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a b s t r a c t 

In this manuscript, we solve a model of the novel coronavirus (COVID-19) epidemic by using Corrector- 

predictor scheme. For the considered system exemplifying the model of COVID-19, the solution is es- 

tablished within the frame of the new generalized Caputo type fractional derivative. The existence and 

uniqueness analysis of the given initial value problem are established by the help of some important 

fixed point theorems like Schauder’s second and Weissinger’s theorems. Arzela-Ascoli theorem and prop- 

erty of equicontinuity are also used to prove the existence of unique solution. A new analysis with the 

considered epidemic COVID-19 model is effectuated. Obtained results are described using figures which 

show the behaviour of the classes of projected model. The results show that the used scheme is highly 

emphatic and easy to implementation for the system of non-linear equations. The present study can con- 

firm the applicability of the new generalized Caputo type fractional operator to mathematical epidemiol- 

ogy or real-world problems. The stability analysis of the projected scheme is given by the help of some 

important lemma or results. 
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. Introduction 

In December 2019, a new atypical pneumonia caused by a virus 

alled Corona Virus (COVID-19) was appeared in China in the city 

f Wuhan [16,20,28] . From the date of its origin it exponentially 

rowths in the mankind and infected more than 12,925,331 with 

69,097 deaths and 7,529,774 recoveries on July 12 throughout the 

lobe. In particularly, United States is one of the most infected 

ountry of this virus with 3,381,274 cases, 137,577 deaths and 

,501,866 recoveries. Brazil and India are also in this list where the 

OVID-19 cases are increasing rapidly day by day. The symptoms 

f this virus include coughing, breathing difficulties, and fever. It 

s well known that the transmission of the virus from human to 

uman but still there are some specific cases where this virus has 

een recognised in animals also. There are a lot of research arti- 

les have been come in literature to analyse the effects of COVID- 

9 via mathematical modelling. Particularly, analysis of unreported 

ases of COVID-19 in Wuhan, China has been done in Khosh- 
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aw et al. [9] , Liu et al. [14] and restudied by using q-homotopy

nalysis transform method in Gao et al. [5] , predictions of coro- 

avirus peaks in Japan given in Kuniya [11] and one of the brief 

tudy of details of interaction among the bats and unknown hosts, 

hen among the peoples and the infections reservoir via fractional 

erivatives observed in Khan and Atangana [8] . Abdo et al. [1] , dis-

ussed a comprehensive model of the novel coronavirus (COVID- 

9) under Mittag-Leffler derivative. Lots of coronavirus updates can 

e found from [26] . A study entitled ‘Mathematical model of infec- 

ion kinetics and its analysis for COVID-19, SARS and MERS’ given 

n Liang [13] and ‘Short-term predictions and prevention strate- 

ies for COVID-2019: A model based study’ can be recognised in 

adim et al. [17] . Non-linear systems are useful to study the com- 

lex dynamics. An investigation to the issue of fuzzy adaptive con- 

rol for a class of strict-feedback nonlinear systems with non-affine 

onlinear faults is discussed in Sun et al. [24] . A study on event-

riggered robust fuzzy adaptive finite-time control of nonlinear sys- 

ems with prescribed performance is discussed in Sun et al. [23] . 

n [25] , a novel finite-time control for non-strict feedback saturated 

on-linear systems with tracking error constraint is investigated. 

Integer order calculus is a well known theory for researchers 

nd its limitations too, specifically while analysing the phenom- 
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1  
na associated to diffusion, hereditary properties, long-range wave, 

istory-based phenomena and others. The theory of fractional cal- 

ulus is more then 300 years old and nowadays this is a important 

henomena to fulfil the requirements in the study of real world 

roblems. There are so many fractional derivatives have been in- 

roduced in the literature of fractional calculus in which Caputo, 

aputo–Fabrizio and Atangana–Baleanu are the most commonly 

sed derivatives in the various fields. In the present study we are 

nalysing the results by the help of a newly proposed derivative 

alled generalized Caputo derivatives which has the property sim- 

lar to Caputo derivative [18] . There are a lot of research studies 

ave been done by the help of fractional order derivatives and cur- 

ently mathematical epidemiology is one of the town of fractional 

erivatives. Several non- integer order derivative models, where 

on-locality plays a very important role, in different fields, includ- 

ng engineering, physics, signal and image processing, mechanics 

nd dynamical systems, biology, control theory and environmen- 

al sciences, have been introduced [6,10,15,19,21,22,27] . So many 

hysical problems have been mobilised by the help of the Caputo 

ractional derivative in fractional calculus applications because Ca- 

uto derivative is suitable for initial value problems (IVPs) and 

as many characteristics similar to integer order derivatives. An 

tudy on overall behaviour of Maxwell mechanical model by the 

ombined Caputo fractional derivative is presented in Feng et al. 

