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Abstract

There are two key challenges when using a linear discriminant analysis in the high-dimensional 

setting, including singularity of the covariance matrix and difficulty of interpreting the resulting 

classifier. Although several methods have been proposed to address these problems, they focused 

only on identifying a parsimonious set of variables maximizing classification accuracy. However, 

most methods did not consider dependency between variables and efficacy of selected variables 

appropriately. To address these limitations, here we propose a new approach that directly estimates 

the sparse discriminant vector without a need of estimating the whole inverse covariance matrix, 

by formulating a quadratic optimization problem. Furthermore, this approach also allows to 

integrate external information to guide the structure of covariance matrix. We evaluated the 

proposed model with simulation studies. We then applied it to the transcriptomic study that aims to 

identify genomic markers predictive of the response to cancer immunotherapy, where the 
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covariance matrix was constructed based on the prior knowledge available in the pathway 

database.
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1. Introduction

This work was motivated by the study that aims to identify genomic markers predictive of 

the response to cancer immunotherapy. The cancer immunotherapy is treatment that uses 

certain parts of the immune system to fight against cancer. Specially, it either stimulates the 

patient’s own immune system to work harder or smarter to attack cancer cells or introduces 

certain immune components to patients [1]. Recently it attracts a lot of attention because it 

turns out to be effective for certain types of cancer that was not easy to treat with other 

therapeutic approaches. Among those, immune checkpoint blockades (ICB), including Anti-

PD-1/PDL1 and Anti-CTLA4, have revolutionized the cancer treatment. However, still 

significant degree of heterogeneity among patients has been reported and only less than one 

thirds of patients can be benefited from ICB [2]. Hence, it is of great interest to identify 

biomarkers predictive of how patients will respond to ICB [3].

Our motivating dataset was obtained from a large-scale phase II clinical trial study 

investigating major determinants of clinical outcome of metastatic urothelial cancer patients 

treated with atezolizumab, PDL1 blockade (IMvigor210) [4]. Here gene expressions were 

measured for tissue samples obtained from 298 patients, including 68 responders (complete 

or partial responses) or 230 non-responders (stable or progressive disease). Hence, 

identification of genomic markers to predict response to this cancer immunotherapy can be 

formulated as a high-dimensional variable selection problem (selection of genes) in the 

binary classification setting (responders vs. non-responders). There are various types of 

statistical approaches for this purpose, including linear discriminant analysis (LDA) [5, 6], 

quadratic discriminant analysis [6], support vector machine [7, 8], K-nearest neighbors [9], 

classification and regression trees [10], and random forest [11]. Among those, here we focus 

on LDA because of its stability, simplicity, and interpretability. First, because the final 

classifier of LDA is composed of a linear combination of predictors, it is easy to check the 

effectiveness of each predictor from the fitted LDA model. Second, because LDA considers 

a variance-covariance matrix in the model fitting, correlations among predictors can be taken 

into account. These properties are really powerful for a study to identify biomarkers based 

on a genomic study, which is known to have a complicated correlation structure. In this 

manuscript, we especially focus on penalized LDA approaches as they implement variable 

selection and classification simultaneously within a unified framework while maintaining the 

theoretical rigor and flexibility needed for the extension to the high-dimensional setting.

LDA can suffer from two problems when it is applied to high-dimensional data, which have 

a large number of variables compared to the number of observations. First of all, the 

standard LDA cannot be applied at all in this case because the estimate of the covariance 
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matrix tends to singular. Even when the estimate is nonsingular, the resulting classifier is 

unstable and often has poor classification performance due to the small sample size. 

Secondly, it is not straightforward to interpret the resulting classifier due to the large number 

of variables. The statistical approaches to address these problems can be categorized into 

three groups. First, we can reduce the dimension of data by using a feature selection method, 

e.g., pre-filtering [12–15]. Second, we can replace the full covariance matrix with a 

diagonal, regularized, or sparse covariance matrix [12, 16, 17]. Alternatively, we can replace 

the inverse covariance matrix with a sparse inverse covariance matrix [18]. Third, we can 

estimate the sparse discriminant vector by using a penalty function [19–21]. In these 

methods, the inverse covariance matrix is usually used to estimate the discriminant vector. 

Alternatively, the sparse discriminant vector can also be estimated without using an inverse 

covariance matrix [22, 23].

However, these approaches have still the multiple limitations. Specifically, the dimension 

reduction approach using feature selection methods do not consider correlations between 

variables. On the other hand, methods based on a modified covariance matrix do not 

implement the dimension reduction, which makes it hard to interpret the resulting classifier. 

Multiple penalized LDA approaches have been suggested to address these two problems. 

They include optimal scoring [19, 20], Fisher discriminant analysis [21], discriminant 

analysis based on the Bayes’ rule [22], and direct approach to estimate the discriminant 

vector avoiding separate estimation of the covariance matrix [23, 24]. However, these 

methods still focus only on identifying a parsimonious set of variables maximizing 

classification accuracy and they do not consider the efficacy of selected variables 

appropriately.

