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SUMMARY

Liver cancers are highly heterogeneous with poor prognosis and drug response. A better 

understanding between genetic alterations and drug responses would facilitate precision treatment 

for liver cancers. To characterize the landscape of pharmacogenomic interactions in liver cancers, 

we developed a protocol to establish human liver cancer cell models at a success rate around 50% 

and generated Liver Cancer Model Repository (LIMORE) with 81 cell models. LIMORE 

represented genomic and transcriptomic heterogeneity of primary cancers. Interrogation of the 

pharmacogenomic landscape of LIMORE discovered unexplored gene-drug associations, 

including synthetic lethalities to prevalent alterations in liver cancers. Moreover, predictive 

biomarker candidates were suggested for the selection of sorafenib-responding patients. LIMORE 

provides a rich resource facilitating drug discovery in liver cancers.

Graphical Abstract
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Qiu et al. establish Liver Cancer Model Repository, combining public and newly-generated cell 

lines, that represents genomic and transcriptomic heterogeneity of Eastern Asian hepatocellular 

carcinomas and use it to reveal gene-drug associations and potential biomarkers for selecting 

sorafenib-responding patients.
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INTRODUCTION

Primary liver cancers, of which hepatocellular carcinoma (HCC) is the major type, are the 

second leading cause of cancer-related mortality worldwide (Zucman-Rossi et al., 2015). 

Limited progress has been made in systemic treatment for liver cancers over the past decade. 

Sorafenib is the first FDA approved drug for advanced HCC management, and regorafenib 

and lenvatinib are lately approved. However, due to their low drug response rates, additional 

improvement is required for their application in clinics (Bruix et al., 2017; Kudo et al., 2018; 

Llovet et al., 2008). Variable response rates may be partially attributed to different etiologies 

among countries. For example, most HCCs in China and southeastern Asia are caused by 

hepatitis B virus (HBV), whereas nonalcoholic-associated steatosis appears to be one of the 

main causes of HCCs in Western countries (Yang and Roberts, 2010). Large-scale genome 

sequencing also revealed large heterogeneity in liver cancers, which represents another 

major challenge in precision treatment of liver cancers (Zucman-Rossi et al., 2015). The use 
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of predictive biomarkers has been proposed to select responsive patients (Holohan et al., 

2013), which apparently requires systematic knowledge of pharmacogenomic landscape in 

liver cancers.

To materialize the precision treatment, it depends on properly modeling cancer heterogeneity 

using experimental systems. Recent years witnessed an increasing interest in using pan-

cancer platforms of widely used cell lines to model cancers and study pharmacogenomics, 

including Cancer Cell Line Encyclopedia (CCLE), Cancer Therapeutics Response Portal 

(CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC) (Barretina et al., 2012; Basu 

et al., 2013; Garnett et al., 2012; Iorio et al., 2016). Because mutational profiles and drug 

responses differ greatly across cancer types (Garnett and McDermott, 2014), several studies 

in breast, lung and melanoma cancers have also demonstrated the necessarity to use tissue-

specific models (Lin et al., 2008; McMillan et al., 2018; Neve et al., 2006; Sos et al., 2009). 

However, most of these lines were generated decades ago, lacking proper control or clinical 

annotations. To better model cancer heterogeneity, great effforts have been made to create in 
vitro models for various types of cancers (Boj et al., 2015; Broutier et al., 2017; Gao et al., 

2014; Lee et al., 2018; Pauli et al., 2017; Sachs et al., 2018; van de Wetering et al., 2015; 

Vlachogiannis et al., 2018), leading to international collaborations including Human Cancer 

Model Initiative (HCMI) and Cancer Cell Line Factory (CCLF). Most of these reports 

focused on generating cancer cell models as a first step, yet had analyzed limited 

pharmacogenomics (Boehm and Golub, 2015; Williams and McDermott, 2017). To bridge 

the precision medicine and cancer heterogeneity, it is important to perform a full spectrum of 

pharmacogenomic characterization of patient-derived cancer models at scale.

For the liver cancer, there are only around 30 cell lines available to the community, which 

are insufficient to capture the genomic and transcriptomic diversity of this disease 

(Goodspeed et al., 2016). Moreover, available HCC cell lines underrepresent HBV-

associated HCCs, which accounts for more than half of HCCs worldwide. On the top of that, 

it has been recently reported that many of the widely used HCC cell lines were actually 

contaminated by HeLa cells (Rebouissou et al., 2017). Therefore, to systematically analyze 

genetic heterogeneity and drug responses, it is imperative to develop a large panel of patient-

derived liver cancer cell models and, accordingly, discover gene-drug associations.

RESULTS

Establishment of Liver Cancer Model Repository (LIMORE)

We built LIMORE by collecting 31 public liver cancer cell lines and generating patient-

derived models (Figures S1A and S1B). To generate liver cancer cell models, we optimized 

the primary culture protocol by adding the ROCK inhibitor Y-27632 and the TGF-β 
inhibitor A83-01, based on a previous study (Qiu et al., 2016). Y-27632 facilitates 

attachment of primary cells in vitro whereas A83-01 inhibits mesenchymal cells and 

supports epithelia cell growth (Katsuda et al., 2017; Liu et al., 2012b). The addition of 

Y-27632 and A83-01 promoted the success rate of primary culture to 46%, likely allowing 

long-term survival and proliferation of tumor epithelial cells (Figures S1C and S1D). These 

models were named as Chinese Liver Cancer (CLC) cell models. In total, 50 models were 

generated from 49 Chinese HCCs (CLC19 and CLC20 were subclones from the same HCC) 
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with detailed clinicopathological information (Table S1). Among them, 8 were from 

Edmondson Grade II HCCs and 40 from Edmondson Grade III. These models were enriched 

in HBV infection (47/50) with other etiologies underrepresented. No significant correlation 

was found between clinicopathological parameters and the success of model establishment 

(Table S1). In line with previous findings (Qiu et al., 2016), comparison of cell models and 

primary cancers from 9 patients suggested that these generated models retained mutational 

and transcriptional landscapes of original primary cancers (Figures S1E–S1G).

LIMORE consisted of 81 authenticated liver cancer cell models, including 79 HCC models 

and 2 hepatoblastoma models (Table S1). Compared to CCLE and GDSC that collected 26 

and 16 liver cancer models, respectively, LIMORE increased the number by more than 3 

times (Figure 1A). LIMORE models represented specific epidemiological characteristics of 

primary liver cancers, such as the predominance of Chinese patients, the infection of HBV 

and HCV as the major etiologies, and the high incidence in the male and the aged (Figures 

1B and S1H–S1J). Notably, after transplantation into immune-deficient mice, LIMORE cell 

model-derived cancers showed comparable histopathological features of matched primary 

HCCs (Figure 1C).

LIMORE Retains Heterogeneity of Primary Liver Cancers

To characterize the extent to which LIMORE represented genomic and transcriptomic 

landscapes of primary liver cancers, we identified copy number alterations (CNAs), somatic 

mutations and HBV integrations in 81 models using whole genome sequencing (WGS) 

(Table S2). Expression profiles were also determined by RNA-Seq. Genetic data were 

collected from The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research 

Network. Electronic address and Cancer Genome Atlas Research, 2017) and other published 

cohorts to represent primary human liver cancers (Table S2).

Typical CNAs in primary liver cancers were identified by WGS in LIMORE models, 

including arm-level gains (1q, 8q) and losses (4q, 17p), homozygous deletions of CDKN2A 
and AXIN1 and focal amplifications containing FGF19 and CCND1. The overall copy 

number profile of LIMORE models is very similar to that of primary liver cancers (Figure 

1D). We further compared CNA profiles and exome somatic mutations between cell models 

and primary cancers from various types of human cancers. Notably, LIMORE showed the 

highest correlation with liver cancers (Figures S1K and S1L). Clustering of somatic 

mutations also showed that LIMORE models grouped closely with 80% of primary liver 

cancers (Figure S1M and Table S2). A total of 353 HBV integration breakpoints were 

detected in 60 of 66 HBV-positive models (Figure 1E and Table S2). Breakpoints in TERT, 

the most prevalent HBV integration site, occurred in 28.6% (16/60) of LIMORE models, a 

frequency comparable to that of primary liver cancers (Sung et al., 2012). Together, these 

data indicate that LIMORE models reflect the altered genomic landscape of primary liver 

cancers.

We next compared transcriptomes between LIMORE models and primary cancers. Principle 

component analysis showed that LIMORE models were grouped together with TCGA liver 

cancers (Figure 1F). Moreover, 90% of TCGA liver cancers showed expression profiles 

correlated with at least 1 LIMORE model (Pearson correlation r > 0.7), indicating that 
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LIMORE retained transcriptomic features of a portion of primary liver cancers. We further 

determined whether LIMORE retained transcriptome-related functional heterogeneity. 