4] . The nature of the generalised Caputo type fractional derivative 

lso has the properties same as Caputo derivative. The predictor- 

orrector (P–C) scheme is one of the most efficient, stable and ac- 

urate scheme to solve the fractional initial value problem. In the 

urrent study we are using the modified P–C scheme to solve the 

rojected model. The adaptive P–C algorithm in the sense of gen- 

ralised Caputo sense uses a non uniform grid which is different 

rom Caputo derivative P–C scheme. The generalized fractional in- 

egral operator is greatly influenced by the value of the parameters 

and ρ , thus it gives a valuable tool to control and build mathe- 

atical models in fractional calculus applications. As compare to 

he other fractional derivatives like Caputo, Caputo–Fabrizio and 

tangana–Baleanu, new generalised Caputo type fractional deriva- 

ive has the extra features. Along with the fractional order param- 

ter α, there is a one more parameter ρ which is very useful in 

he graphical simulations with respect to the true data. We can 

bserve more varieties of graphs by the change of in the param- 

ter value ρ . The structure of the real data of COVID-19 for dif- 

erent countries is not uniform with respect to time. So to study 

he nature of the classes of COVID-19 models more accurately by 

rdinary derivatives is difficult and in that situation the fractional 

erivatives are nice tools to study these data much clearly. 

The aim of this paper is to find the solution of a COVID-19 

odel studied by Khoshnaw et al. [9] by the help of a new gen-

ralized Caputo fractional derivative with corrector- predictor algo- 

ithm. The main contribution of this paper is to study the nature 

f the given classes of model at different fractional order values 

ith the uses of extra parameter ρ . The paper is formulated as 

ollows. In Section 2 , we recall some important results about gen- 

ralised fractional derivatives in the literature of fractional calcu- 

us. Section 3 is devoted for the description of the ODE model fol- 

owing by the a fractional order model. Existence and uniqueness 

nalysis of the problem are performed in Section 4 . Solution of the 

rojected model following stability analysis is done in Section 5 . 

imulation results are performed in Section 6 . A conclusion com- 

letes the paper. 

. Preliminaries 

Here, we remind some basic definitions and results about well 

nown fractional derivatives and for new generalized Caputo-type 

ractional derivative. 
2 
efinition 1. Podlubny [21] The Caputo non- integer order deriva- 

ive of g ∈ C k −1 
is presented as 

 

α
t g ( t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d k g ( t ) 

dt k 
, α = k ∈ N 

1 

�(k − α) 

∫ t 

0 
( t − ϑ ) 

k −α−1 
g (k ) ( ϑ ) dϑ , k − 1 < α

< k k ∈ N . 

(1) 

efinition 2 (Caputo and Fabrizio [3] ) . For g ∈ H 

1 ( c, d ) and 0 ≤ η ≤
 , c ∈ (−∞ , ζ ) the Caputo–Fabrizio (CF) fractional derivative(FD) of 

rder η is defined by 

F 
 

D 

η
ζ

g(ζ ) = 

M(η) 

1 − η

∫ ζ

c 

dg( γ ) 

dγ
exp [ −ξ ( ζ − γ )] dγ , (2) 

here ξ = 

η
1 −η and normalization function M ( η) is such that 

(0) = M(1) = 1 . 

efinition 3 (Atangana and Baleanu [2] ) . For a function f ∈ H 

1 ( c , d ),

here d > c and 0 ≤ γ ≤ 1, the fractional Atangana–Baleanu (AB) 

erivative (in Caputo sense) is expressed as follows: 

BC 
 

D 

γ
ζ ( f ( ζ ) ) = 

B [ γ ] 

1 − γ

∫ ζ

c 

f 
′ 
( η) E γ

[
γ

( ζ − η) 
γ

γ − 1 

]
dη. (3) 

efinition 4 (Katugampola [7] ) . The generalized Riemann-type 

ractional derivative operator, R D 

α,ρ
a + , of order α > 0 is expressed 

s: 

 

R D 

α,ρ
a + f )(ζ ) = 

ρα−n +1 

�(n − α) 

(
ζ 1 −ρ d 

dζ

)n 

∫ ζ

a 

s ρ−1 (ζ ρ − s ρ ) 
n −α−1 

f (s ) ds , ζ > a, (4) 

here ρ > 0 , a ≥ 0 , and n − 1 < α ≤ n. 

efinition 5 (Katugampola [7] ) . The generalized Caputo-type frac- 

ional derivative operator, C D 

α,ρ
a + , of order α > 0 is expressed as: 

 

C D 

α,ρ
a + f )(ζ ) = 

(
R D 

α,ρ
a + 

[ 
f (x ) −

n −1 ∑ 

m =0 

f (m ) (a ) 

m ! 
(x − a ) 

m 

] )
(ζ ) , ζ > a,

(5) 

here ρ > 0 , a ≥ 0 , and n = � α	 . 
efinition 6 (Odibat and Baleanu [18] ) . The new generalized 

aputo-type fractional derivative operator, D 

α,ρ
a + , of order α > 0 is 

xpressed as: 

 

C D 

α,ρ
a + f )(ζ ) = 

ρα−n +1 

�(n − α) 

∫ ζ

a 

s ρ−1 (ζ ρ − s ρ ) 
n −α−1 

(
s 1 −ρ d 

ds 

)n 

f (s ) ds , ζ > a, (6) 

here ρ > 0 , a ≥ 0 , and n − 1 < α ≤ n. 