To address this, here we propose a sparse linear discriminant analysis (SLDA) based on the 

Bayes’ rule, which can be solved using a quadratic optimization. We further use a covariance 

matrix instead of an inverse covariance matrix in the quadratic optimization, and replace the 

full sample covariance matrix with a prior-knowledge-guided block covariance matrix, to 

improve the stability and reproducibility in variable selection. Also, we utilize Elastic Net as 

a penalty function to simultaneously promote sparseness of coefficients and address 

correlations among variables. This paper is structured as follows. In Section 2, we propose 

the sparse LDA framework with a penalty function. Section 3 evaluates the performance of 

SLDA with a prior-knowledge-guided block covariance matrix with simulation studies. In 

Section 4, we apply the proposed method to the real data (IMvigor210), along with the prior 

knowledge obtained from a public pathway database. Finally, In Section 5, we discuss 

strengths of the proposed approach and future directions.

2. Methodology

In this section, we describe our approach, a sparse linear discriminant analysis using a prior-

knowledge-guided block covariance matrix with the Elastic Net penalty (BSLDA). We first 

define notations as follows. For sample i, i = 1, …, n, we observe the p-dimensional vector xi 

= (xi1, …, xip) and the class label yi, where xij represents the value of j-th variable from 

sample i and yi is a categorical variable with K levels. The data with p number of variables 
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and n number of observations can be expressed as an n × p matrix X = {(xij); i = 1, …, n, j = 

1, …, p}.

2.1. Sparse LDA based on the Bayes’ Rule

Assuming that the p-dimensional vector xk,i follows the multivariate normal distribution 

with a mean vector μk and a common variance-covariance matrix Σ, the discriminant 

function Dk (k = 1, …, K) based on the Bayes’ rule for K-category classification problem is 

defined as:

Dk(x) = x − 1
2μk

T
βk + βk0, (1)

where βk = Σ−1μk and βk0 = ln πk. Then, the classification rule is argmaxkDk(x), i.e., the 

new observation x is allocated to k′ if argmaxkDk(x) = k′. Especially, when the data has two 

classes (K = 2), the discriminant function D will be:

D(x) = (x − μ)Tβ + β0, (2)

where μ = (μ1 + μ2)/2, β = Σ−1 (μ1 − μ2), and β0 = ln π1/π2. We can assign the new 

observation x to the class 1 if D(x) > 0, and assign it to the class 2 otherwise.

Here, our main task is to identify the discriminant vector, i.e., βk = Σ−1μk for the general 

case and β = Σ−1 (μ1 − μ2) when K = 2. These discriminant vectors can be easily estimated 

given the inverse covariance matrix Σ. However, in the high dimensional setting, the 

existence of an inverse covariance matrix is often not guaranteed due to the low rank of 

covariance matrix. In addition, when estimating the discriminant vectors, it is desirable to 

eliminate redundant variables to facilitate interpretation. Note that since the discriminant 

function Dk (D for K = 2) is a linear function of discriminant vector βk (β for K = 2), the 

contribution of j-th variable to the classification performance is negligible if the absolute 

value of its coefficient, |βkj|, is small. To address these issues, we suggest a penalization 

approach to estimate the discriminant vector, which minimizes the sum of squared difference 

between Σβk and the mean vector μk by considering the relationship that βk = Σ−1μk. 

Similarly, when K = 2, we minimize the squared difference between Σβ and the mean 

difference vector μ1 − μ2 by considering the relationship that β = Σ−1 (μ1 − μ2).

For the estimation of the discriminant vector based on samples, we suggest the following 

optimization rule for the general K:

minimizeβk∑k = 1
K Σβk − μk 2

2 + P βk , (3)

where Σ = Σ + Ω, Ω is a positive definite matrix, P(βk) is a penalty function of βk, and Σ and 

μk are estimates of the covariance matrix and the mean vector for class k, respectively. 

Similarly, we suggest the following optimization rule for the estimation of a sparse 

discriminant vector when K = 2:
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minimizeβ Σβ − μ1 − μ2 2
2 + P(β), (4)

where Σ = Σ + Ω, Ω is positive definite matrix, P(β) is a penalty function of β, and Σ and 

μ1 − μ2 are estimates of the covariance matrix and the mean difference vector between two 

classes, respectively.

In a high-dimensional setting, Σ does not have full rank and cannot be estimated reliably. 

The standard approach to make the covariance matrix estimation more stable is to regularize 

a covariance matrix by adding a positive definite matrix Ω. The positive definite matrix of 

usual choice is Ω = γI, where γ is a regularization parameter and I is the identity matrix. 