Primary liver cancers were reported to be grouped into three subclasses associated with 

invasion capabilities (Hoshida et al., 2009). LIMORE models were classified to Hoshida S1 

(40%), S2 (30%), and S3 (30%) subclasses with slightly higher percentage of S1 (28%–32% 

in primary HCCs) and lower percentage of S3 (45%–57% in primary HCCs) (Figure S1N). 

Subclasses of LIMORE models showed good correlations with migration capabilities 

(Figures S1O and S1P), suggesting that LIMORE models retained some functional 

heterogeneity of primary liver cancers.

LIMORE Captures Oncogenic Alterations of Liver Cancers

We next characterized whether LIMORE captured major oncogenic alterations in primary 

liver cancers. Cancer genes were compiled from 6 published cohorts (Table S2). In total, 70 

genes with recurrent mutations and 2 genes with CNAs were identified as cancer functional 

genes (CFGs) of liver cancers (Table S3). 29 CFGs were specific to liver cancers when 

compared to 27 other types of cancers (Rubio-Perez et al., 2015), including ALB, RPS6KA3 
and HNF4A (Figure S2A). These unique alterations highlighted the necessity of liver 

cancer-specific models.

CFG alterations in primary liver cancers were captured in LIMORE models, including high-

frequency alterations in TP53, TERT and FGF19 and low-frequency alterations in HNF4A 
and NFE2L2 (Figure 2A and Table S3). The overall profiles of CFG alterations were 

comparable between LIMORE and primary liver cancers (Spearman r = 0.70, p = 7.2e-12, 

Figure 2B). 10 CFGs, including TP53 and CTNNB1, showed different mutation rates 

between LIMORE and primary liver cancers (Figure 2B). In total, 61 CFGs (85%) were 

covered by at least 1 model, and 37 CFGs (51%) were covered by at least 3 models (Figure 

S2B). By contrast, only 10 (14%) CFGs were covered by at least 3 liver cancer models in 

previous panels. LIMORE increased the coverage of prevalent CFGs, such as TERT HBV 

integration (16 vs 3 models) and CTNNB1 activating mutation (8 vs 3 models) and captured 

CFGs that were not covered by previous panels, including PIK3CA and RPS6KA3 (Figure 

S2C). For CFGs not retrieved by LIMORE, alteration frequencies were all less than 5% in 

primary cancers (Figure S2D).

Prevalent CFGs in primary liver cancers, such as TERT and Wnt signaling alterations, were 

observed in LIMORE. Common alterations of TERT in liver cancers were all identified in 

LIMORE (Figure S2E). In line with that seen in primary liver cancers (Totoki et al., 2014), 

TERT promoter mutations and HBV integrations were mutually exclusive in LIMORE. Wnt 

signaling genes (CTNNB1, AXIN1 and APC) were altered in a mutually exclusive manner 

in > 30% of LIMORE models and primary liver cancers (Figure S2F). Loss-of-function 

(LOF) alterations were enriched in AXIN1 (15/15) and APC (3/6), while 8 activating 

mutations were found in the 9 CTNNB1 alterations. MHCC-97H, harboring a heterozygous 

nonsense mutation at codon 500 of CTNNB1, showed no increase in the expression of β-

catenin target genes (Abitbol et al., 2018). Moreover, alterations in potential therapeutic 

targets, such as FGF19 and MET, were identified in LIMORE models (Figure S2G).
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Diversified Drug Responses in LIMORE Models

We next applied an in vitro drug screening in LIMORE (Figure S1A). In total, we compiled 

90 anti-cancer drugs, including 15 chemotherapeutic and 75 molecularly targeted drugs 

against 9 cellular functions (Figure 3A and Table S4). Most of these drugs were approved 

for clinical use (n=43) or in clinical trials (n=32). All the 81 LIMORE models were screened 

against this drug panel with 7 or 10 doses for each drug, generating >218,000 measurements 

of cell-drug interactions. Of the 871 screened plates, the average Z-prime as a control for 

robustness was 0.84, and in 99% of the plates the Z-prime was greater than 0.5, indicating 

that the screening assay was experimentally robust (Figures S3A and S3B). Half maximal 

inhibitory concentration (IC50), maximal effect level (Emax), and activity area (AA) were 

calculated to reflect drug responses among LIMORE models (Table S4), which showed good 

correlation with each other (Figure S3C). Analysis of biological replications in 22 randomly 

selected LIMORE models showed high reproducibility between experiments (Pearson r = 

0.91, p < 2.2e-16, Figure S3D). Moreover, a strong correlation of drug responses was 

observed when a panel of 18 drugs were tested in 6 estabilished models (> 20 passages) and 

paired early-passage cells (< 10 passages) (Figure S3E), which might reflect the retaination 

of genomic landscape in LIMORE models during the passage (Figures S1E–S1G) (Qiu et 

al., 2016). Notably, by comparing 52 drugs and 21 cell models that were also characterized 

by CTRP or GDSC, we found that response profiles of these drugs were comparable across 

studies (Figure S3F). We also analyzed the effect of Y-27632 and found that overall drug 

response profile was not changed by Y-27632 (Figure S3G and Table S4). No signaling 

pathways were enriched in Y-27632-cultured models (Figure S3H). Interestingly, the 

response to paclitaxel appeared to be slightly affected in some Y-27632-derived models 

(Figure S3I).

Drug response profiles varied among different LIMORE models (Figure 3B). The large 

variations in drug responses (coefficient of variation range from 0.25 to 3.14) together with 

the genetic heterogeneity enabled us to discover genetic markers for drug responses. 

Clustering analysis identified two clusters of LIMORE models (Figure 3B). Cluster R was 

generally more resistant to drugs than cluster S. Although DNA repair-associated genes were 

enriched in a subset of cluster S models, common sensitive mechanisms were not obvious 

for cluster S. Genes involved in drug detoxification and transportation were enriched in 

cluster R, which was in line with their resistant phenotype (Figure S3J). These data suggest 

that a significant portion of liver cancers appeared to be resistant to multiple drugs 

intrinsically, likely due to their high drug-turnover capability. When models were separated 

according to their status of HBV infection, we found that HBV-positive cell models tended 

to be less sensitive to doxorubicin and epirubicin but more sensitive to ibrutinib than HBV-

negative models (Figure S3K and Table S4).

Drugs with similar mechanism of action (MoA) showd correlated response profiles (Figures 

3C and S3L), suggesting the robustness of drug response data. We identified a panel of 26 

drugs showing strong inhibition effect with IC50 < 1 µM in at least 25% of LIMORE 

models. Among them, there were chemotherapeutic drugs, such as doxorubicin and 

topotecan, likely reflecting their general cytostatic effects. Interestingly, targeted drugs in 

clinical use for HCC treatment, including sorafenib, regorafenib and lenvatinib, were not in 
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the list, which might be correlated with their relatively low response rates in HCC patients. 

Nevertheless, we identified other targeted drugs with strong potencies in LIMORE models, 

including dasatinib and cobimetinib (Figure S3M). Despite the fact that the molecular basis 

of these drugs is not well understood in liver cancers, this dataset provides drug candidates 

and their repurposing for liver cancer treatment. Together, these data suggest that high-

throughput drug screening in LIMORE captures variable drug responses and provides an 

opportunity for pharmacogenomic analysis in liver cancers.

The Pharmacogenomic Analysis in LIMORE

To capture the diverse drug response patterns across LIMORE models, we defined the drug 

responding score (DRS), which was the normalized z-score of the most variable parameter 

from IC50, Emax and AA for each drug. To define the contributions of CFG and expression 

features, robust predictive features for drug responses were inferred from elastic net (EN) 

models with bootstrapping for 1,000 times (Barretina et al., 2012; Garnett et al., 2012). EN 

score threshold was set to 0.60, which means that the feature was selected in >60% of 

bootstrapping. A median of 54 mutation features (23 CFGs and 31 noncoding mutations) 

and 249 expression features were identified as predictive for each drug (Figures S4A and 

S4B and Table S5). Notably, predictive features included known gene-drug associations, 

such as associations of MRP1-Etoposide (Moitra et al., 2012) and SLC35F2-YM155 

(Winter et al., 2014) (Figure S4C).

Overall, we identified 1,508 significant interactions of CFG-drug pairs, among which 56 

pairs were associated with responses to approved liver cancer drugs like sorafenib, 

regorafenib and lenvatinib (Table S5). In total, 727 CFG-drug pairs were associated with 

drug resistance, while a cluster of 781 CFG-drug pairs predicted drug sensitivity (Figure 

4A). Intriguingly, we found that HBV integration in TERT promoter was associated with 

drug resistance, whereas TERT promoter mutations were sensitive to a large group of drugs 

(Figure 4A). Because similar result was obtained when HBV-positive models were 

specificically analyzed, this finding unlikely resulted from a general etiology driven by HBV 

infection. Collectively, LIMORE supplied a large set of CFG-drug interactions, which were 

readily retrievable from the dataset and could be further pursued as biomarkers.