emma 1 (Li and Zeng [12] ) . If 0 < β < 1 and m is an integer

nonnegative), then there exists the positive constants C β ,1 and C β ,2 

nly dependent on β , s.t 

m + 1) β − m 

β ≤ C β, 1 (m + 1) β−1 , 

nd 

m + 2) β+1 − 2(m + 1) β+1 + m 

β+1 ≤ C β, 2 (m + 1) β−1 . 

emma 2 (Li and Zeng [12] ) . Let us assume d p,n = (n − p) β−1 (p =
 , 2 , . . . , n − 1) & d p,n = 0 for p ≥ n, β , M, h, T > 0, mh ≤ T & m is
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 positive integer. Let 
∑ p= n 

p= m 

d p,n | e p | = 0 for k > n ≥ 1. If 

 e n | ≤ Mh 

β
n −1 ∑ 

p=1 

d p,n | e p | + | η0 | , n = 1 , 2 , . . . , m, 

hen 

 e m 

| ≤ C| η0 | , m = 1 , 2 , . . . 

here C is a positive constant independent of m & h. 

. Model description 

In this portion, we express the model studied by Khoshnaw 

t al. [9] to introduce the COVID-19 epidemic in China. The consid- 

red model consists of five compartments with individuals of sus- 

eptible S ( t ), asymptomatic infectious I ( t ), unreported symptomatic 

nfectious U ( t ), reported symptomatic infectious W ( t ) and recov- 

red R ( t ). The author presented and derived the projected model 

n the sense of ordinary derivative as: 

 

 

 

 

 

 

 

 

 

S 
′ 
(t) = −ζ S(t )[ I(t ) + U(t)] , 

I 
′ 
(t) = ζ S(t )[ I(t ) + U(t)] − (δ + η) I(t) , 

U 

′ 
(t) = ηI(t) − (φ + β1 ) U(t) , 

W 

′ 
(t) = δI(t) − (φ + β2 ) W, 

R 

′ 
(t) = φW (t) + φU(t) . 

(7) 

ow the generalisation of the projected system (7) in the new gen- 

ralized Caputo-type fractional derivative as follows: 
 

 

 

 

 

 

 

 

 

C D 

α,ρ
t S(t) = −ζ S(t)[ I(t) + U(t)] , 

C D 

α,ρ
t I(t) = ζ S(t )[ I(t ) + U(t)] − (δ + η) I(t) , 

C D 

α,ρ
t U(t) = ηI(t) − (φ + β1 ) U(t) , 

C D 

α,ρ
t W (t) = δI(t) − (φ + β2 ) W, 

C D 

α,ρ
t R (t) = φW (t) + φU(t) . 

(8) 

et us write the system (8) in the compact form for easy descrip- 

ion as follows: 
 

 

 

 

 

 

 

 

 

C D 

α,ρ
t S(t) = G 1 (t, S) , 

C D 

α,ρ
t I(t) = G 2 (t, I) , 

C D 

α,ρ
t U(t) = G 3 (t, U) , 

C D 

α,ρ
t W (t) = G 4 (t, W ) 

C D 

α,ρ
t R (t) = G 5 (t, R ) 

(9) 

ith the initial conditions S(0) = m 1 , I(0) = m 2 , U(0) =
 3 , W (0) = m 4 , and R (0) = m 5 . 

. Existence and uniqueness analysis 

In this section, we give the existence of unique solution of the 

rojected model by the help of the consequences of fixed point 

heory. we show the analysis for S ( t ) and for others it is similar.

et us consider the initial value problem (IVP) 

 D 

α,ρ
t S(t) = G 1 (t, S) , (10a) 

(0) = S 0 . (10b) 

The corresponding Volterra integral equation of above IVP is 

(t) = S(0) + 

ρ1 −α

�(α) 

∫ t 

0 

ξρ−1 (t ρ − ξρ ) 
α−1 

G 1 (ξ , S) dξ, (11) 

ow, for the existence of solution we are proceeding with follow- 

ng results. 

heorem 1. (Existence). Let 0 < α ≤ 1 , S 0 ∈ R , K > 0 and T ∗ > 0.

efine G := { (t, S) : t ∈ [0 , T ∗] , | S − S | ≤ K} and let the function
0 

3 
 1 : G → R be continuous. Further, define M := sup (t,S) ∈ G | G 1 (t, S) |
nd 

 = 

⎧ ⎨ 

⎩ 

T ∗, i f M = 0 , 

min { T ∗, 
(

K�(α+1) ρα

M 

) 1 
α } otherwise . 

(12) 

hen, there exists a function S ∈ C [0, T ] that solves the IVP (10a) and

10b) . 

emma 3 (Katugampola [7] ) . Assume the hypotheses of Theorem 1 . 

he function S ∈ C [0, T ] is a solution of the IVP (10a) and (10b) if and

nly if, it is a solution of the nonlinear Volterra integral Eq. (11) . 

roof. (Proof of Theorem 1 ) If M = 0 then G 1 (t, S) = 0 ∀ (t, S) ∈ G.

n this case it is clear by direct substitution that the function S : 

0 , T ] → R with S(t) = S 0 is a solution of the IVP. Hence a solution

xists in this case. 