Here the optimal value for the parameter γ depends on the problem of interest and has to be 

optimized by a researcher [16, 20, 22, 25, 26]. In this manuscript, we assume that the data is 

scaled, i.e., each variable of data X is centered to have mean zero and standard deviation 

one. In our simulation studies with various settings assuming the scaled data, we found that 

using the identity matrix for Ω (γ = 1) works well in practice in terms of both classification 

accuracy and variable selection performance. Thus, we recommend to use the identity matrix 

for Ω for the researcher’s convenience assuming that the data is scaled.

2.2. Estimation of Sparse Discriminant Coefficients with the Elastic Net Penalty

In order to achieve sparseness in the discriminant vector, we utilize the Elastic Net penalty 

function [27], which combines the LASSO penalty [28] with the Ridge penalty [29]. The 

Elastic Net penalty function promotes sparsity in the discriminant vector with the LASSO 

penalty while addressing correlation among variables using the Ridge penalty. When the 

Elastic Net penalty function is incorporated, the objective functions (which correspond to 

Equations (3) and (4)) are obtained as:

L(β, α) =
Σβ − μ1 − μ2 2

2 + λ1‖β‖1 + λ2‖β‖2
2, K = 2

∑k = 1
K Σβk − μk 2

2 + λ1‖βk‖1 + λ2‖βk‖2
2 , K > 2

. (5)

We utilize the LARS-EN algorithm [27] to solve this Elastic Net problem. The key idea of 

the LARS-EN algorithm is to convert an objective function with the Elastic Net penalty into 

a LASSO form. Let Σ(p + p) × p* = 1 + λ2
−1/2 Σ

λ2I
, μ(p + p)* = μ

0 , γ = λ1/ 1 + λ2, and 

β* = 1 + λ2β. Then the modified objective function can be written as

L β*, γ = Σ*β* − μ* 2
2 + γ β* 1 . (6)

The solution β* is called the naïve Elastic Net coefficient and can be obtained using the least 

angle regression (LARS) algorithm [30]. The LARS algorithm efficiently solves the entire 

LASSO solution path using the same order of computations as the single ordinary least 

squares fit. Finally, Zou and Hastie (2005) [27] suggested to use the rescaled solution that 

corrects the naive Elastic Net coefficients. The final solution is defined as
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β = 1 + λ2β* .

2.3. Parameter Tuning

While the LARS-EN algorithm provides an efficient solution to identify the sparse 

discriminant vector, two problems still remain. First, it is not guaranteed that the LASSO 

solutions obtained using the approach described above provides the best discriminant 

coefficients in the sense of the classification performance. Second, it is not straightforward 

to find the optimal combination of the two tuning parameters λ1 and λ2 and this can 

potentially affect stability of variable selection. To address these problems, we use the 

following reparameterization tricks. First, we replace the tuning of the pair (λ1, λ2) with the 

pair (s, λ2), where a fraction s is the ratio of the L1 norm of the coefficient vector relative to 

the norm of the full least square solution. Note that here the range of s is restricted to (0, 1). 

Second, we also restrict the parameter space of λ2 to (0, 1). Although it is possible that this 

restriction might give slightly sub-optimal penalized regression coefficient estimates, this 

makes the parameter tuning significantly more convenient and also improves stability in 

model fitting by reducing the parameter space to be searched. Third, in order to further 

stabilize the variable selection results, we set the fraction λ2 = s. Hence, it suffices to only 

tune the parameter s to control both sparseness and shrinkage of coefficients, where the 

smaller s value gives more weight on the LASSO penalty while the larger s value gives more 

weight on the Ridge penalty. Again, although it is possible that restricting the λ2 parameter 

space in this way might result in slightly sub-optimal discriminant coefficient estimates in 

the sense of classification performance, this approach makes the model selection procedure 

much more intuitive and also improves stability and robustness of variable selection. Note 

that essentially here we aim to incorporate the L2 norm penalty proportional to the degree of 

sparseness for the purpose of considering the correlation between variables within each 

block in the covariance matrix. In this sense, this proposed tuning approach can be 

considered as an Elastic Net formula with weak L2 penalization, or equivalently, a modified 

LASSO problem. Combining all of these tricks together, we now need to tune only a single 

parameter s within the range between 0 and 1. We choose the value of s that maximizes the 

cross-validation classification accuracy.

2.4. Prior-Knowledge-Guided Block Covariance Matrix and Software Implementation

When solving Equations (3) and (4) with respect to the discriminant vector β, we can use the 

sample mean vector μk = ∑i = 1
nk xk, i/nk and the covariance matrix 

Σ = ∑k = 1
K nk − 1 Σk/ n − k , where Σk = ∑i = 1

nk xk, i − μk xk, i − μk
T / nk − 1 . However, 

this standard estimation of the sample covariance matrix can be unstable in the high 

dimensional setting while it can also include a significant number of redundant covariance 

terms. As a result, the resulting classifier suffers from the poor performance.