The interaction between FGF/FGFR and anti-cancer drugs was ranked top in CFG-drug 

interaction list. FGFR inhibitors, including lenvatinib, BGJ398 and PD173074, showed 

selective sensitivity to amplifications of both FGFR (including FGFR1, 3 and 4 with copy 

number >=4) (Figure 4B) and FGF19 (Figure 4C) in liver cancer cells. These data suggested 

that FGF19 and FGFR amplification may serve as biomarkers for lenvatinib. In concordance 

with the role of FGF19 amplification in the MAPK pathway activation (Zucman-Rossi et al., 

2015), FGF19 amplification correlated with the sensitivity to MEK inhibitors (MEKi) 

cobimetinib and trametinib (Figure 4D). Notably, MEKi-induced cell death showed 

morphological change of large bubbles from membranes, a typical characteristic of 

pyroptosis (Figure S4D). Accordingly, the sensitivity to MEKi moderately correlated with 

high expression of GSDME, a key regulator of pyroptosis (Figure 4D). While FGF19 
amplification or GSDME overexpression alone predicted MEKi sensitivity, cell models with 

both FGF19 amplification and high GSDME expression were extremely sensitive to MEKi 

Qiu et al. Page 8

Cancer Cell. Author manuscript; available in PMC 2020 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figures 4D, 4E and S4E). Depletion of GSDME expression led to reduced MEKi sensitivity 

in FGF19-amplified models (Figures 4F and S4F). These data together indicated MEK 

inhibition as a selective vulnerability to liver cancers with FGF19 amplification and GSDME 
overexpression.

LIMORE Identifies Drugs Targeting Synthetic Lethal Interactions

Some CFGs, such as CTNNB1, were considered as undruggable, but could be exploited for 

therapies if proper synthetic lethal interactions were established (Naik et al., 2009). A cluster 

of drugs were found to preferentially eradicate LIMORE models with CTNNB1 activating 

mutations (Figure 5A). CTNNB1 activating mutations correlated with sensitivity to HDAC 

inhibitors, panobinostat, vorinostat and belinostat (Figures 5B and 5C, Cohen’s d 0.69, 0.67 

and 0.43, respectively), which was in line with the finding that HDACs were required for the 

β-catenin signaling (Billin et al., 2000). HDACs may function redundantly in mediating drug 

sensitivity, because knockdown of individual HDACs did not apparently impair cell 

proliferation in β-catenin activated models (Figure S5A). Expression of a constitutively 

active form of β-catenin in β-catenin wide-type models increased their sensitivity to HDAC 

inhibitors (Figures 5D and S5B). When transplanted in vivo, panobinostat inhibited the 

growth of CTNNB1 mutant models but not CTNNB1 wild-type models (Figures 5E and 

S5C). Moreover, over-expression of activated β-catenin endowed panobinostat sensitivity to 

CTNNB1 wild-type JHH7 in vivo (Figures 5F, S5D and S5E). These data suggested HDAC 

inhibition as a potential strategy to target HCCs with CTNNB1 activating mutations.

MYC is another undruggable oncogenic protein in HCCs. Recent evidence suggested that 

the Wnt pathway crosstalks with MYC-mediated transcription in hepatoblastoma and 

colorectal cancer (Cairo et al., 2008; Sansom et al., 2007). Indeed, by analyzing published 

ChIP-Seq data of TCF4/7, key transcription factors of Wnt signalling, and MYC, we found 

that Wnt targets were significantly co-bound by both TCF4/7 and MYC (Figure S5F). Using 

a transcription factor-based analysis, we found that MYC-regulated transcription program 

correlated with sensitivity to HDAC inhibitors (Figures 5G and S5G, Cohen’s d 0.91, 0.60 

and 1.18, respectively). The increased sensitivity to HDAC inhibitors was validated by MYC 
overexpression (Figures 5H and S5H). When the prediction power for HDAC inhibitors was 

assessed, MYC-regulated transcription program appeared to be comparable to or slightly 

stronger than CTNNB1 mutations (75%–81.8% vs 62.5%–75%). These data together 

showed that pharmacogenomics landscape in LIMORE could be interrogated to find 

potential synthetic lethal strategies for undruggable oncogenes in liver cancers.

Prediction Models and Biomarker Candidates for Sorafenib

Sorafenib-related CFGs and gene expressions were of great interest, as sorafenib is the 

widely-used standard of care for HCCs. 51 mutation features (18 CFGs and 33 noncoding 

mutations) and 77 expression features were identified predictive for sorafenib (Table S5). 

Among top predictive CFG features for sorafenib resistance was KEAP1 (Figure 6A). 

Mutations of KEAP1 correlate with activation of NRF2 signaling and sorafenib resistance 

(Sun et al., 2016). Indeed, downstream targets of NRF2 were highly expressed in KEAP1-

mutated LIMORE models (Figure S6A). Moreover, NRF2 knockdown increased sensitivity 

of KEAP1-mutated models to sorafenib (Figures S6B and S6C), supporting the role of the 
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KEAP1/NRF2 pathway in sorafenib resistance. We also identified expression features for 

sorafenib sensitivity (Figure 6A). As an example, EZH2 expression was highly associated 

with sensitivity to sorafenib (Figure 6A). This was confirmed by the finding that EZH2 
knockdown increased resistance to sorafenib (Figures S6D and S6E). Pharmacologic 

inhibition of EZH2 by DZNep showed antagonistic effects with sorafenib in 33 of 46 

LIMORE models (CDI>1), further suggesting that EZH2 overexpression might synergize 

with sorafenib (Figures S6F and S6G). Collectively, these data unveiled the molecular 

features associated with sorafenib sensitivity.

We next explored whether the pharmacogenomic landscape could be translated into 

predictive models or biomarkers for sorafenib. Elastic net regression models were developed 

based on response-related mutation and expression features in LIMORE models (Figures 

S6H and S6I). Prediction performance was assessed by Spearman correlation between 

predicted and detected responses in LIMORE (Iorio et al., 2016). To evaluate the prediction 

model in vivo, we analyzed the sorafenib prediction model using an independent dataset of 

22 HCC PDXs with sorafenib treatment and found significant correlation between predicted 

and experimental responses (Figure S6J and Table S6).

We then searched biomarker candidates for potential clinic practice. DKK1 was of particular 

interest (Figure 6A), because it is involved in the Wnt signaling (Niida et al., 2004). We first 

characterized the prediction power of DKK1 in PDX models. The optimal cutoff to 

distinguish high and low DKK1 mRNA levels in PDXs was determined by ROC analysis 

(Figure S6K). Notably, PDXs with high DKK1 levels showed increased response rate to 

sorafenib (Figures 6B and 6C), suggesting that DKK1 expression might predict sorafenib 

response in vivo.

We then investigated whether DKK1 would be a possible biomarker to predict sorafenib 

response in patients. DKK1 is a secreted protein that can be measured in serum, we thus 

analyzed the correlation between patient’s serum DKK1 levels and their sorafenib response. 

Serum samples from 54 HCC patients either before or after sorafenib treatment were 

retrospectively collected, and DKK1 levels were measured (Table S6). Patients in the 

DKK1-high group had longer progression-free survival and overall survival (Figures 6D and 

6E). When only patients whose serum samples were collected before sorafenib treatment 

were analyze, similar trends were observed (Figures S6L and S6M). Given that high DKK1 

expression was associated with poor survival of HCC patients without sorafenib treatment 

(Tao et al., 2013; Tung et al., 2011), these data suggested that DKK1 might be a serum 

biomarker to select sorafenib-responding patients.

DISCUSSION

Liver cancer-specific pharmacogenomics analysis requires a large number of models. Yet 

liver cancer models are not prioritized in the international initiations HCMI or CCLF 

(Boehm and Golub, 2015; Williams and McDermott, 2017). Our study is in line with these 

efforts to generate representative cancer models and focuses specifically on liver cancer. 

Compared to 31 established cell lines, LIMORE models were characterized by well-

annotated clinicopathological information. By increasing the number of models, LIMORE 
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better captures the heterogeneity of primary liver cancers. Cancer organoids are recently 

developed as in vitro models. Compared to generating HCC orgnaoids (Broutier et al., 2017; 

Nuciforo et al., 2018), LIMORE provided a relatively higher efficiency (50% vs ~20%). It is 

also worth noting that 8 LIMORE models were established from Grade II HCCs, which 

were reported to fail to grow as organoids (Nuciforo et al., 2018). Organoids are superior in 

maintaining cancer tissue architecture, 2D-cultured cells nonetheless could form authentic 

cancer structures in vivo. Moreover, 2D-cultured cells are relatively easy to passage and 

expand in a large quantity, making LIMORE models amenable to large-scale 

pharmacogenomics analysis.

