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Abstract

Background

The wide adoption of electronic health records (EHR) system has provided vast opportuni-

ties to advance health care services. However, the prevalence of missing values in EHR

system poses a great challenge on data analysis to support clinical decision-making. The

objective of this study is to develop a new methodological framework that can address the

missing data challenge and provide a reliable tool to predict the hospital readmission among

Heart Failure patients.

Methods

We used Gaussian Process Latent Variable Model (GPLVM) to impute the missing values.

Specifically, a lower dimensional embedding was learned from a small complete dataset

and then used to impute the missing values in the incomplete dataset. The GPLVM-based

missing data imputation can provide both the mean estimate and the uncertainty associated

with the mean estimate. To incorporate the uncertainty in prediction, a constrained support

vector machine (cSVM) was developed to obtain robust predictions. We first sampled multi-

ple datasets from the distributions of input uncertainty and trained a support vector machine

for each dataset. Then an optimal classifier was identified by selecting the support vectors

that maximize the separation margin of a newly sampled dataset and minimize the similarity

with the pre-trained support vectors.

Results

The proposed model was derived and validated using Physionet MIMIC-III clinical database.

The GPLVM imputation provided normalized mean absolute errors of 0.11 and 0.12 respec-

tively when 20% and 30% of instances contained missing values, and the confidence

bounds of the estimations captures 97% of the true values. The cSVM model provided an
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average Area Under Curve of 0.68, which improves the prediction accuracy by 7% as com-

pared to some existing classifiers.

Conclusions

The proposed method provides accurate imputation of missing values and has a better pre-

diction performance as compared to existing models that can only deal with deterministic

inputs.

Introduction

The digitized healthcare data has increased significantly due to the wide adoption of electronic

health records (EHR) system, which provides useful resources to advance clinical research and

improve healthcare [1]. Many studies have been done to extract important information from

EHR to predict different events such as readmission and mortality. [1–6]. Despite the vast

opportunities, EHR datasets usually contain many missing values, which poses a great chal-

lenge on data analysis and clinical applications [7]. One typical approach in dealing with the

incomplete data is to delete the instances that contain missing information. However, this is

not efficient for EHR data where majority of the values are missing. For example, at a New

York academic medical center, 48.9% of patients with disease code for pancreatic cancers did

not have corresponding disease documentation in pathology reports [8]. Instead of discarding

the missing instances, imputation can be done to estimate the missing information. For

instance, a missing value can be replaced with either previous observation (last observation

carried forward–LOCF), the average of available data (mean imputation), or fitted values from

a regression model (regression imputation).

In the medical literature, many efforts have been made to explore efficient missing data

imputation techniques in recent years. Beaulieu-Jones et al. [9] created a representative EHR

dataset using a large amount of lab measurements and evaluated the performance of twelve

different imputation methods under different missing mechanisms. In their study, two meth-

ods, i.e., Multivariate Imputation by Chained Equations (MICE) [10], and softImpute [11],

could consistently generate better imputation results as compared with the rest. One possible

reason is that these two methods can successfully identify the relationship between different

measurements in the constructed dataset, which enables better imputation accuracy. Further,

Codella et al. [12] developed an ensemble technique by combining 6 models (i.e., first-order

polynomial function, k-nearest neighbors, random forest, perceptron neural network, recur-

rent neural network architecture with bi-directional gated recurrent unit and bidirectional

LSTM) to impute missing values on a time series dataset. Although significant progress has

been made to deal with incomplete data, there are still gaps. For example, MICE method

assumes a functional relationship between each single variable and all the remaining variables.

If the relationship is not properly defined, the method may not provide an accurate estimation

of missing values. In addition, Codella’s ensemble technique contains a large number of tuning

parameters, and the parameter calibration can introduce extra sources of uncertainty to the

imputation (e.g., model errors). In this study, we present a new imputation technique which

can overcome the aforementioned limitations and provide a reliable estimation of missing val-

ues. Specifically, Gaussian Process Latent Variable Model (GPLVM) will be used to impute the

missing values, where a lower dimensional embedding of the observations will be learned

from a small complete dataset and then used to impute the missing values in the incomplete

dataset.
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After imputing the missing values, the complete dataset can be applied to develop models

to support clinical decision-making. For example, statistical and Machine Learning (ML) mod-

els can be used to predict 30-day readmission of Heart Failure (HF) patients after discharged

from Intensive Care Units (ICUs). However, the imputation inevitably introduces uncertain-

ties (e.g. imputation errors) to the dataset. Most ML techniques are sensitive to data uncer-

tainty; and small variations in the inputs can lead to significant changes in model outputs. It is

important to quantify these uncertainties to ensure accurate modeling and decision-making.