Multiple types of covariance structure have been proposed to improve this covariance matrix 

estimation, especially by eliminating redundant covariance terms. The simplest approach is 

to consider only the diagonal covariance matrix by assuming all variables are independent 
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[12, 31–34]. A more relaxed approach is to use a block structure of covariance matrix, which 

assumes that variables are independent between different blocks while correlations between 

variables are allowed within each block [34–38]. Other proposed covariance matrix 

structures include banded covariance matrices [39–42], sparse and low-rank covariance 

matrices [43–45]. In order to make the covariance matrix estimation more stable, we use a 

block diagonal covariance matrix, where the covariance matrix with (L + 1) blocks is 

defined as

Σ =

Σ1 0 0 ⋯ 0
0 Σ2 0 ⋯ 0

0 0 ⋱ ⋯ 0
⋮ ⋮ ⋮ ΣL 0
0 0 0 0 ΣL + 1

.

The block diagonal covariance matrix assumes that the data x is composed of several 

mutually independent subsets. In other words, this approach assumes the variables belonging 

to different blocks to be mutually independent while allowing the variables to be correlated 

with each other within each block. This might sound like a strong assumption but it has been 

reported that such ignorance of weak associations between blocks actually rather improves 

the classification performance [16, 46].

To determine the number of blocks and the block size, we utilize exterior prior knowledge. 

For example, in the context of our motivating example that aims to identify genomic markers 

predictive of the response to cancer immunotherapy, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; https://www.genome.jp/kegg/) pathway annotations can be utilized to 

construct blocks in the covariance matrix. Alternatively, these blocks can be obtained based 

on gene modules or subnetworks identified using text mining of biomedical literature [47, 

48]. The proposed sparse linear discriminant analysis using prior-knowledge-guided 

covariance matrix was implemented as an R package ‘bslda’, which is currently publicly 

available at https://elflini.github.io/bslda/.

3. Simulation Study

We first performed simulation studies to evaluate performance of the proposed sparse LDA 

using prior-knowledge-guided block covariance matrix (BSLDA). We also considered a 

sparse LDA without prior-knowledge-guided block covariance matrix (SLDA), a sparse 

discriminant analysis (SDA, [20]), a penalized LDA (PLDA, [21]), and a diagonal LDA 

(DLDA, [12]) as competing approaches. Both SDA and PLDA are penalized LDA. SDA 

utilizes optimal scoring criterion with Elastic Net penalty, where the discriminant vector is 

identified by converting a classification problem into a regression form. On the other hand, 

PLDA is based on Fisher’s discriminant problem with LASSO penalty. Both methods 

implemented regularization of the covariance matrix by adding a positive definite matrix to 

stabilize the covariance matrix. Finally, DLDA does not have variable selection procedure 

(i.e., uses all the variables) while only diagonal terms of covariance matrix are considered 

instead of the regularization.
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Since BSLDA is one type of classification methods, we used test data prediction accuracy as 

the criterion to compare classification performances between BSLDA and other penalized 

discriminant analysis approaches. Specifically, prediction accuracy on the testing dataset is 

defined as:

Accuracy = # of correctly classified observations / # of total observations .

We also evaluated true positive rate (TPR) and false positive rate (FPR) to compare variable 

selection performances between BSLDA and other penalized discriminant analysis 

approaches. TPR and FRR are defined as:

TPR = # of selected signal variables / # of signal variables ,

FPR = # of selected non‐signal variables / # of non‐signal variables .

Here, we considered the two-class problem (K=2), where there are 50 observations 

corresponding to each class (total 100 observations) with 400 variables. For each setting, we 

generated 100 sets of training and test data and used the 5-fold cross-validation to tune the 

parameters.

3.1. Performance Comparison

Here we assumed that the data for the 1st class x1,i~N(0, Σ) and the data for the 2nd class 

x2,i~N(μ, Σ). For the setting #1, we assumed that μ = (140, 0360), i.e., the first 40 variables 

have mean of 1 and while the remaining 360 variables have mean of 0. In addition, we 

assumed the correlation structure that Σjj′ = 0.5|j−j′|, 1 ≤ j,j′ ≤ 400. For the setting #2, we 

assumed that μ = (130, 0.540, 0330), i.e., the first 30 variables have mean of 1 and the second 

40 variables have mean of 0.5, while the remaining 330 variables have mean of 0. We again 

considered the same covariance matrix as the simulation setting #1. For the settings #3 and 

#4, we used the same mean vectors used for the settings #1 and #2, respectively, while we 

assumed the covariance matrix Σ estimated using the real data (Section 4) [4] to mimic the 

real data situation. For the BSLDA which needs prior knowledge to guide the covariance 

matrix structure, we assumed that there exist two variable groups (each with 40 and 360 

variables) for the settings #1 and #3, and three variable groups (each with 30, 40, and 330 

variables) for the settings #2 and #4. Figure 1 visualizes the covariance structures we 

assumed for each simulation setting and Figure S1 (in the Supplementary Materials) 

visualizes the sample covariance estimated using block structures guided by the prior 

knowledge.

