 2 √ ∑ n 

i =1 (y i − ȳ ) 2 ·
√ ∑ n 

i =1 ( ̂  y i − ȳ ) 2 
, (5) 

MSE = 

√ 

1 

n 

n ∑ 

t=1 

(y t − ˆ y t ) 2 , (6) 

AE = 

∑ n 
t=1 

∣∣y t − ˆ y t 
∣∣

n 

, (7) 

V = 1 − Var( ̂ y − y ) 

Var (y ) 
, (8) 

here y t is the number of PED visits, ˆ y t is its corresponding fore- 

asted values, and n is the number of data points. Lower RMSE and 

AE values are more precise forecasting quality is. 
4 
. Results and discussion 

Deep learning models, which could automatically learn relevant 

nformation from time-series data, are investigated in this paper to 

ake a reliable forecast of PED visits. Here, the VAE-based fore- 

asting model will be investigated for hourly, daily, one-step and 

ultistep forecasting of PED visits time series data. Also, compar- 

son with seven competitors is presented to show the effective- 

ess of the VAE model. Specifically, we compared the performance 

f VAE model to seven deep learning models namely RNN [47] , 

 STM [47] , BiL STM [48] , ConvL STM [49] , GRUs [50] , RBM [51] and

NN [52] . 

.1. Case study: PED at CHRU-Lille 

This study is conducted based on data for arrivals to the PED 

n CHRU-Lille. The CHRU-Lille hospital assists around four million 

nhabitants in Nord-Pas-de-Calais in France, and its PED admits on 

verage 23,900 patients per year. Also, the PED shares with other 

ospital departments the access of its resources (e.g., clinical labo- 

atory, scanner, and X-rays). 

The five main stages characterizing the patient treatment pro- 

ess in the PED are ( Figs. 2 and 5 ): 

1. Administrative registration, 

2. Handling by hostesses 

3. Nurse consultation, 

4. Patient admission for medical consultation, 

5. Patient admission for additional examination if needed. 

The treatment process in PED starts upon the arrival of the 

atient to the PED and concludes when a patient is either sent 

ome or transferred to another department of the hospital. At ar- 

ival, the patient information, such as the reason for coming, age, 

hone number, and health history, is recorded by the adminis- 

rative agent. After that, the patient is guided towards the PED 

 Fig. 5 ). Next, the patient is examined by the medical staff, and he

s headed according to his situation for a medical specialist, wait- 

ng room, consultation box, vital emergency room, or to the short- 

erm hospitalization unit. It is worth to point out that patients 
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Fig. 4. VAE-based ED visits forecasting strategy. 

Fig. 5. General PED care process. 

5 
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Fig. 6. Daily PED visits recorded from January 2011 to November 2013. 

Fig. 7. Distribution of hourly PED visits. 
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re immediately accepted by the PED without a preliminary reg- 

stration if they arrive via the mobile emergency and resuscita- 

ion service (SMUR) or firemen. In this situation, the administrative 

rocess can be done after the treatment. 

.2. Data analysis 

The data used in this study consist of a number of visits at PED 

f Lille collected from January 2011 to November 2013 every hour 

 Fig. 6 ). To give an idea of the evolution of this time series data,

ig. 7 depicts the shows the hourly distribution of the number of 

isits at the PED from November 2011 to March 2012. Fig. 7 indi- 
6 
ates that the number of visits fluctuated significantly within the 

ay. The visit rate is more than one patient each 5 min. 

The actual total number of visits at the PED per month in 2011 

nd 2012 are illustrated in Fig. 8 . Three periods can be distin- 

uished: the winter/epidemic period (November–March) and the 

eriod between April and October with the lowest visits between 

uly to September. As expected, the patient flow is relatively high 

n the epidemic period, while fewer visits are observed from July 

o September maybe because most of the people are on vacation 

uring this period. 

Fig. 9 illustrates the box plots of the patient visits at the PED by 

ay of week. The number of visits to the PED fluctuates along with 
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Fig. 8. The number of monthly visits in 2011 and 2012. 

Fig. 9. Box plots of visits by day of the week from January 2011 to November 2013. 
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he day of the week. We also observed that Sunday and Monday 

nd Thursday are the most overloaded. A larger number of visits 

re recorded on Sundays and Mondays. This can be due to the clo- 

ure of family clinics and some events including holidays, sporting 

ccasions, and festivals in the region. 

Fig. 10 shows the sample autocorrelation function (ACF) of the 

ourly patient visits at the PED. ACF quantifies the correlation of 

 given time series data with itself at differing time lags, which 

ould anticipate the time period length between two successive 

axima. Fig. 10 shows the presence of a daily cycle (seasonality) 

n patient visits time series data. 