In this study, LIMORE models were developed from resected cancers, so that it was not 

possible to compare the exact in vivo response of these cancers with LIMORE models. In 

the future, to directly compare in vitro and in vivo drug responses, it would be necessary to 

generate models from biopsies or circulating liver cancer cells with annotated responses to 

drug treatment. Moreover, as most of LIMORE models were each established from one sub-

clone of the primary culture, it is important to generate multiple models from the same HCC 

to study intratumoral heterogeneity. Addition of ROCK inhibitor Y-27632 significantly 

increased the success rate of primary culture of liver cancer cells. It remains unclear whether 

ROCK inhibitor affected the establishment of cell models in regarding to their drug 

response. Our data suggested that it may have limited effect on drug responses of established 

cell models. In addition, because LIMORE models could be maintained independent of 

Y-27632 and A83-01, it is possible to use LIMORE models in medium free of these 

compounds.

Because of the improved protocol, LIMORE models increase the coverage of liver cancer 

CFGs. For CFGs not covered by LIMORE models currently, additional representative 

models could be generated. However, given the low percentage of these remaining CFGs in 

liver cancers, it would require a large amount of investment. Alternatively, it is possible to 

introduce CFGs of interest specificially into functional hepatocytes generated by 

reprogramming technologies (Gao et al., 2017). It is notable that compared to TCGA 

primary HCCs, frequencies of several CFGs, such as TP53 and CTNNB1, were significantly 

different in LIMORE. Although concurrent mutations of TP53 and CTNNB1 were at a 

frequency (6%) concordant with that in TCGA HCCs (6%), TP53 mutation rate was higher 

and CTNNB1 was lower in LIMORE. It is possible that LIMORE were mainly derived from 

HBV-positive HCCs, which showed high TP53 and low CTNNB1 mutation rates (Hsu et al., 

2000; Levrero and Zucman-Rossi, 2016; Qi et al., 2015). Moreover, TP53-mutated liver 

cancer cells may survive better during the culture (Caruso et al., 2019). For transcriptome, 

LIMORE models covered a subset of primary HCCs as shown by PCA analysis, and our 

pervious study has revealed that genes related to cell cycle and extracellular matrix were 

affected by in vitro culture (Qiu et al., 2016).

LIMORE provides sufficient cell models to evaluate drug potency and efficacy in 

consideration of intertumoral heterogeneity. It should be noted, however, that LIMORE 

models were mainly developed from HBV-positive HCCs and showed limited representation 

of other etiologies. Although HBV-positive cancer cells showed some specificity, such as the 

resistance to doxorubicin and epirubicin and the sensitivity to ibrutinib, a large part of drug 
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responses were found to be shared between HBV-positive and HBV-negative models. 

Interrogation of drug screening matrix revealed a list of drugs with better potency than 

currently approved therapies for HCCs. Some of these drugs, such as dasatinib and 

cobimetinib, have been approved in other cancer types. By additional validation, more drugs 

and biomarkers might be repurposed and tested for liver cancers, thus accelerating drug 

development for HCCs.

A goal of cell platform is offering prediction of therapeutic response from genetic profiles 

(Goodspeed et al., 2016). In GDSC, genomic features performed better than gene expression 

in tissue-specific predictions (Iorio et al., 2016), which was not observed in LIMORE. This 

might be explained by the fact that, unlike other cancers, druggable alterations are rare in 

liver cancers. On the other hand, target alterations may not always predict drug sensitivity, 

e.g. some LIMORE models with FGF alterations did not respond to FGFR inhibitors. These 

complexities highlight the importance of a large collection of liver cancer models. LIMORE 

showed the power of pharmacogenomic analysis using WGS, RNA-Seq and drug sensitivity 

from a large collection of models and identified genetic alterations and expression markers 

for the selection of drug-repsonsive patients.

We retrospectively analyzed DKK1 as a predictive biomarker candidate for sorafenib. It was 

reported that serum DKK1 could complement AFP in HCC diagnosis and were associated 

with poor diagnosis of HCCs (Shen et al., 2012). We found that the correlation between 

DKK1 and sorafenib response was consistently observed in vitro, in PDXs, and in patients. 

To further confirm the predictive value of serum DKK1, it is important to perform a 

perspective clinical study and to trace DKK1 levels during the sorafenib treatment. We wish 

to emphasize that in addition to above examples, other gene-drug interactions, especially 

those related to regorafenib, lenvatinib and cabozantinib, were readily retrievable from 

supplementary data or the online website (www.picb.ac.cn/limore/ or http://

limore.sibcb.ac.cn/).

In summary, our study defines a framework of using cell platform to improve drug response 

in human HCC. We built a knowledge base on gene-drug interactions in liver cancers, 

which, if properly validated, could help clinical design and accelerate precision medicine in 

liver cancers. For the community, LIMORE represents a rich resource to choose proper 

models and provide an opportunity to study pharmacogenomics of liver cancers. Recently, a 

study has characterized drug response using 34 public liver cancer cell lines (Caruso et al., 

2019). Together, these efforts help to understand pharmacogenomics of liver cancers. With 

other techniques, such as gene editing and organoid culture (Gao et al., 2014; Sachs and 

Clevers, 2014), LIMORE could be further improved to model liver cancer heterogeneity in 

genomics and drug response.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Lijian Hui (ljhui@sibcb.ac.cn). Liver cancer cell lines 

generated in this study are publicly available from the Center of Cell Resources, Shanghai 
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Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, and will be 

distributed under Material Transfer Agreement (MTA).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Models—A total of 31 publicly available liver cancer cell lines were collected from 

cell line banks or as gifts from other labs. We have also generated 50 HCC cell models from 

Chinese HCC tissues as in vitro HCC models, 9 of which have been reported previously 

(Qiu et al., 2016). Culture condition, authentication and resources were provided in Table 

S1. All the cell models are authenticated by Short Tandem Repeat (STR) analysis using 

primers from Powerplex 1.1 kit (Promega) and compared to Database of Cross-contaminated 

or Misidentified Cell Lines (Yu et al., 2015) to avoid cell line contamination.

Patient Samples—Surgically resected tumor samples were collected from Chinese 

patients diagnosed with hepatocellular carcinoma (HCC). The tissue resource hospitals 

included Eastern Hepatobilliary Surgery Hospital, The First Affiliated Hospital of Nanjing 

Medical University, Zhongshan Hospital and the Affiliated Drum Tower Hospital of Medical 

School of Nanjing University. The pathologies of the tissues were confirmed by the 

department of pathology in the hospitals. This study was approved by the ethical committees 

of Eastern Hepatobilliary Surgery Hospital, The First Affiliated Hospital of Nanjing Medical 

University, Zhongshan Hospital and the Affiliated Drum Tower Hospital of Medical School 

of Nanjing University, and the informed consent was obtained from the patients involved in 

this study. Methods were carried out in accordance with the approved guidelines. Fresh 

tumor tissues were subjected to preparation of single cell suspensions and subsequent 

primary culture. The study of DKK1 was approved by the ethical committee of Fudan 

University Shanghai Cancer Center, and the informed consent was obtained from the 

patients. Peripheral serum samples from 54 Chinese HCC patients with sorafenib treatment 

in Fudan University Shanghai Cancer Center were collected and stored at −80 °C until use.

Animals—4 weeks-old immuno-deficient athymic BALB/c-nu/nu male mice were 

purchased from SLAC Laboratory Animal, China. 5–6 weeks-old NOD.CB17-Prkdcscid/scid/

shjh (NOD/SCID) male mice were purchased from Shanghai Jihui Laboratory Animal Care, 

China. 6–8 weeks-old immuno-deficient athymic BALB/c-nu/nu female mice were 

purchased from Beijing Vital River Laboratory Animal Technology, China. The mouse 

experiments were approved by the Institutional Animal Care and Use Committees (IACUCs) 

of Shanghai Institute of Biochemistry and Cell Biology and Shanghai ChemPartner, 

respectively, and performed in accordance with the approved protocols.

METHOD DETAILS

Cell Model Generation—To generate cell models from clinical specimens, we have 

reported a protocol using primary culture medium (Qiu et al., 2016). The primary culture 

medium was RPMI1640 supplemented with 10% fetal bovine serum (FBS), 1 × ITS 

(Insulin, Transferrin, Selenium Solution) and 40 ng/mL EGF (epithelial growth factor). 

Currently, we have been generating liver cancer cell models using a modified protocol with 

the addition of ROCK (Rho-associated coiled-coil-containing kinase) inhibitor Y-27632 (10 

µM) in primary culture medium (termed as ROCKi medium) or both Y-27632 (10 µM) and 
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TGFβ inhibitor A83-01 (5 µM) in primary culture medium (termed as YA medium) (Table 

S1). The success rate of generating cancer cell models from Chinese HCCs is up to 50%. 

Briefly, the fresh tissues were surgically resected from Chinese HCC patients. Either 

apparently necrotic or normal tissues were discarded. The remainder was finely minced with 

scissors to small fragments (1 to 2 mm in diameter) and digested by 0.1% Collagenase Type 

IV in phosphate buffer saline (PBS) for 30–90 min at 37 °C. Cell suspensions were then 

filtered by 70 μm cell strainer and centrifuged consecutively at 1000 rpm, 800 rpm and 600 

rpm for 5 min. Cancer cells were re-suspended in ROCKi and YA medium and transferred to 

rat collagen I-coated dishes for culture in a humidified incubator at 37 °C with 5% CO 2. 