First, in order to assess benefits of guiding the covariance matrix using prior knowledge, we 

compared the prediction accuracy, TPR, and FPR between BSLDA and SLDA, i.e., SLDA 

models with and without the prior-knowledge-guided block covariance matrix, respectively. 

Table 1 shows TPR, FPR, and prediction accuracy of BSLDA and SLDA in each simulation 

setting. In the case of settings #1 and #2, TPR and FPR were comparable between BSLDA 

and SLDA and the prediction accuracy was also comparably high for both approaches (about 
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0.95). In contrast, in the settings #3 and #4, BSLDA provides the better FPR compared to 

SLDA with some sacrifice of prediction accuracy, which might imply that BSLDA can be 

more effective in eliminating noise variables.

Second, by considering that BSLDA is one type of penalized linear discriminant models, we 

compared the performance of BSLDA with those of SDA and PLDA (Table 1, Table S1, and 

Table S2 in the Supplementary Materials). In all settings, BSLDA, SDA and PLDA perform 

comparably or outperform DLDA in the sense of prediction accuracy. On the other hand, the 

TPR and FPR of SDA vary significantly across the simulation settings, which implies that 

the performance of SDA is highly data-dependent. In the case of PLDA, in spite of high 

TPR, it also showed high FPR consistently across all the settings. Moreover, its standard 

deviations of FPR were highest among all the approaches we considered, which implies that 

PLDA is not stable in the sense of FPR control. In contrast, BSLDA showed relatively high 

TPR and the lowest FPR consistently across all the settings. These two results indicate 

strengths of BSLDA in the sense of stability and robustness with respect to data 

characteristics.

Third, by considering that the stability of BSLDA can be affected by the ratio of signal to 

non-signal variables, we performed the following additional simulation setting that considers 

various ratios of non-signal variables. Here we modified the simulation settings #1 and #2 by 

considering different numbers of non-signal variables. Specifically, we generated 160 and 

260 non-signal variables (instead of 360 non-signal variables) for the setting #1, and 130 and 

230 non-signal variables (instead of 330 non-signal variables) for the setting #2, so that the 

total numbers of variables are 200 and 300, respectively. Table S3 in the Supplementary 

Materials shows TPR, FPR, and prediction accuracy of BSLDA, SLDA, SDA, PLDA and 

DLDA. Overall, SLDA outperformed SDA and PLDA in the sense of FPR whereas SLDA 

also showed high TPR. However, the performance of SLDA was still affected by noise 

variables. In contrast, BSLDA showed high TPR, low FPR, and high prediction accuracy 

consistently regardless of ratios of signal to non-signal variables. These results indicate that 

BSLDA provides great stability in the sense of variable selection while it is also robust to 

existence of noise variables.

3.2. Studies of Stability and Reproducibility

Here we generated signal variables xi~N(0, Σ) with Σjj′ = 0.5|j−j′|, 1 ≤ j, j′ ≤ 40 and set the 

discriminant function D(x) = βTx, where β = (1.210, 110, 0.810, 0.510). Then, we obtained 50 

observations with D(x) > 0 and 50 observations with D(x) < 0, and set them to classes 1 and 

2, respectively. Finally, we added independent 360 variables following the standard normal 

distribution. Thus, we simulated 100 observations with 400 variables and the class label 

vector y consists 50 observations of class 1 and 50 observations of class 2. For BSLDA, we 

further assumed that there are two variable groups with 40 and 360 variables, respectively 

(Figure S2 in the Supplementary Materials). Table S4 in the Supplementary Materials shows 

TPR, FPR, and prediction accuracy of BSLDA, SLDA, SDA, and PLDA for this setting.

First, by considering that the performance of BSLDA can be affected by the sample 

collection, we subsampled the 100 observations generated above with different subsampling 

rates. Specifically, within each class, observations were subsampled without replacement 
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with different sampling rates, and subsampling rate was considered from 0.2 to 0.9. For 

example, the subsampling rate of 0.9 means that we chose 45 observations (=50 × 0.9) in 

each of classes 1 and 2. Table 2 (and Table S5 in the Supplementary Materials) shows TPR, 

FPR and prediction accuracy of BSLDA, SLDA, SDA, and PLDA (We did not include 

DLDA in this comparison because it does not provide variable selection) for different 

resampling rates. First, in the case of SDA, FPR was well controlled at the low level but its 

TPR was also the lowest among the methods we considered. On the other hand, PLDA 

showed relatively high TPR compared to other methods but its FPR and corresponding 

standard deviations were also the highest among the methods we considered. In contrast, 

BSLDA maintained very low FPR in general and its performance was not degraded in spite 

of decreasing sample sizes. SLDA showed relatively lower TPR and higher FPR compared 

to BSLDA, which might imply benefits of using prior knowledge to guide the covariance 

matrix.