Support Vector Machine (SVM) is one of the most popular models in ML field due to its supe-

rior performance on high dimensional data and the capability of handling nonlinear classifica-

tion. But traditional SVM cannot deal with data uncertainty and is sensitive to noises. In this

study, we designed a constrained SVM (cSVM) to account for the data uncertainty (imputa-

tion errors). Specifically, multiple datasets were constructed by sampling from the imputed

distributions, which were then used to train a group of SVMs. Further, an optimal classifier is

identified by selecting the support vectors that maximize the separation margin of a newly

sampled dataset and eliminate the underperformed support vectors due to data uncertainty.

The proposed framework was used to predict the 30-day readmission of HF patients using

the MIMIC-III database. Heart disease is the leading cause of death and about 5.7 million

adults in the United States have HF [13, 14]. Hospitalization provides patients with optimized

treatment to reduce mortality and improve treatment outcomes. A continued challenge in the

care of HF patients is the high readmission rate. The 30-day readmission rate for HF is more

than 20% and the 6-month readmission rate is up to 50% [15]. It is important to predict the

readmission rate before discharges so care providers can be proactive and take actions to

reduce readmission risk rather than responding to its consequences. Some models have been

developed to predict the HF readmission, but the results are suboptimal. Ross et al. [16]

reviewed the models for HF readmission prediction between 1950 and 2007 and reported a

best C-statistic of 0.60. Frizzell et al. [17] compared 4 ML algorithms for the prediction of

30-day HF readmission and the best C-statistic is 0.624. Awan et al. [18] developed a multi-

layer perceptron-based approach for the prediction of 30-day HF readmission, which provide

a C-statistic of 0.62. HF readmission prediction needs to be improved and more research

efforts are demanded to explore accurate models. The objective of this study is to address the

challenges of missing data associated with EHR data analysis and readmission risk prediction.

The rest of the paper is organized as follows. Descriptions of the dataset and clinical vari-

ables used to test the methodological framework are presented in the Materials and Methods

section. The GPLVM based imputation and cSVM are developed in the section of Readmission

Prediction Model. The missing data imputation and readmission prediction performance are

analyzed and compared with existing methods in Results, which are followed by Discussions

and Conclusions sections.

Materials and methods

Dataset

The HF readmission data was constructed from the publicly available MIMIC-III database

[19], which consists the EHR data for over 40,000 patients in the critical care unit of the Beth

Israel Deaconsess Medical Center from 2001 to 2012. We first discarded patients with age

under 18 at admission and died in the ICU. Then patients with discharge diagnosis as HF were

screened out based on the International Classification of Diseases, 9th Revision codes (ICD-9)

402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 428.xx [20]. In total, we

got 5959 patients with 8439 ICU stays, among which there were 1000 (11.8%) 30-day readmis-

sions. The data will be used to train the models and conduct cross-validation where 80% will
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be used as training and 20% as testing. The code for data extraction was developed based on

the open source code (https://github.com/Jeffreylin0925/MIMIC-III_ICU_Readmission_

Analysis) from Lin et al. [3].

Data preprocessing

A few clinically important features were taken out from the dataset to build the classifier,

including demographics, chart events, and length of stay (LOS). Among these data, demo-

graphic variables were widely used in risk stratification models, which provide basic informa-

tion such as gender, age, race. Chart events are time series data, which represent the variation

of patients’ physiological conditions during their stay. LOS is the time in hours that a patient

spends during the stay. Table 1 provides a summary of these variables for the whole cohort,

readmitted group, and non-readmitted group, where continuous variables are expressed as

median (interquartile range) while categorical variables are expressed as percentages. All these

features were used to develop a classifier to predict the readmission of HF patients.

Demographics. Five demographic attributes were extracted including gender, age, race,

insurance type and discharge location. The first three features are frequently used in readmis-

sion risk prediction in the literature. Since HF hospitalization is highly correlated with medical

costs, different insurance types might affect patient’s decision for discharge and readmission.

As for discharge location, patients would receive different health care at different discharge

facilities, which might potentially influence their recovery and thus affecting the readmission

rate. All features except age were coded with dummy variables for model development.