For M � = 0, we apply Lemma (3) and prove that IVP (10a) and

10b) is equivalent to the Volterra integral Eq. (11) . Define the set 

 := { S ∈ C[0 , T ] : ‖ S − S 0 ‖ ∞ 

≤ K} . It is clear that U is a closed and

onvex subset of the Banach space of all continuous functions on 

0, T ], equipped with the Chebyshev norm. Hence, U is a Banach 

pace. U is non empty, since S 0 ∈ U . We define the operator E on

his set U by 

ES)(t) := S(0) + 

ρ1 −α

�(α) 

∫ t 

0 

ξρ−1 (t ρ − ξρ ) 
α−1 

G 1 (ξ , S) dξ . (13) 

Then, the Volterra Eq. (11) can be written as S = ES and thus, 

e have to show that E has a fixed point. This is done by the

chauders Second Fixed Point Theorem. We first show that U is 

losed, that is, ES ∈ U for S ∈ U . We begin by noting that, for

 ≤ t 1 ≤ t 2 ≤ T , 

 (ES)(t 1 ) − (ES)(t 2 ) | = 

ρ1 −α

�(α) 
| 
∫ t 1 

0 

ξρ−1 (t 
ρ
1 

− ξρ ) 
α−1 

G 1 (ξ , S) dξ

−
∫ t 2 

0 

ξρ−1 (t 
ρ
2 

− ξρ ) 
α−1 

G 1 (ξ , S) dξ | 

= 

ρ1 −α

�(α) 
| 
∫ t 1 

0 

[ (t 
ρ
1 

− ξρ ) 
α−1 − (t 

ρ
2 

− ξρ ) 
α−1 

] ξρ−1 G 1 (ξ , S) dξ

+ 

∫ t 2 

t 1 

ξρ−1 (t 
ρ
2 

− ξρ ) 
α−1 

G 1 (ξ , S) dξ | 

≤ Mρ1 −α

�(α) 

(∫ t 1 

0 

| (t 
ρ
1 

− ξρ ) 
α−1 − (t 

ρ
2 

− ξρ ) 
α−1 | ξρ−1 dξ

+ 

∫ t 2 

t 1 

ξρ−1 (t 
ρ
2 

− ξρ ) 
α−1 

dξ
)

he second integral in the right-hand side of the last inequality 

as the value 1 
ρα (t 

ρ
2 

− ξρ ) 
α
. For the first integral, consider the two 

ases α < 1 , α = 1 , separately. In the case α = 1 , the integral has

he value zero. For α < 1, we have (t 
ρ
1 

− ξρ ) 
α−1 ≥ (t 

ρ
2 

− ξρ ) 
α−1 

. 

hus, ∫ t 1 

0 

| (t 
ρ
1 

− ξρ ) 
α−1 − (t 

ρ
2 

− ξρ ) 
α−1 | ξρ−1 d 

= 

∫ t 1 

0 

[ (t 
ρ
1 

− ξρ ) 
α−1 − (t 

ρ
2 

− ξρ ) 
α−1 

] ξρ−1 dξ

 

1 

ρα
(t 

ρ
1 
α − t 

ρ
2 
α) + 

1 

ρα
(t 

ρ
2 

− t 
ρ
1 
) 
α

1 

ρα
(t 

ρ
2 

− t 
ρ
1 
) 
α
. 

ombining these results, we have 

 (ES)(t 1 ) − (ES)(t 2 ) | ≤ 2 M 

ρα�(α + 1) 
(t 

ρ
2 

− t 
ρ
1 
) 
α

(14) 
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f α ≤ 1. In either case, the expression on the right-hand side of 

14) converges to 0 as t 2 → t 1 , which proves that ES is a continu-

us function, since S (0) itself is continuous. It is also true that for 

 ∈ U and t ∈ [0, T ], 

| (ES)(t) − S(0) | = 

ρ1 −α

�(α) 
| ∫ t 0 ξ

ρ−1 (t ρ − ξρ ) 
α−1 

G 1 (ξ , S) dξ | 
≤ M 

ρα�(α+1) 
t ρα ≤ M 

ρα�(α+1) 
T ρα

≤ M 

ρα�(α+1) 
. 
ραK�(α+1) 

M 

= K. 

(15) 

y the definition of T . Thus, we have ES ∈ U if S ∈ U , i.e. A maps

he set U into itself. We only left to show that E ( U ) := { Eu : u ∈ U }

s relatively compact. This is done by the use of Arzel‘a-Ascoli The- 

rem. To show that the set E ( U ) is uniformly bounded, let z ∈ E ( U ).

e see that, for all t ∈ [0, T ], 

 z(t) | = | (ES)(t) | 

‖ S(0) ‖ ∞ 

+ 

ρ1 −α

�(α) 

∫ t 

0 

ξρ−1 (t ρ − ξρ ) 
α−1 | G 1 (ξ , S) | dξ

‖ S(0) ‖ ∞ 

+ 

1 

ρα�(α + 1) 
MT α ≤ ‖ S(0) ‖ ∞ 

+ K, 

hich is the required boundedness property. The equicontinuity 

roperty can be derived easily from (14) above. For 0 ≤ t 1 ≤ t 2 ≤ T ,

e proved in the case α ≤ 1 that 

 (ES)(t 1 − t 2 ) | ≤ 2 M 

ρα�(α + 1) 
(t 

ρ
2 

− t 
ρ
1 
) 
α
. 

fter using the Triangle Inequality and the Mean Value Theorem, 

e have that 

 (ES)(t 1 ) − (ES)(t 2 ) | ≤ 2 M 

ρα�(α + 1) 
(t 

ρ
2 

− t 
ρ
1 
) 
α
. 