Second, by considering that the performance of BSLDA can be affected by misspecification 

of the covariance matrix structure, we performed additional simulation study that changed 

proportion of signal variables within each variable group. Specifically, we first assumed 40 

signal variables and 360 non-signal variables. Then, we chose subsets of signal variables 

with different subsampling rates and considered these subsets as one variable group. The 

remaining non-selected signal variables and non-signal variables are considered as another 

variable group. For example, for the subsampling rate of 0.1, randomly selected 4 signal 

variables (= 40 × 0.1) were considered as one variable group while the remaining 36 signal 

variables (= 40 − 4) and 360 non-signal variables were considered as another variable group. 

This process was implemented 50 times for each subsampling rate and we considered the 

subsampling rate between 0.1 and 0.9. Table 3 shows TPR, FPR, and prediction accuracy of 

BSLDA. We can see that in spite of the misspecified block structure for the covariance 

matrix, BSLDA did not suffer from loss of prediction accuracy and FPR. Although TPR still 

decreases as the size of correctly specified signal variables decreases, its rate of decrease 

was still moderate.

4. Real Data Analysis

We applied the proposed BSLDA to the transcriptomic study ‘IMvigor210’ that aims to 

identify genomic markers predictive of the response to cancer immunotherapy [4, 49, 50]. 

We obtained the data using the R package ‘IMvigor210CoreBiologies’, which is available at 

http://research-pub.gene.com/IMvigor210CoreBiologies. There are two groups of patients, 

including responders (complete or partial responses) and non-responders (stable or 

progressive diseases). 68 patients correspond to responders and the remaining 230 samples 

correspond to non-responders, resulting in the total sample size of 298. We utilized the 

Kyoto Encyclopedia of Genes and Genomes (KEGG; https://www.genome.jp/kegg/) 

pathway annotations as a prior-knowledge to guide the covariance matrix, which are 

available from the Molecular Signatures database (MSigDB; http://

software.broadinstitute.org/gsea/msigdb/). In this analysis, we considered 4792 genes, which 

overlapped the KEGG categories. KEGG pathway database (https://www.genome.jp/kegg/

pathway.html) was constructed as a manually drawn pathway maps and it consists of the 7 

main categories, including metabolism, genetic information processing, environmental 
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information processing, cellular processes, organismal systems, human diseases, and drug 

development. Among those, we considered 6 categories except for drug development. Then, 

in order to address overlaps of genes between pathway categories, we extracted genes that 

appear in more than one of these 6 pathway categories and made up a new category 

consisting of these overlapping genes. Finally, we utilized these 7 categories as prior 

knowledge to construct the block covariance matrix. Figure 2 shows a heatmap of the data 

and Figure S3 in the Supplementary Materials shows a heatmap of the prior-knowledge-

guided block sample covariance matrix constructed using the 7 KEGG pathway categories. 

We used the 5-fold cross-validation for the parameter tuning.

BSLDA selected 2386 genes with 1224 genes with positive coefficient estimates and 1162 

genes with negative coefficient estimates. Figure 3 shows a heatmap of the data with 

selected genes. We first implemented a gene set enrichment analysis of the 1162 genes with 

negative coefficient estimates (i.e., markers associated with non-response to the treatment) 

using the ToppGene Suite (https://toppgene.cchmc.org/). Some of the key pathways 

associated with these genes include MAPK signaling pathway, cytokine-cytokine receptor 

interaction, and WNT signalling pathway (Bonferroni-adjusted p-value = 2.07e–14, 1.27e–

13, and 3.3e–08, respectively). Among those, Mariathasan et al. [4] reported the cytokine-

cytokine receptor interaction as the key pathway associated with the non-response for the 

cancer immunotherapy. They reported some key marker genes in this pathway including 

IFNGR1, TGFB1, ACVR1, and TGFBR2 and all of them were also selected by our 

approach (coefficient estimates = −0.1195, −0.0739, −0.0750, and −0.0515, respectively). 

These genes were reported to be associated with non-response and also with reduced overall 

survival [4].

We next checked enrichment of 1224 genes with positive coefficient estimates (i.e., markers 

associated with response to the treatment) with respect to the gene sets profiled by 

Mariathasan et al. (Supplementary Table 8 of [4]) using a hypergeometric test. Significantly 

associated gene sets include CD8+ T-effector signature and cell cycle (Bonferroni-adjusted 

p-value = 2.95e–05 and 7.67e–04, respectively). Among those, Mariathasan et al. [4] 

reported that CD8+ T-effector (CD8+ Teff) signatures were highly correlated with PD-L1 

expression on immune cells and also associated with increased overall survival.