Chart events. Chart events are measurements of patients’ vital signs, such as heart rate

and blood pressure, during their stay in the ICU. Although the data contains a significant

amount of valuable information, they have not been explored much in risk prediction [3]. It

has been reported that the charted events within the 48 hours before patients’ discharge are

correlated with the readmission rate [21, 22]. In this study, 13 numerical attributes in 48 hours

prior discharge were used, which include Blood urea nitrogen (BUN), Creatinine, Diastolic

blood pressure (DSP), Fraction inspired oxygen (FIO), Glucose, Heart rate (HR), Mean blood

pressure (MBP), Oxygen saturation (OS), Respiratory rate (RR), Systolic blood pressure (SBP),

Temperature, Weight and pH. Two basic statistical parameters, i.e. mean and standard devia-

tion, were calculated based on the measurements of each variable within the last 48-hour win-

dow. The corresponding features were considered as missing when no measurements were

available in the 48-hour window.

Readmission prediction model

As aforementioned, missing values are prevalent in the EHR, which poses a great challenge on

readmission risk prediction. To facilitate an accurate prediction of readmission, we will first

perform missing data imputation using GPLVM. This model can provide a mean estimate of

each missing feature along with the variance quantifying the imputation error. Further, the

imputation error will be propagated into the cSVM model to achieve a robust risk prediction.

The imputation and prediction models are described in detail as follows.

Gaussian Process Latent Variable Model (GPLVM). GPLVM is an extension of Gauss-

ian Process (GP) [23], where the functional relationship between inputs and outputs is

assumed to have a GP prior, and the inputs are treated as latent variables to be estimated along

with model hyperparameters [24]. To better understand GPLVM, we will first review the con-

cepts of GP. Let Y ¼ ½y
1
; y

2
; . . . ; yM��R

N�M
denote the complete observations, i.e. no missing

values, where N is the total number of patients and M is the total number of attributes. In the

general GP modelling framework, the input X ¼ ½x1; x2; . . . ; xN �
T
�RN�Q

is known and each
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Table 1. Summary of data.

Features Total (N = 8439) Readmitted Group (N = 1000) Non-readmitted Group (N = 7439)

BUN mean 27.00 (18.00, 42.00) 29.50 (19.75, 46.50) 26.44 (17.67, 41.50)

Creatinine mean 1.20 (0.85, 2.35) 1.40 (0.93, 2.95) 1.20 (0.85, 2.27)

DSP mean 57.96 (51.87, 65.20) 58.02 (51.67, 65.22) 57.95 (51.91, 65.20)

FIO mean 0.50 (0.40, 0.58) 0.47 (0.40, 0.55) 0.50 (0.40, 0.58)

Glucose mean 128.69 (110.89, 155.3) 129.78 (109.9, 158.4) 128.60 (111, 155)

HR mean 80.60 (71.68, 90.37) 80.85 (72.89, 91.13) 80.57 (71.52, 90.25)

MBP mean 75.40 (69.23, 83.14) 74.41 (67.66, 83.09) 75.48 (69.44, 83.14)

OS mean 96.68 (95.44, 97.87) 96.91 (95.63, 98.08) 96.65 (95.43, 97.83)

RR mean 19.38 (17.20, 22.00) 19.67 (17.37, 22.79) 19.36 (17.20, 21.91)

SBP mean 119.23 (108.84, 132.1) 116.98 (105.9, 131.2) 119.60 (109.3, 132.2)

Temperature mean 36.65 (36.36, 36.94) 36.58 (36.29, 36.86) 36.66 (36.37, 36.95)

Weight mean 80.48 (67.43, 96.00) 79.87 (67.84, 95.15) 80.55 (67.40, 96.10)

pH mean 7.37 (6.95, 7.42) 7.37 (7.00, 7.43) 7.37 (6.94, 7.42)

BUN std 1.73 (0.58, 3.58) 2.05 (0.71, 4.02) 1.73 (0.58, 3.54)

Creatinine std 0.07 (0.00, 0.17) 0.07 (0.00, 0.21) 0.07 (0.00, 0.17)

DSP std 9.44 (7.47, 11.94) 9.42 (7.43, 11.79) 9.45 (7.47, 11.95)

FIO std 0.05 (0.00, 0.19) 0.04 (0.00, 0.14) 0.06 (0.00, 0.19)

Glucose std 25.16 (13.91, 41.68) 25.79 (14.90, 42.21) 25.08 (13.72, 41.60)

HR std 7.04 (5.11, 9.56) 6.82 (5.06, 8.99) 7.07 (5.12, 9.65)

MBP std 9.69 (7.76, 12.14) 9.57 (7.59, 12.25) 9.70 (7.78, 12.12)