.3. Forecasting hourly ED visits 

As time-series data of the patient visits at the PED is related 

o many factors including meteorological conditions and epidemic 
7 
vents, it is relatively challenging to model and track its trend in 

he future. Accurate short-term forecasting of the patient visits at 

he PED is essential to optimize the planning of nursing rosters, the 

anagement of available staff within the emergency department, 

nd assist in bed occupancy estimation. In this study, data-driven 

odels to forecast patient visits to the emergency department us- 

ng advanced structures of deep learning methods are presented. 

his study aims to build and compare data-driven models to fore- 

ast patients’ attendance at PED of Lille hospital. Specifically, the 

erformances of LSTM, GRU, RNN, BiLSTM, ConvLSTM, RBM, CNN, 

nd VAE models are compared in forecasting the number of visits 

t the Lille PED. Towards this ends, the trained models are used 

o forecast the number of PED visits based on testing datasets. The 

raining set consists of 70% of data collected from January 2011 to 

ovember 2013. Parameters of the constructed deep learning mod- 

ls using training data are listed in Table 1 . These parameters are 
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Fig. 10. Sample ACF of hourly visits at PED. 

Table 1 

Model parameters. 
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Table 2 

Evaluation of each forecasting approach based on hourly testing data. 

t

p

h

m  
btained by minimizing the cross-entropy of the reconstructed er- 

or during the training. 

Forecasting future evolution of patient flow in EDs is one of the 

ain pillars in establishing successful management plans which 

mprove resource allocation and strategic planning, and hence 

reatly help hospital managers inenhancing decision-making. Fore- 

asting results from the considered deep learning methods based 

n testing data are shown in Fig. 11 . It can be seen that deep learn-

ng models are able to reasonably capture the future evolution of 

he patient flow time series. 

Fig. 12 displays the scatter plots of the recorded and the fore- 

asted patient visits at the PED for the eight investigated deep 

earning models. There is a clear correlation between the measured 

nd forecasted patient visits at the PED. 

The forecasting accuracy of the investigated deep learning mod- 

ls in terms of R 2, RMSE, MAE, and EV, when applied to hourly 

atient visits at PED are summarized in Table 2 . Table 2 indicates 

hat the overall forecasting quality of the eight deep learning mod- 

ls is satisfying. This forecasting result is promising. It confirms 
8 
hat the forecasted patient visits data closely follow the recorded 

atients’ visit trend. Also, Table 2 shows that the VAE model ex- 

ibited slightly superior performance in comparison to the other 

ethods by achieving an R 2 of R 2 = 0 . 949 and explaining most



F. Harrou, A. Dairi, F. Kadri et al. Chaos, Solitons and Fractals 139 (2020) 110247 

Fig. 11. Records vs. forecast of ED visits of each forecasting approach. 
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over the other models. 
f the variance in data (i.e., EV = 0.95). For RBM, the forecast- 

ng quality is relatively comparable to the VAE model by reaching 

nd R 2 of 0.946 and it can capture 94.6% of the total variance in

he testing patient visits time series data. Then, RNN-based mod- 

ls, RNN, L STM, BiL STM, and GRU are providing acceptable fore- 

asting with R 2 of 0.941, 0.941, 0.942, 0.945, respectively. Gener- 

lly, RNN-based models are useful to model time dependencies 

nd memorize sequential events. They show great success in dif- 

erent practical applications in the literature. However, it is worth- 

hile to notice that a simple RNN is usually confronted with learn- 

ng issues due to the vanishing gradient and exploding gradient. 

RU as an improved version of LSTM exhibits high performance 

n comparison to the other RNN-based methods (i.e., R 2 = 0.945). 

able 2 indicates that CNN showed the lowest forecasting accuracy 

ith an R 2 of 0.936. Indeed, the CNN model is more appropriate 

or 2D data such as images and is not designed for time series 

ata. 

.4. Forecasting daily ED visits 

To further investigate the performance the eight deep learning 

odels, in this section we consider daily patient visits time se- 

ies data. Accurate daily forecasting of ED visits provides relevant 

nformation for assisting medium-term planning, such as the as- 

ignment of rotas. Such information is very useful for tactical plan- 

ing to decide staff should be contacted on call and to get a prior 
9 
nowledge about situational awareness. Of course, a precise fore- 

ast is needed to giving support for decisions. In this experiment, 

he eight models are first trained using daily PED visits and then 

ill be evaluated using testing data. It is known that deep learn- 

ng models would offer good performance when applied to a large 

mount of data and enough training data is available. In this sec- 

ion, we investigate the performance when applied to a relatively 

mall-sized dataset (daily PED visits data). 