The mouse study implemented by Mariathasan et al. [4] further showed that while a 

blockade of each of PD-L1 or TGFβ alone had little or no effect, mice treated with 

antibodies against both PD-L1 and TGFβ resulted in a significant reduction in tumour 

burden. Moreover, this combined antibody blockade significantly increased tumour-

infiltrating T cells, especially CD8+ Teff cells, and CD8+ Teff signature was also increased in 

mouse tumours treated with this combined antibody blockade. Thus, we could validate some 

of the genomic markers we identified using BSLDA based on the literature. Currently we are 

also working on investigation of novel genomic markers identified using BSLDA.

5. Conclusions

In this paper, we proposed the sparse linear discriminant analysis using prior-knowledge-

guided block covariance matrix with Elastic Net penalty (BSLDA). First, we address the 
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issue of inability of constructing a discriminant vector and its estimation instability in high-

dimensional setting by bypassing the estimation of an inverse covariance matrix and using a 

covariance matrix based on a Bayes’ rule. Second, we employ the Elastic Net penalty to 

eliminate the redundant covariance terms. Third, we utilize prior knowledge in construction 

of a block covariance matrix. Our simulation studies showed that this approach can provide 

more stable and reproducible variable selection and prediction results. Finally, we applied 

BSLDA to the study for identifying genomic markers associated with response to the cancer 

immunotherapy. The genomic markers we identified include those that were previously 

reported, along with a large set of potential genomic markers that can be further investigated.

We are currently working on multiple directions to further improve BSLDA. First, in this 

manuscript, we utilized a static and well-established pathway annotation (KEGG) to guide 

the covariance matrix. However, there are other annotation datasets with richer information 

and those related to different biological aspects. Hence, it will be of interest to investigate 

utilization of other databases and address relevant issues. Second, in this manuscript, we 

only investigated gene expression data to identify genomic markers associated with response 

to the cancer immunotherapy. However, other relevant datasets are also available, such as 

genetic alterations, and it will be of interest to investigate integration of these datasets with 

the gene expression data. Finally, our real data analysis identifies multiple potential 

candidates associated with response to the cancer immunotherapy and we plan to further 

investigate and validate these novel candidates. In summary, we believe that BSLDA can be 

a powerful tool for identifying genomic markers associated with response to the cancer 

immunotherapy, and for variable selection and classification in the high-dimensional setting 

in general.
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Refer to Web version on PubMed Central for supplementary material.
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PDA penalized LDA

DLDA diagonal LDA
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TPR true positive rate

FPR false positive rate
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Highlights:

• While the linear discriminant analysis (LDA) has been popularly used for 

many classification problems, its application in the high-dimensional setting 

remains challenging due to singularity of the covariance matrix and difficulty 

of interpreting the resulting classifier.

• In this paper, we propose BSLDA, a novel penalized LDA approach that 

addresses this problem by directly estimating the sparse discriminant vector 

without a need of estimating the whole inverse covariance matrix and 

integrating external information to guide the structure of covariance matrix.

• We found that BSLDA provides more stable and reproducible variable 

selection compared to competing LDA approaches.

• In our application of BSLDA to a large-scale phase II clinical trial study that 

aims to identify genomic markers for metastatic urothelial cancer patients 

treated with atezolizumab, PDL1 blockade (IMvigor210), we could not only 

reproduce the findings reported in the literature, but also identify novel 

genomic markers that can be considered for future investigation and 

validation.

Nam et al. Page 16

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2021 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Heatmaps of the covariance matrix assumed for each simulation setting.
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Figure 2. 
A heatmap of the real data for 298 samples (columns) and 4792 genes (rows), which aims to 

identify genomic markers predictive of response to the cancer immunotherapy. Green and 

red colors indicate responders and non-responders, respectively.
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Figure 3. 
A heatmap indicating the variable selection results for the real data, which shows 2386 

selected genes (rows). Green and pink colors in the color bar above the heatmap indicate 

responders and non-responders, respectively.
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Table 1.

Variable selection and classification performance comparison of BSLDA (SLDA using prior-knowledge-

guided covariance matrix) and competing penalized LDA methods, including SLDA (the version without 

prior-knowledge-guided covariance matrix), sparse discriminant analysis (SDA), penalized linear discriminant 

analysis (PLDA), and diagonal linear discriminant analysis (DLDA). True positive rate (TPR) and false 

positive rate (FPR) are reported for the evaluation of variable selection performance, and the test data 

prediction accuracy is reported for the evaluation of classification performance. For each criterion, average and 

SD (within parenthesis) calculated over 100 simulated datasets are reported.