OS std 2.04 (1.57, 2.75) 1.99 (1.49, 2.71) 2.05 (1.58, 2.76)

RR std 3.56 (2.92, 4.43) 3.67 (3.01, 4.58) 3.55 (2.91, 4.41)

SBP std 13.09 (10.42, 16.41) 12.58 (9.83, 15.90) 13.16 (10.54, 16.48)

Temperature std 0.40 (0.29, 0.53) 0.39 (0.29, 0.51) 0.40 (0.29, 0.53)

Weight std 0.07 (0.00, 0.71) 0.05 (0.00, 0.56) 0.07 (0.00, 0.71)

pH std 0.02 (0.00, 0.05) 0.01 (0.00, 0.05) 0.02 (0.00, 0.05)

Age 73.39 (62.70, 81.99) 72.74 (61.58, 81.70) 73.49 (62.87, 82.04)

LOS 63.17 (34.33, 118.4) 72.09 (41.09, 147.9) 61.57 (33.79, 115.8)

Gender

Female 46.19 43.20 46.59

Male 53.81 56.80 53.41

Race

Asian 6.45 3.70 6.82

Black 12.32 18.70 11.47

Hispanic 74.32 70.40 74.85

Other 6.91 7.20 6.87

Insurance type

Government 1.58 1.00 1.65

Self-pay 74.83 77.50 74.47

Medicare 17.55 14.00 18.03

Private 6.04 7.50 5.85

Discharge location

Home 15.95 12.80 16.37

Home health care 29.79 26.70 30.21

Long-term care hospital 8.63 14.60 7.82

Rehab hospital 16.34 16.40 16.33

SNF 26.32 27.60 26.15

(Continued)
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dimension of the data is modelled as

ym ¼ fm þ em ð1Þ

where fm = [fm(x1),fm(x2),. . .,fm(xN)]T is the function value at each input, em � N ð0; t2INÞ is

the observation noise. Here fm(�) is a GP, that is

fmðxÞ � GPðmðxÞ; kðx; x0ÞÞ ð2Þ

where μ(x) is the mean function and k(x,x0) is the covariance function. Therefore, the condi-

tional distribution of ym given X is

ymjX; θ � N ðμm;KNN þ t
2INÞ ð3Þ

where μm = [μm(x1),μm(x2),. . .,μm(xN)]T is the mean of ym, KNN is the covariance matrix with

Kij = cov(fm(xi),fm(xj)), θ groups all the parameters to be estimated. By taking all the attributes

together, Y should be modelled as a multiple-output GP. Further, we assume conditional inde-

pendence across different attributes, then the likelihood of the observations can be written as

pðYjX; θÞ ¼
QM

m¼1
pðymjX; θÞ ð4Þ

which can be used to estimate the model parameters through Maximum Likelihood Estima-

tion. However, when the input X is unknown, it should be estimated along with the

hyperparameters.

To obtain the distribution of the latent variable X, we seek to optimize the likelihood of data

(to simplify the notation, the dependence over θ was omitted)

pðYÞ ¼
R
pðYjXÞpðXÞdX ð5Þ

However, the nonlinear incorporation of X inside the kernel function makes the optimiza-

tion intractable. Thus, a variational distribution q(X) approximating the true posterior distri-

bution p(X|Y) is introduced to derive the following variational lower bound for log{p(Y)} [25]

L qð Þ ¼
R
qðXÞlogfpðYjXÞgdX �

R
qðXÞlog

qðXÞ
pðXÞ

dX ð6Þ

where the second term is the KL divergence between the variational distribution and the prior

distribution of X, which could be analytically calculated. Further, the first term in Eq 6 can be

written as

lðqÞ ¼
R
qðXÞ logfpðYjXÞg dX ¼

PM
m¼1

R
qðXÞ logfpðymjXÞg dX ð7Þ

where its lower bound can be derived using the variational sparse GP regression method. This

lower bound can then be used to estimate the model parameters θ and latent variable X.