ROCKi or YA medium were changed every three days. Frequent microscopic examination of 

the cell culture is required to check the proliferation and expanding of epithelial cell clones. 

Picking out epithelial clones was used to purify epithelial cells and avoid fibroblast 

contamination. Once confluent, epithelial cells were digested by 0.05% trypsin-EDTA for 

passage at a ratio of 1:3 (1:5 after passage 10 for most of the cell models). Collagen coating 

was withdrawn after 10 passages. So far, we have generated 50 liver cancer lines from 49 

Chinese HCC patients. We usually kept one subclone from each cancer sample for long-term 

propagation, except that CLC19 and CLC20 were two subclones derived from the same 

HCC. Because the two clones show distinct morphologies and gene expression profiles of 

liver marker genes, we remained them in further analysis.

Collecting Public Liver Cancer Cell Lines—A total of 31 publicly available liver 

cancer cell lines were collected from cell line banks or as gifts from other labs. An 

estimation of around 30 liver cancer cell lines are publicly available in several cell line 

banks, which were reported to be derived from HCC, hepatoblastoma (HepG2 and Huh-6 

clone 5) and hepatocellular adenomas (SK-HEP-1). However, SK-HEP-1 was reported to be 

of endothelial origin, and was excluded in our analysis. We collected 27 authenticated liver 

cancer cell lines from cell line banks, including American Type Culture Collection (ATCC, 

www.atcc.org), Japanese Collection of Research Bioresources (JCRB, http://

cellbank.nibiohn.go.jp/english/), Korean Cell Line Bank (KCLB, https://cellbank.snu.ac.kr/

english/) and Cell Bank of Chinese Academy of Sciences in Shanghai 

(www.cellbank.org.cn). In addition, 2 cell lines, MHCC-97H and PLC8024, are gifts from 

Terence Kin Wah Lee (The University of Hong Kong). PLC/PRF/5 and PLC8024 share the 

same STR profile, but are included due to the different morphologies. MHCC-97H was 

established from Chinese HCC in Liver Cancer Institute, Fudan University. 2 cell lines, 

Mahlavu and Tong, are gifts from Yuh-Shan Jou (Institute of Biomedical Sciences, 

Academia Sinica). In addition, HLE and HLF are subclones derived from the same patient, 

but show different morphologies.

Transwell assay—50,000 cells were suspended in 200 µL serum-free medium and added 

to the upper compartment of Transwell insert (Corning, 12-well plate, pore size 8 µm). The 

lower compartment was added 600 µL culture medium with 10% FBS. After culture for 14 

hr, cells were fixed in ethanol for 10 min and stained by crystal violet. At least 5 fields were 

randomly selected and counted under light microscopy. Assays were performed in triplicate 

or twice.
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Subcutaneous xenograft—Two million cells were harvested in 150 µL PBS and 

injected into the hind legs of 3 immuno-deficient athymic mice (BALB/c-nu/nu, 4-week-old, 

male). Tumor formation was examined for up to four months or until the tumors reached a 

volume of 2000 mm3.

To assess the efficacy of the HDAC inhibitor panobinostat in vivo, NOD/SCID mice (5–6 

weeks old) were injected with 2–5 million tumor cells subcutaneously. Randomization into 2 

groups was performed when tumors reached a volume of 100–350 mm3. Panobinostat or 

vehicle was injected intraperitoneally at 15 mg/kg daily for 5 days and subsequently 2 days 

off for the first week. Treatments were continued every other day for another week due to 

the toxicity of panobinostat (Lachenmayer et al., 2012). Animals were euthanized and 

tumors were collected when reaching around 1,000 mm3 in volume or body weight loss > 

30%.

Whole Genome Sequencing—Genomic DNA was extracted using Qiagen DNeasy kit. 

All 81 LIMORE models have been subjected to whole genome sequencing. Whole-genome 

DNA from cell models was used to construct sequencing libraries and sequenced on the 

Illumina HiSeq X TEN platform with 2x150 bp paired-end reads. DNA sequencing was 

performed by WuXi NextCODE, Macrogene and Novogene. Raw sequencing reads were 

filtered to remove low-quality reads. The remaining reads were mapped to human reference 

genome (HG38) using BWA algorithm (Li and Durbin, 2009) with default parameters. 

Genome Analysis Toolkit (GATK) (DePristo et al., 2011) was applied to call variants from 

DNA sequencing data. The HaplotypeCaller in GATK was ran per sample to call variants 

and generate a corresponding gVCF file. Multiple-sample joint genotyping was performed 

on multiple gVCF files to obtain a combined VCF file. The called variants were scored 

using the recalibration model. Low-quality variants were removed. Functional effects of 

variants were annotated by ANNOVAR (Wang et al., 2010). Because most of existing liver 

cancer cell models are lacking paired normal tissues, we applied the commonly used 

pipeline to call putative somatic mutations in cancer cell model analysis (Iorio et al., 2016; 

Liu et al., 2012a; Mouradov et al., 2014). The variants were compared to the known 

germline variation databases, including dbSNP138, 1000 Genomes, ESP6500 and ExAC 

v0.3. We removed variations with frequencies higher than 0.1% in any of these databases, 

and variations which occurred in normal samples from our other sequencing projects. The 

variations would be retained if it was present in at least 10 cancer patients in COSMIC 

database. The remained variations were regarded as putative somatic mutations. Of note, 

lagre InDels have not been explored in this study due to limitations in sequencing and 

analytical methodology.

Control-FREEC (Boeva et al., 2011) was used to obtain copy number profiles as previously 

described (Qiu et al., 2016). Control-FREEC could calculate copy number (CN) profiles 

without paired normal. We used the default parameters with the genomic window size set to 

50k bp. Whole genome gene copy number alteration (CNA) profiles were obtained using 

GISTIC 2.0 (Mermel et al., 2011). The copy numbers of cancer functional genes (CFGs) 

were manually curated in Integrative Genomic Viewer (IGV) tool (Robinson et al., 2011). 

The visualization of CNA was done in IGV. CNA status were defined as below in specific 
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gene evaluation: Normal, CN=2; deletion, CN=1; homozygous deletion, CN=0; gain, CN=3 

or 4; amplification, CN>4.

HBV integration breakpoints were identified and annotated by Virus-Clip profiles as 

previously described (Ho et al., 2015; Qiu et al., 2016). Sequencing reads were aligned to 

the HBV genome. Then soft-clipped reads were extracted to identify the breakpoint 

positions. We merged any two adjacent breakpoints, whose locations on human genome are 

within 200 bp and on HBV genome are within 50 bp. The breakpoints supported by only one 

soft-clipped read were removed.

RNA Sequencing—Total RNA was extracted using Trizol (Invitrogen) according to the 

manufacturer’s instructions. All 81 cell models were subjected to RNA sequencing (RNA-

Seq). Single-end 100 bp read sequencing was performed on Illumina HiSeq 2000 sequencer 

for 60 cell models; the remaining 21 cell models were subjected to paired-end 150 bp 

sequencing on HiSeq 4500 sequencer or X ten sequencer respectively. One cell model was 

sequenced by different sequencers to confirm no obvious batch effect. Sequencing reads 

were mapped to HG38 genome by TopHat2 (Kim et al., 2013). Cufflinks algorithm (Trapnell 

et al., 2010) was used to calculate gene expression levels. The expression profiles were 

normalized by the “fragment per kilobase of exon per million fragments mapped” (FPKM) 

method and log2 transformed. Molecular classification of liver cancer cell models using 

RNA-Seq-derived gene expression data was performed using the gene signature and Nearest 

Template Prediction (NTP) algorithm from the report of this classification (Hoshida et al., 

2009). The NTP module is implemented in GenePattern (https://

genepattern.broadinstitute.org/). Gene Set Enrichment Analysis (GSEA) was performed on 

normalized RNA-Seq expression data using the Desktop Application (Subramanian et al., 

2005).