Method Setting #1 Setting #2

TPR FPR Accuracy TPR FPR Accuracy

BSLDA 0.91 (0.14) 0.11 (0.12) 0.96 (0.02) 0.78 (0.15) 0.13 (0.14) 0.95 (0.02)

SLDA 0.90 (0.10) 0.18 (0.19) 0.95 (0.02) 0.74 (0.15) 0.17 (0.18) 0.94 (0.02)

SDA 0.94 (0.10) 0.29 (0.22) 0.96 (0.02) 0.51 (0.08) 0.38 (0.24) 0.95 (0.02)

PLDA 1.00 (0.00) 0.32 (0.37) 0.96 (0.02) 0.87 (0.12) 0.39 (0.40) 0.95 (0.02)

DLDA - - 0.96 (0.02) - - 0.95 (0.02)

Method
Setting #3 Setting #4

TPR FPR Accuracy TPR FPR Accuracy

BSLDA 0.81 (0.08) 0.15 (0.10) 0.87 (0.04) 0.82 (0.08) 0.23 (0.16) 0.84 (0.05)

SLDA 0.98 (0.04) 0.37 (0.14) 0.99 (0.02) 0.87 (0.09) 0.45 (0.15) 0.99 (0.01)

SDA 0.79 (0.15) 0.15 (0.06) 0.99 (0.01) 0.98 (0.07) 0.57 (0.07) 0.85 (0.06)

PLDA 1.00 (0.00) 0.32 (0.41) 0.86 (0.05) 0.85 (0.11) 0.27 (0.40) 0.84 (0.05)

DLDA - - 0.83 (0.08) - - 0.80 (0.07)
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Table 2.

Variable selection and classification performance comparison of BSLDA (SLDA using prior-knowledge-

guided covariance matrix) and competing penalized LDA methods, including SLDA (without prior-

knowledge-guided covariance matrix), sparse discriminant analysis (SDA), and penalized linear discriminant 

analysis (PLDA), for different subsampling rates of observations. True positive rate (TPR) and false positive 

rate (FPR) are reported for the evaluation of variable selection performance, and the test data prediction 

accuracy is reported for the evaluation of classification performance. For each criterion, average and SD 

(within parenthesis) calculated over 100 simulated datasets are reported.

Method
Subsampling rate = 90% Subsampling rate = 80%

TPR FPR Accuracy TPR FPR Accuracy

BSLDA 0.85 (0.08) 0.18 (0.05) 0.98 (0.02) 0.80 (0.12) 0.19 (0.08) 0.98 (0.02)

SLDA 0.81 (0.11) 0.31 (0.19) 0.99 (0.02) 0.74 (0.14) 0.29 (0.19) 0.99 (0.02)

SDA 0.63 (0.13) 0.17 (0.08) 1.00 (0.00) 0.63 (0.16) 0.18 (0.13) 1.00 (0.00)

PLDA 0.74 (0.34) 0.55 (0.45) 0.93 (0.10) 0.80 (0.32) 0.67 (0.41) 0.95 (0.11)

Method
Subsampling rate = 70% Subsampling rate = 60%

TPR FPR Accuracy TPR FPR Accuracy

BSLDA 0.74 (0.14) 0.19 (0.08) 0.98 (0.02) 0.71 (0.14) 0.19 (0.10) 0.98 (0.02)

SLDA 0.68 (0.16) 0.28 (0.20) 0.99 (0.03) 0.70 (0.19) 0.37 (0.24) 0.99 (0.04)

SDA 0.58 (0.17) 0.19 (0.15) 1.00 (0.00) 0.58 (0.20) 0.23 (0.18) 1.00 (0.00)

PLDA 0.76 (0.34) 0.64 (0.44) 0.95 (0.10) 0.81 (0.33) 0.73 (0.39) 0.95 (0.13)
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Table 3.

Variable selection and classification performances of BSLDA (SLDA using prior-knowledge-guided block 

covariance) with a misspecified block covariance matrix, where the rates indicate proportions of correctly 

specified signal variables. True positive rate (TPR) and false positive rate (FPR) are reported for the evaluation 

of variable selection performance, and the test data prediction accuracy is reported for the evaluation of 

classification performance. For each criterion, average and SD (within parenthesis) calculated over 50 

simulated datasets are reported.

Rate (%) TPR FPR Accuracy Rate (%) TPR FPR Accuracy

10 0.80 (0.09) 0.20 (0.08) 0.98 (0.03) 20 0.81 (0.11) 0.24 (0.15) 0.98 (0.03)

30 0.80 (0.09) 0.18 (0.08) 0.97 (0.03) 40 0.80 (0.09) 0.17 (0.09) 0.96 (0.03)

50 0.82 (0.08) 0.18 (0.07) 0.97 (0.02) 60 0.85 (0.09) 0.20 (0.08) 0.97 (0.03)

70 0.83 (0.09) 0.17 (0.08) 0.97 (0.03) 80 0.84 (0.09) 0.16 (0.08) 0.97 (0.02)

90 0.86 (0.07) 0.17 (0.05) 0.98 (0.02) 100 0.90 0.20 0.99
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