When the model parameters and latent variables are identified, the GPLVM can be used to

estimate missing values. Let z� ¼ ½zO� ; z
U
�
� 2 RN

be a row vector representing the measurements

of a single patient, where zO
�
2 RNo and zU

�
2 RNu denote the observed and missing values

Table 1. (Continued)

Features Total (N = 8439) Readmitted Group (N = 1000) Non-readmitted Group (N = 7439)

Other 2.97 1.90 3.12

std: Standard Deviation.

https://doi.org/10.1371/journal.pone.0237724.t001
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respectively. The imputation is done as follows. Firstly, the distribution q(x�) of the latent vari-

able x� corresponding to z� will be obtained by maximizing the following density [26]:

p zO
�
jY

� �
¼

R
pðzO

�
;YjX; x�ÞpðX; x�ÞdXR
pðYjXÞpðXÞdX

ð8Þ

Let h� ¼ ½h
O
�
; hU
�
� 2 RN

be the latent function value corresponding to z�, then the density of

the hU
�

can be calculated:

qðhU
�
Þ ¼

R
pðhU

�
jx�Þqðx�Þdx� ð9Þ

Although the marginalization of x� generates an intractable multivariate density, the

moments of the density qðhU
�
Þ are computable for some covariance functions. Therefore, the

mean and variance of the missing part zU
�

could be calculated as

EðzU
�
Þ ¼ EðhU

�
Þ; covðzU

�
Þ ¼ covðhU

�
Þ þ t2INu

, where the mean provides the estimate of missing

values and the variance quantifies the uncertainty associated with the mean estimate. This

information will be further propagated into the classification model described in the next sec-

tion to obtain a robust estimation of readmission risk.

To evaluate the performance of the imputation method, two metrics were used. The first

metric is Mean Absolute Error (MAE), which is calculated as: 1

Nmiss

P
ði;jÞ2Mjpij � yijj, where

Nmiss is the number of missing values, M contains the index for all the missing values, πij and

yij respectively represent the imputed mean and the true value. Since GPLVM can also provide

the estimation of variance, another metric calculates the proportion of the true values that

were contained in the confidence bound πij±2σij.
Constrained Support Vector Machine (cSVM). SVM is a well-established classifier in

the ML community, which has been widely applied in different applications [27]. However,

traditional SVM can only deal with deterministic inputs. When there is uncertainty involved,

SVM needs to be modified to consider the uncertainty in both training and validation pro-

cesses. In this study, the GPLVM model provides statistical estimations of missing values and

quantifies the uncertainty (e.g., imputation error and measurement noises) in all patients’

data. To propagate the uncertainty into classification, we developed a constrained SVM model,

which is described as follows.

Given the data D ¼ fsj; yjg
N
j¼1
; yj 2 f� 1; 1g, sj 2 R

M
, the original SVM solves the following

problem to maximize the margin between two classes [28]:

min
w;b;xj

1

2
wTw þ C

PN
j¼1
xj ð10Þ

s:t: yj½wTφðsjÞ þ b� � 1 � xj

xj � 0

where w is the weight vector, b the bias, C is a term determining the cost of mis-classification,

ξj is a slack variable, φ(�)is a kernel function mapping the original inputs to the feature space.

SVM aims at selecting some points from each class to construct a hyperplane that could best

separate the two classes. The selected points are called support vectors and the performance of

SVM greatly depends on the support vectors [28]. When there are uncertainties involved, the

hyperplane could be affected greatly, thus influencing the classification performance of SVM.

For example, the imputed values in this study are described as probability distributions, and

the true values are random variables that can take any values with a certain probability.
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Different samples of the missing values can lead to different classification models and provide

different classification results, i.e., readmission or non-readmission. Therefore, it is important

to consider the input uncertainty to achieve a robust prediction.

To account for input uncertainty, we will first sample p sets of data from the distributions

of missing values. Then, a wi is trained with each set of samples, which can generate p sets of

weighting vectors fwig
p
i¼1

. Further, a constrained SVM model is trained using fwig
p
i¼1

and a

new set of samples by solving the following optimization problem

min
w;b;xj

1

2
wTw � l

Pp
i¼1
wTwi þ C

PN
j¼1
xj ð11Þ

s:t: yj½wTφðsjÞ þ b� � 1 � xj

xj � 0

where λ is a penalty coefficient. The penalty term containing wis can incorporate the uncer-

tainty information in the data into SVM optimization. Specifically, minimizing the similarity

between w and wis will guide the optimization to seek a w that can maximumly capture the

variations across all sets of data. Since direct solution of this problem is complex, the following

dual problem was formulated based on the Karush-Kuhn-Tucker conditions [29]:

max
aj

PN
j¼1
aj �

1

2

PN
j¼1

PN
k¼1
ajakyjykφðsjÞ

TφðskÞ þ l
PN

j¼1
ð
Pp

i¼1
wiÞ

T
ajyjφðsjÞ ð12Þ

s:t: 0 � aj � C
PN

j¼1
ajyj ¼ 0

which is a quadratic programing problem and can be solved using standard optimization pack-

ages. Compared with the original SVM, cSVM includes a penalty term to consider the support

vectors identified from the classifiers trained with multiple samples. This will take into account

the uncertainty in the imputed dataset. Later we will show that this penalty term will improve

the performance of classification in the presence of uncertainty (i.e., missing values) (See

Results Section).