 

2 M 

�(α + 1) 
(t 2 − t 1 ) 

αγ α(ρ−1) 

or some γ ∈ [ t 1 , t 2 ] ⊂ [0, T ]. Thus, if | t 2 − t 1 | < δ, we have 

 (ES)(t 1 ) − (ES)(t 2 ) | ≤ M 

′ 
δ + 

2 M 

�(α + 1) 
δαT α(ρ−1) . 

or some M 

′ 
> 0 , since S (0) is uniformly continuous in the closed

nterval [0, T ]. Noting that the expression on the right-hand side is 

ndependent of S , t 1 and t 2 , we see that the set E ( U ) equicontinous.

n either case the Arzel‘a-Ascoli Theorem yields that E ( U ) is rela-

ively compact, and hence Schauders second Fixed Point Theorem 

sserts that E has a fixed point. This fixed point is the required 

olution of the IVP (10a) and (10b) . This completes the proof. �

Now we discuss the uniqueness results. Firstly we notice the 

ollowing property of the operator E (defined in (13) ). Thus, let S 1 ,

 2 ∈ C [0, T ] ⊂ [0, t ] and suppose there exists a constant L > 0 inde-

endent of t, S 1 and S 2 such that | G 1 (t, S 1 ) − G 2 (t, S 2 ) | ≤ L | S 1 − S 2 |
or all t ∈ [0, T ]. Then we have 

 E S 1 − E S 2 ‖ L ∞ [0 ,t] = 

ρ1 −α

�(α) 
sup 

0 ≤ω≤t 

| 
∫ ω 

0 

(ω 

ρ − ξρ ) 
α−1 ξρ−1 

[ G 1 (ξ , S 1 (ξ )) − G 1 (ξ , S 2 (ξ ))] dξ | 

Lρ1 −α

�(α) 
sup 

0 ≤ω≤t 

| 
∫ ω 

0 

(ω 

ρ − ξρ ) 
α−1 ξρ−1 | S 1 (ξ ) − S 2 (ξ ) | dξ | 

Lρ1 −α

�(α) 
‖ S 1 − S 2 ‖ L ∞ [0 ,t] sup 

0 ≤ω≤t 

| 
∫ ω 

0 

(ω 

ρ − ξρ ) 
α−1 ξρ−1 dξ | 

Lρ1 −α

�(α) 
‖ S 1 − S 2 ‖ L ∞ [0 ,t] sup 

0 ≤ω≤t 

| 1 

ρα
(ω 

ρ − ξρ ) 
α
∣∣∣ω 

0 
| 
4 
 

L 

(
t ρ

ρ

)α

�(1 + α) 
‖ S 1 − S 2 ‖ L ∞ [0 ,t] . 

Next, we have the following result; 

heorem 2 (Katugampola [7] ) . Let E and U be defined as in Theo-

em 1 . Also let j ∈ N 0 , t ∈ [0 , T ] and S, ̃  S ∈ U. Suppose G 1 satisfies the

ipschitz condition with the Lipschitz constant L. Then 

 E j S − E j ˜ S ‖ L ∞ [0 ,t] ≤
L j 

(
t ρ

ρ

)α j 

�(1 + α j) 
‖ S − ˜ S ‖ L ∞ [0 ,t] . (16) 

heorem 3. (Uniqueness). Let S(0) ∈ R , K > 0 and T ∗ > 0 . Also let

 < α ≤ 1 and m = � α	 . Define the set G as in Theorem 1 and let the

unction G 1 : G → R be continuous and satisfies a Lipschitz condition 

ith respect to the second variable, i.e. 

 G 1 (t, S 1 ) − G 1 (t, S 2 ) | ≤ L | S 1 − S 2 | 
or some constant L > 0 independent of t, S 1 , and S 2 . Then, there exists

 unique solution S ∈ C [0, T ] for the IVP (10a) and (10b) . 

roof. According to Theorem 1 , the IVP (10a) and (10b) has a so-

ution. In order to prove the uniqueness, we adopt Theorem 2 . 

n particular, we use the operator E as defined in (13) and recall 

hat it maps the nonempty, convex and closed set U = { S ∈ C[0 , T ] :

 S − S 0 ‖ ∞ 

≤ K} to itself. We apply Weissingers Fixed Point The- 

rem to prove that E has a unique fixed point. Let j ∈ N 0 , t ∈
0 , T ] and S 1 , S 2 ∈ U. Then, using (16) and taking the Chebyshev

orms on the interval [0, T ], we have 

 E j S − E j ˜ S ‖ ∞ 

≤
L j 

(
t ρ

ρ

)α j 

�(1 + α j) 
‖ S − ˜ S ‖ ∞ 

. 

et ω j = L j (T ρ/ρ) α j 
/ �(1 + α j) . In order to apply the theorem, we

nly need to show that the series 
∞ ∑ 

j=0 

ω j converges. It is clear from 

oticing that ω j is simply the power series representation of the 

ittag-Leffler function E ∗α(L (T ρ/ρ) α) hence the series converges. 