Comparison of Cell Lines and Patients—We have collected genetic data, including 

next generation sequencing and microarray analysis, from a total of 1,856 liver cancer 

patients published in recent years. A summary of these published cohorts is listed in Table 

S2. This large collection of liver cancer patients should guarantee the representation of 

heterogeneity in liver cancer patients to a large extent. Mutational profiles were downloaded 

from publications or database for 5 large HCC cohorts with 1,185 HCC patients, including 

those from Chinese (Kan et al., 2013), French (Schulze et al., 2015), Korea (Ahn et al., 

2014) and Japanese (Totoki et al., 2014) as well as TCGA (The Cancer Genome Atlas) liver 

cancers (Broad GDAC FIREHOSE, http://firebrowse.org/) (Cancer Genome Atlas Research 

Network. Electronic address and Cancer Genome Atlas Research, 2017). The synonymous 

mutations were excluded. CNA data of TCGA liver cancers were downloaded from 

FIREHOSE. To identify cancer functional genes (CFGs) in liver cancers, we have analyzed 

whole exome or genome sequencing data from 6 studies (Ahn et al., 2014; Fujimoto et al., 

2016; Kan et al., 2013; Rubio-Perez et al., 2015; Schulze et al., 2015; Totoki et al., 2014) 

(Table S2). These studies recruited HCCs from different populations, including Chinese, 

Japanese, Korea and Western countries. CFGs were identified as significantly mutated genes 

by MutSigCV (Lawrence et al., 2013) adjusting for background mutation rate with a 

threshold of FDR < 0.05. We also included 30 liver cancer driver genes reported in IntOGen 
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database (Rubio-Perez et al., 2015). All the identified driver genes were summarized to a 

final list of 72 cancer functional genes (CFGs) for liver cancer. The list here included nearly 

all the driver genes reported in other liver cancer sequencing studies. HBV integration data 

from two HCC cohorts were obtained from the publications (Sung et al., 2012; Totoki et al., 

2014). For transcriptome comparison, RNA-Seq data of TCGA liver cancers were 

downloaded from FIREHOSE. Microarray expression files for GSE9843 and GSE14520 

were downloaded from GEO, and the clinical information was obtained from the 

publications (Chiang et al., 2008; Roessler et al., 2012).

The similarities in whole genome CNAs and somatic coding mutations between cancer cell 

models and patients were investigated in 7 types of cancers, including hepatocellular 

carcinoma (LIHC), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), 

esophageal carcinoma (ESCA), lung adenocarcinoma (LUAD), ovarian serous 

cystadenocarcinoma (OV) and stomach adenocarcinoma (STAD). All of these primary 

cancers were characterized by TCGA. Processed files, including copy number segments and 

somatic mutation files, of these primary cancers were downloaded from FIREHOSE. For 

cancer cell models, the CNAs and somatic mutations were obtained from CCLE or GDSC, 

except for liver cancer cell models which were characterized by WGS/RNA-Seq in 

LIMORE. MutSig algorithm was used to identify significantly mutated genes in each dataset 

of primary cancers and cell models (Lawrence et al., 2013). Spearman correlations of 

mutation profiles between patients and cell models from different types of cancers were 

calculated to measure their similarities. GISTIC2.0 was used to identify significantly 

amplified or deleted regions in each dataset(Mermel et al., 2011) using default parameters. 

To compare CNA similarities between patients and cell models from different types of 

cancers, CNA regions were splitted into 1Mb windows, and Spearman correlation was used 

to evaluate the similarities of CNA frequencies. In the whole genome visualization of CNA 

frequencies between LIMORE and TCGA primary liver cancers, the default parameters 

were used in IGV.

High-throughput Drug Screening—The information of 90 screened drugs, including 

drug names, MoAs, clinical status and resources, is provided in Table S4. Regarding for the 

drug selection, drugs that are approved for liver cancer treatment or in clinical trials of liver 

cancers were prioritized. To cover different MoAs in cancer treatment, we retrieved the drug 

lists that were commonly used in published cancer cell screenings (Basu et al., 2013; Crystal 

et al., 2014; Iorio et al., 2016). Drugs showing potencies in at least a subset of liver cancer 

cell lines or under clinical development were in priority. In total, we collected 90 drugs 

which covered 9 MoAs and targeted different pathways in liver cancers. Drug stocks (10 

mM in DMSO) were stored in −80 °C. Because DMSO would inactivate platinum 

complexes, cisplatin was dissolved in 0.9% NaCl and oxaliplatin in water, respectively. The 

optimal number of seeding cells for each cell model was determined to avoid over-

confluency at the end of the drug treatment (around 90% confluency). The cells were 

cultured in their preferred medium at 37 °C during screening. The screening was performed 

in Chemical Biology Core Facility of our institute (http://www.sibcb.ac.cn/ep4-5.asp).

For drug screening, cells were seeded in 384-well plates at the pre-determined cell density at 

a volume of 50 µL by Multidrop Combi Reagent Dispenser (Thermo Fisher Scientific). After 
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overnight incubation, cells were treated with one drug of either 3-fold serial dilutions of 7 

doses or 2-fold serial dilutions of 10 doses using Mosquito HTS (TTP labtech), and the 

plates were transferred to the incubator for 72 hr. At the end point of drug treatment, each 

well was added 25 µL CellTiter-Glo reagent (Promega), and after 10 min incubation in room 

temperature, the luminescent signals were measured by En1Vision Multilabel Reader 

(PerkinElmer) to determine the cell viabilities. There are three replicate wells for one drug 

dose. 22 cell models were screened at least twice as biological replicates to confirm the 

robustness of our screening system. Bortezomib at a high single-point concentration which 

achieved complete cell killing was used as positive control in all the screening plates. The Z-

prime score comparing negative and positive control wells was calculated for all the 

screening plates.

Multi-parametric analysis of drug response curves using R package (GRmetrics) yielded 

values for IC50, Emax and Activity Area (AA). IC50 and Emax are measures of drug potency 

and efficacy (Fallahi-Sichani et al., 2013), and AA reflects magnitude of drug response 

(Barretina et al., 2012). IC50, Emax and AA can all be used to define the drug response and 

provide information from different aspects. To reflect the maximal drug response variation 

across LIMORE models for each drug, we calculated the Coefficient of Variation (CV) of 

IC50, Emax and AA. We then used the parameter with the largest CV for individual drug and 

defined the normalized Z-score of this parameter as Drug Responding Score (DRS) for this 

drug. DRS of a cell line for a drug is the normalized Z-score of the most variable parameter 

from IC50, Emax and AA. In addition, when Emax parameter was choosen for DRS, we 

manually checked Emax values in LIMORE models, and confirmed that more than 30% 

LIMORE models with Emax > 0.3 to avoid general cytotoxic effect at the maximal 

concentration screened.

We also applied the growth rate inhibition metrics (Hafner et al., 2016) to evaluate the 

potential effect of doubling time on drug response. Notably, the inferred GRAOC, a corrected 

AUC based on the growth rate inhibition metrics, is highly correlated with traditional AUC 

in LIMORE (Pearson r = 0.87, p < 2.2e-16), excluding the strong influcence of doubling 

time.

To examine the consistency of drug screening data, we compared LIMORE drug results with 

CTRP and GDSC data (Iorio et al., 2016; Seashore-Ludlow et al., 2015). A total of 38 drugs 

were shared among CTRP, GDSC and LIMORE. Drug data in LIMORE (area under curve, 

AUC) were overlapped with 22 liver cancer cell models in CTRP (area under curve, AUC) 

and with 13 models in GDSC (loge IC50). Twelve liver cancer cell models were shared 

between CTRP and GDSC. The Spearman correlation coefficient was calculated in each 

paired comparison of drug profile.

Pharmacogenomic Analysis in LIMORE—To find drug response associated features 

and build prediction models, the 81 LIMORE models were split into two datasets. The first 

batch of 54 cell models were used as the training dataset, and the other batch of 27 

independent cell models were regarded as testing dataset.
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Elastic net (EN) algorithm is powerful to create parsimonious models from a large number 

of features and a relatively small number of samples. It has been successfully used to find 

drug sensitivity related genes and build prediction models (Barretina et al., 2012; Garnett et 

al., 2012). We used a bootstrapping strategy in the analysis of gene-drug associations to 

control the stability of results. Therefore, elastic net regression algorithm combined with 

bootstrapping was applied to identify drug response associated features from the training 

dataset. Gene expression profiles from RNA-Seq were converted to a numeric matrix. 

Genomic alterations in CFGs and 166 genes/regions (non-coding mutations present in > 5 

patients and > 5 LIMORE models) with recurrent non-coding mutations from ICGC liver 

cancer WGS data were converted to a gene-level binary matrix. A total of 1,000 resampled 

datasets were generated by sampling with replacement. For each resampling dataset, the 

elastic net regression model was built using R package “glmnet” to obtain the regression 

coefficients for all the input features. To evaluate the predictive ability of molecular features, 

results from 1,000 resampling datasets were summarized to an EN score (S) by the 

following formula:

S =
Npos/1000, Npos > Nneg
Nneg/1000, Nneg > Npos

,

where Npos and Nneg are the times of positive and negative regression coefficients.

Genes with larger EN scores were more robust for the prediction. We defined 0.6 as the EN 

score threshold, which means that the feature was selected in >60% of 1,000 EN models 

among resampling datasets.

For prediction models of drug responses, elastic net regression models were built for the 

drug based on the pre-selected features. These models were used to predict the drug 

response of the 27 independent cell models in the testing dataset. Genomic alterations in 

CFGs, non-coding mutations and gene expression features were used - in combination to 

assess their contributions to drug response. Prediction performance was evaluated by 

Spearman correlation between real drug responses and the predicted values. We also built 

prediction models using support vector machine and random forest algorithms, and the 

results were similar to EN in LIMORE.