Results

Feature selection

To avoid overfitting, feature selection was performed on the imputed dataset to select the attri-

butes that are strongly correlated with the outputs. This procedure was done for all the vari-

ables list in in the Data Preprocessing section. Logistic regression (LR) with LASSO

regularization was used to select the significant features for subsequent analysis. The selected

features include the means of BUN, DBP, FIO, Glucose, HR, RR, SBP, temperature, weight,

pH, and the standard deviations of FIO, HR, MBP, OS, RR, SBP, temperature, weight, as well

as age, LOS, GCS eye, GCS verbal, Gender, Race, Insurance and Discharge location.

Missing data imputation

When a vital sign recording is not available within the 48 hours before discharge, the corre-

sponding statistical features are missing and need to be imputed through GPLVM. The origi-

nal dataset used in this study contains 8439 instances, and 88% of them have missed at least

one vital sign recording. To test the performance of the missing data imputation, we extracted

PLOS ONE Missing data imputation and classification with uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0237724 September 21, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0237724


all the instances (i.e. patients) with complete statistical features from the original data, and

deliberately set some items as missing under the missing at random assumption [9]. The

incomplete datasets were generated following three steps: firstly, for each feature, a linear

regression model was fitted using the remaining features, and the quartiles of each fitted fea-

ture was calculated; secondly, different proportion of instances, i.e., 20% and 30%, were ran-

domly selected; lastly, within each selected instance, the feature value was set as missing if its

value was within the predetermined quartile range of its fitted value (e.g. between 2nd and 3rd

quartile). GPLVM with a squared exponential kernel function was trained using complete

instances and tested the imputation performance on the generated incomplete dataset.

To provide some insights into the GPLVM-based imputation results, the imputation for a

patient with six missing values: BUN, Creatinine, DSP, FIO, Glucose, and HR is demonstrated

in Fig 1. In Fig 1(A) the vertical dark solid lines mark the true measurements while the hori-

zonal dashed lines represent the imputed means. When the intersection between these two

lines lies on the black dashed line, the mean estimate matches well with the true value. As seen

in Fig 1(A), five missing values were well imputed with the mean estimates except for Cr. The

true values and the imputed means are also shown in Fig 1(B). The advantage of GPLVM

based imputation is that it can provide the variance along with the mean estimate, which is dis-

played as the probability density function in Fig 1(A) and the confidence interval of the impu-

tation (CI, bounds within 2-fold standard deviation) in Fig 1(B). For Cr, the true value is away

from the estimated mean, but it is still within imputation bounds.

To quantify the imputation accuracy, we normalized all variables to a common scale of zero

mean and unit standard deviation. The two metrics, i.e. MAE and the proportion of the true

values captured by the imputation bound, were used to evaluate the imputation accuracy.

Since the incomplete dataset is generated randomly, experiments were repeated for 50 times,

and the box plots of MAEs for different percentages of instances that have missing values are

shown in Fig 2(A). As seen, the GPLVM can impute all missing values at an average MAE of

0.11 and 0.12 for 20% and 30%. In addition, when the proportion of missing values increases,

the variance of MAE increases. In addition, we also looked at how many true values are within

two standard deviation of the mean estimates, i.e., (πij+2σij). As seen in Fig 2(B), about 97% of

the true values are within two standard deviation of the mean estimates. In other words, 97%

Fig 1. Imputed results of a single instance.

https://doi.org/10.1371/journal.pone.0237724.g001

PLOS ONE Missing data imputation and classification with uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0237724 September 21, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0237724.g001
https://doi.org/10.1371/journal.pone.0237724


of the estimated confidence bounds contain the true values of missing data. The metric is

important because when the true values of missing data are within the confidence bounds,

they will be accounted in the cSVM, thus the classification will be more robust to the uncer-

tainty introduced by missing data imputation.