his completes the proof. �

. Solution of the projected model using predictor- corrector 

lgorithm 

In order to construct the predictor-corrector method for the IVP 

9) , we will follow the same procedure as in Odibat and Baleanu 

18] with some modifications, and then, we will study the stabil- 

ty of this method. For this purpose, we start from the equivalent 

olterra integral equation of first equation of the system (9) , which 

rovides 

(t) = S(0) + 

ρ1 −α

�(α) 

∫ t 

0 

ξρ−1 (t ρ − ξρ ) 
α−1 

G 1 (ξ , S) dξ, (17) 

he first step of our algorithm, under the assumption that the 

unction G 1 to be such that a unique solution exists on some in- 

erval [0, T ], consists of dividing the interval [0, T ] into N unequal

ubintervals { [ t k , t k +1 ] , k = 0 , 1 , . . . , N − 1 } using the mesh points

t 0 = 0 , 

t k +1 = (t 
ρ
k 

+ h ) 
1 /ρ

, k = 0 , 1 , . . . , N − 1 , 
(18) 

here h = 

T ρ

N . Now, we are going to generate the approxima- 

ions S k , k = 0 , 1 , . . . , N, to solve numerically the IVP (9) . The basic

tep, assuming that we have already evaluated the approximations 
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S  
 j ≈ S(t j )( j = 1 , 2 , . . . , k ) , is that we want to get the approximation

 k +1 ≈ S(t k +1 ) by means of the integral equation 

(t k +1 ) = S(0) + 

ρ1 −α

�(α) 

∫ t k +1 

0 

ξρ−1 (t 
ρ
k +1 

− ξρ ) 
α−1 

G 1 (ξ , S) dξ, (19) 

aking the substitution z = ξρ, we get 

(t k +1 ) = S(0) + 

ρ−α

�(α) 

∫ t 
ρ
k +1 

0 

(t 
ρ
k +1 

− z) 
α−1 

G 1 (z 1 /ρ, S(z 1 /ρ )) dz. 

(20) 

hat is 

(t k +1 ) = S(0) + 

ρ−α

�(α) 

k ∑ 

j=0 

∫ t 
ρ
k +1 

t 
ρ
j 

(t 
ρ
k +1 

− z) 
α−1 

G 1 (z 1 /ρ, S(z 1 /ρ )) dz. 

(21) 

ext, if we use the trapezoidal quadrature rule with respect to the 

eight function (t 
ρ
k +1 

− z) 
α−1 

to approximate the integrals appear 

n the right-hand side of Eq. (21) , replacing the function G 1 ( z 
1/ ρ ,

 ( z 1/ ρ )) by its piecewise linear interpolant with nodes chosen at 

he t 
ρ
j 

( j = 0 , 1 , . . . , k + 1) , then we obtain 

 t 
ρ
k +1 

t 
ρ
j 

(t 
ρ
k +1 

− z) 
α−1 

G 1 (z 1 /ρ, S(z 1 /ρ )) dz ≈ h 

α

α(α + 1) 
 (
(k − j) 

α+1 − (k − j − α) (k − j + 1) 
α
)

G 1 (t j , S(t j )) 

 

(
(k − j + 1) 

α+1 − (k − j + α + 1) (k − j) α
)

G 1 (t j+1 , S(t j+1 )) 
] 
. 

(22) 

hus, substituting the above approximations in to Eq. (21) , we ob- 

ain the corrector formula for S(t k +1 ) , k = 0 , 1 , . . . , N − 1 , 

(t k +1 ) ≈ S(0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 1 (t j , S(t j )) 

+ 

ρ−αh 

α

�(α + 2) 
G 1 (t k +1 , S(t k +1 )) , (23) 

here 

 j,k +1 = 

{ 

k α+1 − (k − α) (k + 1) 
α

i f j = 0 , 

(k − j + 2) 
α+1 + (k − j) 

α+1 − 2 (k − j + 1) 
α+1 

i f 1 ≤ j ≤ k 

(24) 

he last step of our algorithm is to replace the quantity S(t k +1 ) 

hown on the right hand side of the formula (23) with the predic- 

or value S P (t k +1 ) that can be obtained by applying the one-step 

dams–Bashforth method to the integral Eq. (20) . In this case, by 

eplacing the function G 1 ( z 
1/ ρ , S ( z 1/ ρ )) by the quantity G 1 ( t j , S ( t j ))

t each integral in Eq. (21) , we get 

 

P (t k +1 ) ≈ S(0) + 

ρ−α

�(α) 

k ∑ 

j=0 

∫ t 
ρ
j+1 

t 
ρ
j 

(t 
ρ
k +1 

− z) 
α−1 

G 1 (t j , S(t j )) dz 

 S(0) + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

[ (k + 1 − j) 
α − (k − j) 

α
] G 1 (t j , S(t j )) . 

(25) 

herefore, our adaptive P–C algorithm, for evaluating the approxi- 

ation S k +1 ≈ S(t k +1 ) , is completely described by the formula 

 k +1 ≈ S(0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 1 (t j , S j ) 

+ 

ρ−αh 

α

�(α + 2) 
G 1 (t k +1 , S 

P 
k +1 ) , (26) 
5 
here S j ≈ S(t j ) , j = 0 , 1 , . . . , k, and the predicted value S P 
k +1 

≈
 

P (t k +1 ) can be determined as described in Eq. (25) with the 

eights a j,k +1 being defined according to (24) . 