Furthermore, we combined cell model and PDX datasets to optimize the prediction model 

for sorafenib. Leave-one-out technique was used to improve sorafenib associated features 

and assess prediction ability to PDX. Suppose n is the number of PDX models; Fc is the 

sorafenib associated feature set, which were selected from LIMORE by EN algorithm 

combined with bootstraping. PDXs’ responses to sorafenib were predicted as follows:

1. For i in [1:n], omit the i-th PDX, and used other PDXs to calculate the spearman 

correlation coefficients (cor) between sorafenib response and gene expression. 

Fm is the gene set with cor > 0.2. The improved feature set is defined as 

F = Fc ∩ Fm.

2. Use genes in F to build EN model, and then predict sorafenib response for the i-

th PDX.
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3. Repeat Step 1) and 2) n times, and obtain predicted sorafenib responses for all 

the PDX models.

Finally, we used Spearman correlation to assess the prediction performance. We also built 

prediction models only using PDX dataset. However, its performance was not as good as the 

improved prediction model combing both LIMORE cell models and PDXs.

Drug Response Associated Transcription Regulators—The pipeline to define the 

contribution of transcription regulators to drug responses consists of four steps (https://

github.com/coexps/Rephine). We applied this pipeline to analyze MYC and drug responses 

in LIMORE. First, ChIP-Seq data for MYC in HepG2 and 5 other cell lines were 

downloaded from ENCODE database (Consortium, 2012). To quantitatively determine the 

targets of MYC, we implemented regulatory potential (RP) score by considering binding 

site’s distance to TSS (transcription start site) of a gene and the signal strength of ChIP-Seq 

peaks (Tang et al., 2011). Therefore, RP score indicates the regulatory strength of MYC on 

the specific gene. The higher the score is, the stronger the regulatory strength is. RP score of 

MYC was calculated for each gene. Next, in LIMORE, we used partial correlation to 

determine the correlation between each gene’s RNA-Seq expression levels and each drug’s 

response profile after adjusting for confounding factors, such as CNA and CFG mutations by 

adaptive lasso selection. For each drug, a list of genes ranked by their expression 

correlations with drug response profile was identified. Third, we determined the concordant 

enrichment of MYC-regulated target genes in drug response-related gene lists using elastic-

net regression. The coefficient from elastic net model was calculated to indicate a positive or 

negative correlation with drug response values. The p value was calculated by the likelihood 

ratio test to indicate the statistical significance. Finally, to visualize the relationship between 

a transcription regulator and response profile of a drug, we adopted canonical GSEA for the 

continuous variable (RP score) in the calculation and plot of enrichment score (Subramanian 

et al., 2005). Additional processed bigWig files for EZH2 and TCF4/7 were downloaded 

from Cistrome database (http://cistrome.org/db) and visualized at the gene loci in UCSC 

web browser (https://genome.ucsc.edu/). The heatmap was plotted using SeqPlots software 

(http://przemol.github.io/seqplots/).

MYC target genes (from ChIP-Seq data) were selected based on their association with drug 

response, and MYC transcription program activity was measured by calculating the sum of 

Z-score normalized expression values of these target genes. The continuous variable of the 

activity of MYC transcription program was then converted to a binary variable by selecting a 

threshold to maximum the difference of drug response.

Cell models were classified into two groups by the status of CTNNB1 mutation or MYC 

transcription program activity. Cohen’s d considers the standardized mean difference 

between two populations. The difference is considered as large if d >= 0.8 and medium if d 
>= 0.5. Cohen’s d was calculated to measure the effect size of the two cell model groups 

with or without CTNNB1 mutation and with high or low MYC transcription program 

activity. In addition, cell models were separated to sensitive or resistant group based on the 

mean of IC50 of HDAC inhibitors. Cell models with mutated CTNNB1 or activated MYC 
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were predicted to be sensitive to HDAC inhibitor. The percentage of correctly predicted 

sensitive cell models were calculated to evaluate the prediction power.

Experimental Validation of Gene Functions—The construction of the modified pWPI 

plasmids overexpressing the activating isoform of β-catenin (∆N90-β-catenin) or MYC was 

described previously (Li et al., 2016). For lentivirus packaging, the pWPI or pLKO.1 

plasmids were introduced into 293FT cells with the plasmids psPAX2 and pMD2.G 

(Addgene). After 48 hr incubation, lentiviruses in the supernatant were collected and stored 

at −80 °C until use. For gene overexpression, lentiviruses (multiplicity of infection, MOI = 

2) carrying ∆N90-β-catenin or MYC were added into the medium when we seeded the cells, 

and 4 days later cells were infected for the second time at MOI = 1–1.5. For siRNA 

transfection in 384-well format, 0.05 or 0.1 µL siRNA (20 µL ) in 10 µL serum-free opti-

MEM medium (Thermo Fisher scientific) was mixed with either 0.075 µL or 0.1 µL of 

RNAimax (invitrogen) in 10 µL serum-free opti-MEM medium. Following a 20 min 

incubation, the siRNA-lipid mixture was transferred to a 384-well plate followed by seeding 

cells at a concentration ranging from 1000 cells/well to 3000 cells/well (depending on 

cellular growth rate) in 30 µL medium. In 96-well format, 0.2 or 0.4 µL siRNA in 40 µL 

serum-free opti-MEM medium was mixed with either 0.3 µL or 0.4 µL of RNAimax in 40 

µL serum-free opti-MEM medium, cell number plated ranged from 3000 to 10000 cells/well 

in 120 µL medium. 48 hr later, transfected cells were treated with drugs for 72 hr at the 

indicated doses. Relative gene expressions were measured by Real-time qPCR and 

normalized to GAPDH or β-actin mRNA levels. The primers in qRT-PCR were designed 

using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) or PrimerBank (https://

pga.mgh.harvard.edu/primerbank/) online tools. The oligonucleotide sequences for human 

genes used in this study were listed below: MYC forward primer, 

gcgtcctgggaagggagatccggagc; MYC reverse primer, ttgaggggcatcgtcgcgggaggctg; β-catenin 

forward primer (mouse), cttccatcccttcctgctta; β-catenin reverse primer (mouse), 

aggtgctgtctgtctgctcta; two pairs of GSDME primers (forward primer 1, 

acatgcaggtcgaggagaagt; reverse primer 1, tcaatgacaccgtaggcaatg and forward primer 2, 

cccaggatggaccattaagtgt; reverse primer 2, ggttccaggaccatgagtagtt ); two pairs of EZH2 
primers (forward primer 1, agtgtgaccctgacctctgt; reverse primer 1, agatggtgccagcaatagat and 

forward primer 2, ttgttggcggaagcgtgtaaaatc; reverse primer 2, tccctagtcccgcgcaatgagc); 

NRF2 forward primer, cacatccagtcagaaaccagtgg; NRF2 reverse primer, 

ggaatgtctgcgccaaaagctg (Sun et al., 2016). For siRNA mediated gene knockdown, a mixture 

of two specific siRNAs (5’-gcggtcctatttgatgatgaa-3’ and 5’-gatgatggagtatctgatctt-3’), 

reported in a previous study (Wang et al., 2017), was used to knock down GSDME 
expression. Two NRF2 specific siRNAs (5’- gagatgaacttagggcaaa-3’ and 5’-

tggagtaagtcgagaagta-3’) and EZH2 specific siRNAs (5’- gactctgaatgcagttgct-3’ and 5’- 

gctgaagcctcaatgttta-3’) were transfected to knock down gene expression individually. 

siRNAs were transfected to knock down HDAC4 (5’-cgacaggcctcgtgtatga-3’, 5’-

aaattacggtccaggctaa-3’, 5’-gagtgtcgacctcctataa-3’ and 5’-gaacggtggtcatgccgat-3’), HDAC5 
(5’-gggcgtcgtccgtgtgtaa-3’, 5’-aaagtgcgttcaaggctaa-3’, 5’-ggactgttattagcacctt-3’ and 5’-

tacgacacgttcatgctaa-3’), HDAC7 (5’-gacaagagcaagcgaagtg-3’, 5’-gcagataccctcggctgaa-3’, 

5’-ggtgagggcttcaatgtca-3’ and 5’-tggctgctcttctgggtaa-3’) and HDAC11 (5’-

cacacgaggcgctatctta-3’, 5’-cgacaagcgtgtatacatc-3’, 5’-gcaatgggcatgagcgaga-3’ and 5’-
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gcacagaactcagacacac-3’). Three siRNAs (5’-ugguuuacaugucgacuaa-3’, 5’-

ugguuuacauguuuucuga-3’ and 5’-uucuccgaacgugucacgutt-3’) were used as nontargeting 

control. TOX (From Dharmacon), TOX transfection control was used to assess transfection 

efficiency.