Model performance

Since missing values are considered as random variables in the GPLVM imputation, tradi-

tional ML methods, such as SVM, cannot take such variables as inputs. To make full use of the

information, a new classifier, cSVM, was trained for readmission prediction. Since the data is

highly unbalanced, patients with no-readmission were down-sampled to obtain an even train-

ing data, i.e., the ratio between the two classes is 1:1. Considering the nonlinearity of the data,

the radial basis function (RBF) kernel was used to train the classifier. We investigated four

parameters to optimize the performance of cSVM. These parameters include box constraint C,

kernel scale σ, number of pre-sampled datasets p, and penalty coefficient λ. Specifically, σ was

set as the optimal value that provides the best performance for SVM. In addition, we found

that the accuracy of cSVM is not significantly sensitive to the sample size p. We recommend

choosing a sample size large than 30. However, p should be determined case-by-case based on

the number of features that involve uncertainty. In our study, we used p = 200. Further, λ is set

to be 1 and the box constraint is set to be 10000.

To benchmark the results of the proposed cSVM model, we trained different classifiers of

LR, Naïve Bayes (NB), traditional SVM, and a modified NB (mNB) which can deal with input

uncertainty [30]. The receiver operating characteristic (ROC) curves of different classifiers are

plotted in Fig 3. The left figure shows the ROC curves and their 95% bootstrap confidence

bounds, and the right figure shows the average ROC curve. As seen in the figure, cSVM shows

a better ROC as compared to the other four classifiers and the area under curve (AUC) of

cSVM is the largest. cSVM has a 7% improvement on AUC as compared to the traditional

SVM, which demonstrates that the introduced penalty term could improve the classification

Fig 2. Imputation performance. (a) Mean absolute error (MAE) of the imputation when 20% and 30% of the instances contain missing values, and (b) proportion of

true values that were contained in the imputation confidence bounds when 20% and 30% of the instances have missing values.

https://doi.org/10.1371/journal.pone.0237724.g002
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performance. Further, the mean True Positive Rates (TPRs) with respect to different False Pos-

itive Rates (FPRs) for each classifier were provided in Table 2, which also reveals that cSVM

could consistently achieve better results compared with other classifiers. In addition to the

AUC, some targeted operating points are also useful in clinical applications [3], for example

application of high-sensitivity (TPR) can rule out the disease, whereas high-specificity (1-FPR)

can rule in the disease [31]. Thus, the operating points with sensitivity and specificity fixed at

0.85 and 0.85 were adopted to evaluate the performance of different classifiers [32, 33], and

results are given in Table 3. From the table, we can find that, compared with LR, NB, mNB and

SVM, cSVM can improve the performance by 18%, 61%, 57% and 27% at operating point of

high-sensitivity and by 22%, 63%, 35%, 6% at the operating point of high-specificity. All the

classifiers are trained with the complete dataset after the GPLVM-based missing data imputa-

tion. The LR, NB and SVM models used the mean estimates of the imputed data.

Further, to investigate the performance of the combination of GPLVM-based imputation

and the cSVM classifier, we replaced the GPLVM with other imputation techniques, and then

performed classification using LR, NB and SVM models. Two different imputation methods

were used to impute the missing values, which were LOCF and mean imputation. The AUCs

of different combinations are given in Table 4. As shown in the table, all three classifiers (LR,

NB, and SVM) achieve better AUCs with GPLVM imputation than the LOCF and the mean

imputation. This reveals that the GPLVM-based imputation outperforms the traditional

Fig 3. AUC of different classifiers.

https://doi.org/10.1371/journal.pone.0237724.g003

Table 2. TPR with respect to different FPR.

FPR

Classifier

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.180 0.355 0.460 0.590 0.665 0.760 0.855 0.910 0.960

NB 0.135 0.250 0.375 0.535 0.640 0.725 0.800 0.865 0.940

mNB 0.182 0.303 0.414 0.505 0.601 0.707 0.803 0.869 0.934

SVM 0.215 0.381 0.500 0.595 0.665 0.754 0.835 0.915 0.965

cSVM 0.249 0.410 0.570 0.695 0.765 0.835 0.885 0.920 0.970

https://doi.org/10.1371/journal.pone.0237724.t002
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LOCF and mean imputation thus benefiting the classification for readmission prediction. The

comparison study suggests that the proposed analytical framework improves the readmission

prediction performance as compared with traditional methods.

Discussion

The wide adoption of EHR system provides a great opportunity to mine the large database of

patients and analyze patient traits, cause of disease, treatment effects, risks and mortalities.

However, missing data is prevalent in EHR system, which poses a great challenge on data anal-

ysis to support clinical decision-making. This study developed a new analytical framework to

address the missing data challenge and facilitate a robust prediction of HF readmission using

EHR data. Specifically, GPLVM was introduced to impute the missing values in EHR dataset.