Forecasting results of daily ED visits from the eight deep learn- 

ng models based on testing data are shown in the left panel of 

ig. 13 . Also, scatter plots of the measured power against fore- 

asted power obtained from the considered models are displayed 

n the right panel of Fig. 13 . Similar conclusions hold true also for 

aily ED visits forecasting. Fig. 13 indicates that the forecasting re- 

ult from the eight models are satisfying. 

To more clearly compare the forecasting performance of deep 

earning methods, box plots of the forecasting errors in the test- 

ng daily PED data for each of the eight methods are displayed in 

ig. 14 . RNN has the largest errors as it can be seen in the width of

he central box and whiskers corresponding to the forecasting er- 

ors of the RNN approach. The LSTM, GRU, BiLSTM, and VAE have 

ompact box plots with relatively shorter interquartile ranges and 

hiskers, and errors are tightly packed around zero. That is, these 

our models provide lower forecasting errors than the other mod- 

ls. Also, it emphasizes the superior performance of the VAE model 
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Fig. 12. The scatter plots of recorded versus forecasted patient visits at the PED for each forecasting approach. 

Fig. 13. Left panel: Records vs. forecast of ED visits of each forecasting approach. Right panel: The scatter plots of recorded versus forecasted patient visits at the PED for 

each forecasting approach. 
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Table 3 

Evaluation of daily forecast of ED visits. 

A comparison of forecasting results of considered models when 

pplied to daily patient visits at PED data, are listed in Table 3 . It

an be seen that the VAE model offers superior forecasting perfor- 

ance in terms of R 2, RMSE, MAE, and EV, compared to the other 

odels. It achieves the highest forecasting accuracy with an R 2 of 

.925. 

.5. The forecasting results for multi-step ahead 

Accurate multi-step forecasting models are helpful in efficiently 

anaging patients flow at PED. In this experiment, the effec- 

iveness of the eight deep learning models are evaluated for the 
10 
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Fig. 14. Boxplots of forecasting error of each approach based on testing. 

Fig. 15. Basic illustration of multi-steps forecasting procedure. 

m

d

B  

f

x

b  

i

s

t

2

a

p

a

e

l

ultistep ahead forecasting of hourly PED visits. Fig. 15 shows the 

ifference between one-, two-, and multistep-ahead forecasting. 

y using the historical data x = [ x 1 , x 2 , . . . , x l ] , the values to be

orecasted by one-, two-, and multistep-ahead forecasting are x l+1 , 

 l+2 , and x l+ n , respectively. 

Here, the results of 2, 3, 4 steps-ahead forecasting of PED visits 

ased on the hourly data are listed in Table 4 . Results indicate that

t is not easy to obtain an accurate forecasting result in compari- 
11 
on with one-step-ahead forecasting. However, it can be observed 

hat the VAE method achieves superior forecasting performance for 

, 3, and 4-steps forecasting by reaching an R 2 of 0.753, 0.652, 

nd 0.579, respectively. In summary, the VAE-based forecasting ap- 

roach offers a promising way to forecast (hourly, daily, one-step, 

nd multistep) PED visits compared to the other competitors. How- 

ver, these multi-step forecasting results can be improved by using 

arge training datasets. 
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Table 4 

Multistep-step-ahead forecasting of ED visits for each method. 
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303 . 
. Conclusion 

Accurate forecast of patient arrivals at an ED is essential to ED 

anagers for efficient management of the available human and 

aterial resources and to reduce the patient waiting time and 

ength of stay. This paper introduces a Variational AutoEncoder 

VAE) approach to patient arrivals modeling and forecasting. A VAE 

odel is used to learn the variation of the number of ED’s pa- 

ient arrivals and forecast the future trend of ED visits. The fore- 

asting accuracy of this approach has been tested using data col- 

ected from PED in Lille regional hospital center, France. Seven 

ther promising forecasting models, RNN, LSTM, BiLSTM, ConvL- 

TM, GRUs, RBM, and CNN, were also applied with the same data 

ets. We compared their forecasting results with those obtained 

y the VAE approach. Two types of forecasting were conducted: 

ne-step and multiple-step-ahead forecasting. It is worth pointing 

ut that this is the first time that the VAE, RBM, CNN, ConvL- 

TM,BiLSTM models are introduced for improving the forecasting 

f ED’s visits time-series data. The results indicated the superior 

erformance of VAE in comparison to the other models in all con- 

idered cases. 
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