Similarly we can find the solution of the rest of the equations 

f system (9) . 

So the solution of the proposed COVID-19 system (8) can be 

ritten as: 

 k +1 ≈ S(0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 1 (t j , S j ) 

+ 

ρ−αh 

α

�(α + 2) 
G 1 (t k +1 , S 

P 
k +1 ) , 

 k +1 ≈ I(0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 2 (t j , I j ) 

+ 

ρ−αh 

α

�(α + 2) 
G 2 (t k +1 , I 

P 
k +1 ) , 

 k +1 ≈ U(0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 3 (t j , U j ) 

+ 

ρ−αh 

α

�(α + 2) 
G 3 (t k +1 , U 

P 
k +1 ) , 

 k +1 ≈ W (0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 4 (t j , W j ) 

+ 

ρ−αh 

α

�(α + 2) 
G 4 (t k +1 , W 

P 
k +1 ) , 

 k +1 ≈ R (0) + 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 G 5 (t j , R j ) 

+ 

ρ−αh 

α

�(α + 2) 
G 5 (t k +1 , R 

P 
k +1 ) , 

(27) 

here 

 

P (t k +1 ) ≈ S(0) + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

[ (k + 1 − j) 
α

−(k − j) 
α

] G 1 (t j , S(t j )) , 

 

P (t k +1 ) ≈ I(0) + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

[ (k + 1 − j) 
α

−(k − j) 
α

] G 2 (t j , I(t j )) , 

 

P (t k +1 ) ≈ U(0) + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

[ (k + 1 − j) 
α

−(k − j) 
α

] G 3 (t j , U(t j )) , 

 

P (t k +1 ) ≈ W (0) + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

[ (k + 1 − j) 
α

−(k − j) 
α

] G 4 (t j , W (t j )) , 

 

P (t k +1 ) ≈ R (0) + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

[ (k + 1 − j) 
α

−(k − j) 
α

] G 5 (t j , R (t j )) . 

(28) 

.1. Stability analysis 

heorem 4. Assume that G 1 ( t, S ) in (9) satisfies the Lipschitz condi-

ion and S j ( j = 1 , . . . , k + 1) are the solutions of predictor-corrector

ethod (27) and (28) . Then, the numerical method (27) and (28) is 

onditionally stable. 

roof. Let ˜ S 0 , ˜ S j ( j = 0 , . . . , k + 1) and 

˜ S P 
k +1 

(k = 0 , . . . , N − 1) be

erturbations of S 0 , S j and S P 
k +1 

, respectively. Then, the following 

erturbation equations are obtained by using Eqs. (27) and (28) 

˜ 
 

P 
k +1 

= 

˜ S 0 + 

ρ−αh 

α

�(α + 1) 

k ∑ 

j=0 

b j,k +1 (G 1 (t j , S j + 

˜ S j ) − G 1 (t j , S j )) , (29)
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here b j,k +1 = [ (k + 1 − j) α − (k − j) α] 

˜ 
 k +1 = 

˜ S 0 + 

ρ−αh 

α

�(α + 2) 
(G 1 (t k +1 , S 

P 
k +1 + 

˜ S P 
k +1 

) − G 1 (t k +1 , S 
P 
k +1 )) 

+ 

ρ−αh 

α

�(α + 2) 

k ∑ 

j=0 

a j,k +1 (G 1 (t j , S j + 

˜ S j ) − G 1 (t j , S j )) , (30) 

sing the Lipschitz condition, we obtain 

 

˜ S k +1 | ≤ ζ0 + 

ρ−αh 

αm 1 

�(α + 2) 

(
| ˜ S P 

k +1 
| + 

k ∑ 

j=1 

a j,k +1 | ̃  S j | 
)
, (31) 
Fig. 1. α = 1 (solid line), α = 0 . 95 (dashed line), α = 0 . 85 

6 
here ζ0 = max 0 ≤k ≤N {| ̃  S 0 | + 

ρ−αh αm 1 a k, 0 

�(α+2) 
| ̃  S 0 |} . Also, from Eq. (3.18) 

n Li and Zeng [12] we derive 

 

˜ S P 
k +1 

| ≤ η0 + 

ρ−αh 

αm 1 

�(α + 1) 

k ∑ 

j=1 

b j,k +1 | ̃  S j | , (32) 

here η0 = max 0 ≤k ≤N {| ̃  S 0 | + 

ρ−αh αm 1 b k, 0 

�(α+1) 
| ̃  S 0 |} . Substituting | ˜ S P 

k +1 
| 

rom Eq. (32) into Eq. (31) results 

 

˜ S k +1 | ≤ γ0 + 

ρ−αh 

αm 1 

�(α + 2) 

(
ρ−αh 

αm 1 

�(α + 1) 

k ∑ 

j=1 

b j,k +1 | ̃  S j | + 

k ∑ 

j=1 

a j,k +1 | ̃  S j | 
)
, 

(33) 
(dot-dashed line), α = 0 . 75 (dotted line) for ρ = 1 . 2 . 
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Fig. 2. α = 1 (solid line), α = 0 . 95 (dashed line), α = 0 . 85 (dot-dashed line), α = 0 . 75 (dotted line) for ρ = 1 . 2 . 