The intuition of using this technique is that physiological measurements are indicators of

patient’s condition; and there should be inherent correlations among features of an individual

patient and across the patient population. Since GPLVM employs the versality of GP in repre-

senting a complex functional relationship between inputs and outputs, the optimized latent

variables can provide better representation of the features, which in turn facilitate accurate

missing data imputation. In addition, GPLVM can provide both the mean estimates of the

missing values as well as their variances that quantify the uncertainty associated with the mean

estimate. Quantifying the uncertainty of the imputation is useful, as this information can be

propagated into the subsequent analysis to ensure a robust prediction. To propagate the uncer-

tainties (i.e., imputation errors) in the imputed dataset into modeling, a new classifier, cSVM,

was developed based on SVM. Different sets of features were randomly sampled from the dis-

tributions of missing values, and SVM models were trained using these random samples. A

penalization term was introduced to constrain the deviation of the optimal classifier from the

group of pre-trained support vectors; this will ensure the optimal classifier is not biased due to

the imputation uncertainty. The resulting classifier can retain the discriminative features in

the dataset while minimizing the influence of data uncertainty, and thereby improving the

classification performance.

The proposed missing data imputation and classification framework was tested and vali-

dated using a clinical database to predict 30-day readmission of HF patients discharged from

ICUs. The model can provide a better AUC as compared to other popular classifiers in the

Table 3. Performance comparison at operating points corresponding to high sensitivity and specificity.

Classifier Specificity (95% CI) Sensitivity (95% CI)

LR 0.311 (0.280, 0.330) 0.275 (0.223, 0.364)

NB 0.229 (0.208, 0.248) 0.205 (0.149, 0.258)

mNB 0.234 (0.213, 0.261) 0.248 (0.187, 0.321)

SVM 0.290 (0.263, 0.313) 0.315 (0.267, 0.377)

cSVM 0.368 (0.338, 0.398) 0.335 (0.288, 0.399)

https://doi.org/10.1371/journal.pone.0237724.t003

Table 4. AUC using different combinations of classifiers and imputation methods.

Classifier LOCF imputation Mean imputation GPLVM imputation

LR 0.604 (0.549, 0.635) 0.606 (0.547, 0.644) 0.626 (0.591, 0.663)

NB 0.590 (0.550, 0.630) 0.562 (0.513, 0.592) 0.580 (0.542, 0.625)

SVM 0.613 (0.581, 0.675) 0.610 (0.574, 0.672) 0.633 (0.585, 0.664)

mNB / / 0.585 (0.544, 0.624)

cSVM / / 0.680 (0.651, 0.722)

https://doi.org/10.1371/journal.pone.0237724.t004
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literature. The improvement in the prediction accuracy is awarded by the better missing data

imputation performance of GPLVM and the robust classification of the cSVM. However, fur-

ther improvement is limited by the efficiency of the predictors (features). Existing studies on

30-day readmission prediction for HF patients have AUCs up to 0.62 [16–18, 34]. A recent

study using structured data, such as age and race, and unstructured data, such as discharge

notes, to predict the readmission of Congestive Heart Failure patients can achieve an AUC of

0.97 [35], but the model has a high level of complexity and needs extensive validation. The gen-

erally low accuracy of readmission prediction can be due to the limited predictive potentials of

the features. Future research should be done to discover significant risk factors and biomarkers

that can improve HF readmission prediction.

The GPLVM imputation technique learns the correlations among features to estimate miss-

ing values. It can provide better estimations for datasets that have correlated attributes. How-

ever, for datasets where all attributes are independent, the accuracy of GPLVM needs further

validation. In addition, this study calculated the statistical features, i.e., mean and standard

deviation, from the vital sign data, and then imputed the missing features using GPLVM. The

two statistical features may not be able to exploit all useful information in the time series data,

thus the advantage of GPLVM was not fully explored. Future work can be done to model the

time series to extract more informative features for readmission prediction.

Conclusions

Mining EHR datasets to facilitate clinical decision-making has become a popular topic. How-

ever, EHR often contains a large amount of missing values, which greatly challenges existing

techniques. This study designed a new analytical framework based on the GPLVM and cSVM.

The former can effectively impute the missing values in EHR and provide both the mean and

variance estimates, while the latter provides better diagnostic capability by incorporating the

input uncertainties during model development. The proposed method was tested using the

MIMIC-III database and showed better performance for HF readmission prediction compared

with some existing models.
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