Fig. 3. for α = 0 . 85 , δ = 0 . 1142 (solid), δ = 0 . 26 (dashed) and δ = 0 . 32 (dot-dashed). 

7 
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Fig. 4. for α = 0 . 85 , η = 0 . 0285 (solid), η = 0 . 15 (dashed) and η = 0 . 6 (dot-dashed). 

Table 1 

Parameter values cited from [9,14] . 

Parameter Description Values 

ζ Transmission rate between susceptible individuals and 4 . 44 × 10 −8 

asymptomatic infected individuals 

δ Transition rate between asymptomatic infected and 0.1142 

reported symptomatic infected 

η Transition rate between asymptomatic infected and 0.0285 

unreported symptomatic infected 

φ Average time symptomatic infectious have symptoms 1/7 

β1 The unreported symptomatic death rate 1 . 5 × 10 −4 

β2 The reported symptomatic death rate 1 . 7826 × 10 −5 

≤

≤
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d  
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i

r  

a  
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w
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f

o

T

a

γ0 + 

ρ−αh 

αm 1 

�(α + 2) 

k ∑ 

j=1 

(
ρ−αh 

αm 1 

�(α + 1) 
b j,k +1 + a j,k +1 

)
| ̃  S j | , (34) 

γ0 + 

ρ−αh 

αm 1 C α, 2 

�(α + 2) 

k ∑ 

j=1 

(k + 1 − j) α−1 | ̃  S j | , (35) 

here γ0 = max { ζ0 + 

ρ−αh αm 1 a k +1 ,k +1 

�(α+2) 
η0 } . C α,2 is a positive constant 

nly depends on α ( Lemma 1 ) and h is assumed to be small

nough. Applying Lemma 2 concludes | ˜ S k +1 | ≤ Cγ0 . which com- 

letes the proof. �

. Simulation results 

In this paper we consider the fractional model of COVID-19 epi- 

emic cited from [9] . To perform numerical simulation, we use pa- 

ameter value from [9,14] , which are summarized in Table 1 . 

We use the following initial conditions S(0) = 11 . 081 ×
0 6 , I(0) = 3 . 62 , U(0) = 0 . 2 , W (0) = 4 . 13 , R (0) = 0 [9,14] .
8 
ig. 1 exemplifies the behaviour of achieved results by pro- 

ected solution procedure for S ( t ), I ( t ), U ( t ), W ( t ) and R ( t ) for

ifferent values of fractional order α at a fixed value of ρ = 1 . 2 .

n the collection of Fig. 2 we analyse the relationship between 

he asymptomatic infected people and (a) susceptible individuals, 

b) reported symptomatic infected individuals, (c) unreported 

ymptomatic infected individuals, (d) recovered individuals for 

ifferent fractional order α by setting ρ = 1 . 2 . In Figs. 3 and 4 we

nalyse the effects of transition rate δ and η on (a) asymptomatic 

nfected people, (b) unreported symptomatic infected people, (c) 

eported symptomatic infected people used δ = 0 . 1142 , 0 . 26 , 0 . 32

nd η = 0 . 0285 , 0 . 15 , 0 . 6 at α = 0 . 85 respectively. All graphs are

omputed using mathematica software. From the cited figures 

e can observe that the given model exceedingly depends on 

he order and gestures more degree of flexibility. Moreover, the 

ractional method gives more interesting results than the integer- 

rder model and permit to better examine the obtained results. 

he graphical simulations between α = 0 . 85 to α = 1 are more 

ccurate to compare with the real data. The given classes are 
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howing acceptable nature between these values. The parameter 

plays a very important role in the calculations. More varieties 

n the graphical calculations can be observed for future models at 

he different values of ρ . 

. Conclusions 

In the last three decades, so many fatal diseases have manifest 

heir entity in different countries all over the world. In this pa- 

er we studied the time-fractional COVID-19 model with the help 

f corrector-predictor method in the sense of new generalised Ca- 

uto fractional derivative. We presented the stability analysis of 

he proposed numerical scheme by the help of some important 

emmas. The existence and uniqueness analysis of the system is 

lso presented by the help of some important fixed point theo- 

ems. Our results are helpful to make an idea of COVID-19 cases in 

uhan, China. The nature of the achieved solution has been speci- 

ed with the help of plots and which show the effect and essence 

eneralizing the integer order system into a non- integer order sys- 

em with the specific theory of fractional calculus. The projected 

cheme is strong and highly credible in finding the solution to 

ractional models of physical, biological and medical importance. 

n this method, we use a non-uniform grid for numerical simu- 

ations and parameter ρ gives an advantages to study the model 

ore accurately compare to the real data. Which are the main fea- 

ures of this scheme. For the solution of the epidemic model, we 

tated various graphical results at the different values of α. The 

resent study exemplifies the applications of the projected scheme 

nd considered fractional operator while analysing real word prob- 

ems and understanding as well as predicting the corresponding 

onsequences. 
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