HCC PDX Models—To examine sorafenib efficacies in 22 HCC PDX models, mice (6–8 

weeks-old immuno-deficient athymic BALB/c-nu/nu female mice) were randomized in 

sorafenib treatment (n=10 mice) or control group (n=10 mice) for each PDX model. The 

durations of sorafenib treatment (40 mg/kg, daily, orally) for each model varied from 10 

days to 28 days. The tumors were measured twice weekly using the caliper. Tumor volume 

was calculated by the following formula: V = (L × W2) / 2, where L and W are the long and 

short diameters of the tumors, respectively. Tumor growth inhibition, the ratio of sorafenib 

treatment group compared to control group (Treatment-to-control ratio, T/C ratio) was 

calculated at the end-point day to indicate the efficacy of sorafenib. Response categories 

were defined as previously reported (Schutte et al., 2017): T/C ratio < 0.25, moderate 

response; T/C ratio 0.26 – 0.50, minor response; T/C ratio > 0.50, resistance. PDXs with 

“moderate response” were considered as sensitive to sorafenib treatment, whereas PDXs 

with “minor response” or “resistance” were considered as resistant to sorafenib treatment. 

RNA-Seq raw data were obtained from Shanghai ChemPartner, and analyzed using the same 

pipeline of LIMORE. The DKK1 gene expression levels were retrieved from RNA-Seq data. 

In the DKK1 analysis, PDXs with moderate response were regarded as sensitive PDXs, 

while those with minor response or resistance to sorafenib were resistant PDXs. ROC 

(receiver operating characteristics) curve was performed using R package “pROC”.

Serum DKK1 Analysis in HCC Patients—To detect DKK1 levels in serum, the 

commercially available ELISA kit (R&D systems, Cat No. DKK100) was applied according 

to the manufacturer’s instructions. Briefly, a monoclonal antibody specific for human DKK1 

has been pre-coated onto a microplate. Diluted samples or standards (100 µL) were 

incubated for 2 hr at room temperature. A horseradish peroxidase conjugated polyclonal 

antibody for human DKK1 was added and incubated for 2 hr at room temperature. After 

washing away any unbound antibody-enzyme reagent, 200 µL Substrate solution is added 

and color development was stopped by 50 µL Stop Solution containing sulfuric acid. The 

optimal density of each well was determined at 450 nm and 570 nm. DKK1 concentrations 

were calculated from the standard curve. The patients’ responses to sorafenib treatment 

within one year after sorafenib treatment initiation were evaluated by Response Evaluation 

Criteria In Solid Tumors (RECIST, www.irrecist.com).

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample size. The experiments were not 

randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment. Statistical significance tests, including unpaired Student’s t-test, 

Fisher’s exact test, Chi-square test, Kruskal-Wallis test, Pearson or Spearman correlation 

test, Kolmogorov-Smirnov normality test, and receiver operating characteristics (ROC) 

curve were performed using R or Graphpad Prism v5 software, as denoted in each analysis. 

Data in the barplot or curve are presented as mean±SD (technical or biological replicates 
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from a single cell model) or mean±SEM (mean of means in different cell models or PDX 

mice). For box-and-whisker plot, the box indicates interquartile range (IQR), the line in the 

box indicates the median, the whiskers indicate points within Q3+1.5×IQR and 

Q1−1.5×IQR and the points beyond whiskers indicate outliers. Q1 and Q3, the first and third 

quartiles, respectively. All the statistical tests were two-tailed. p < 0.05 of the two-tail was 

taken to indicate statistical significance unless otherwise stated.

DATA AND SOFTWARE AVAILABILITY

Genome data have been deposited at the European Genome-phenome Archive (EGA) hosted 

at the EBI under accession number EGAS00001002237 and EGAS00001001678. RNA-Seq 

data have been deposited in Gene Expression Omnibus (GEO) under the accession number 

GSE97098 and GSE78236.
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Liver Cancer Model Repository (LIMORE) consists of 81 liver cancer cell models

LIMORE recapitulated genetic heterogeneity of human liver cancers

Molecular and drug screenings provide a pharmacogenomic landscape in liver cancers

Interrogation of the landscape informs biomarkers for liver cancer treatment
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SIGNIFICANCE

International effort has been made in recent years to generate patient-derived cancer 

models. However, there have been insufficient experimental models to sufficiently 

represent the extensive heterogeneity of liver cancers, partially due to the difficulty to 

generate liver cancer cell models in vitro. The method reported here provides the 

opportunity to efficiently generate liver cancer models. Interrogation of these 

genomically validated models provides a pharmacogenomic dataset in liver cancers that 

allows the identification of gene-drug associations for potential therapies and biomarker 

candidates, such as CTNNB1 mutations-HDAC inhibitors and DKK1-sorafenib. Patient-

derived liver cancer cell lines, together with cancer organoids and patient-derived 

xenografts, provide model systems with different levels of complexity and advantage.
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Figure 1. Comparison between LIMORE and primary liver cancers.
(A) Numbers of cell models in LIMORE and other panels.

(B) Population and virus status of patients whose tumors were used to generate LIMORE 

models. NBNC, non-HBV and non-HCV.

(C) Representative hematoxylin and eosin (H&E) stainings of subcutaneous tumors from 

LIMORE models and matched original cancers. Scale bars, 100 µm.

(D) CNA frequencies in LIMORE and TCGA HCCs. Spearman correlation of CNA 

frequencies is shown. Chr, chromosome.

(E) Circos plot shows HBV integration breakpoints in LIMORE and primary liver cancers 

(left) and boxplot shows the number of HBV integrations in each LIMORE model and 

patient sample (right). For box-and-whisker plot, the box indicates interquartile range (IQR), 

the line in the box indicates the median, the whiskers indicate points within Q3+1.5×IQR 
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and Q1−1.5×IQR and the points beyond whiskers indicate outliers. Q1 and Q3, the first and 

third quartiles, respectively.

(F) Comparison of gene expressions between LIMORE and TCGA HCCs. Principle 

component analysis using top 3,000 variable genes (left) and barplot showing the percentage 

of TCGA HCCs highly correlated with at least 1 LIMORE model (right).

See also Figure S1 and Tables S1 and S2.
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Figure 2. Coverage of oncogenic alterations in primary liver cancers by LIMORE.
(A) Heatmap shows the alteration landscape of cancer functional genes (CFGs) in LIMORE. 

Amplifications of FGFR1, FGFR3, and FGFR4 were additionally shown in comparison with 

FGF19 amplification.

(B) Barplot shows alteration frequencies of CFGs in LIMORE and primary liver cancers. 

Spearman correlation of CFG frequencies was calculated. Significance of individual CFG 

frequency between LIMORE and primary liver cancers was determined by Fisher’s exact 

test. *FDR < 0.05.

See also Figure S2 and Table S3.
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Figure 3. Diverse drug responses in LIMORE.
(A) Pieplot shows mechanism of action of 90 screened drugs.

(B) Boxplot shows drug response distributions (left) and heatmap shows drug responses in 

81 LIMORE models (right). Red represents resistant cluster (Cluster R) and blue represents 

sensitive cluster (Cluster S). Drug response value is presented as the 1-Activity Area.

(C) Boxplot shows Spearman correlations of drug pairs with similar or different targets in 

LIMORE dataset.

For box-and-whisker plot, the box indicates IQR, the line in the box indicates the median, 

the whiskers indicate points within Q3+1.5×IQR and Q1−1.5×IQR and the points beyond 

whiskers indicate outliers. See also Figure S3 and Table S4.
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Figure 4. The pharmacogenomic landscape in LIMORE.
(A) Barplot shows the pharmacogenomic interactions for recurrent CFGs in liver cancers. 

Red, predicitive for drug resistant; blue, predicitive for drug sensitivity.

(B and C) FGFR inhibitor sensitivity and amplificaitons of FGFR genes (FGFR1, FGFR3, 
and FGFR4) (B) or FGF19 (C). Color bars indicate Drug Responding Score (DRS). Blue, 

sensitivity; red, resistance. Vertical bars represent cell models with indicated alterations, 

FGFR1+FGFR3 and FGFR3+FGFR4 indicate concurrent amplifications of two FGFR 

genes.The number in parentheses indicates EN score, which is the percentage of models 

where a feature was selected as predictive in bootstrapping. AMP, copy number 

amplification.

(D) Predictive biomarkers and sensitivity to MEK inhibitors. Rank-ordered drug responses 

are shown in upper panel. Blue, sensitivity; red, resistance. GSDME expression and FGF19 
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amplification in LIMORE models are shown below. Cluster 1 are models with both GSDME 
overexpression and FGF19 amplification. The number in parentheses indicates EN score.

(E) Boxplots show the DRSs for MEK inhibitors in Cluster 1 subgroup and the other 

LIMORE models. For box-and-whisker plot, the box indicates IQR, the line in the box 

indicates the median, the whiskers indicate points within Q3+1.5×IQR and Q1−1.5×IQR and 

the points beyond whiskers indicate outliers. Statistics, unpaired Student’s t-test.

(F) Relative cell viability of GSDME-knockdown CLC5 and Hep3B cells treated with 

Cobimetinib (0.625 µM) or Trametinib (0.5 µM) for 72 hr. Experiments were biologically 

repeated in triplicate and one representative result is shown. Data are presented as mean±SD.

**p < 0.01, ***p < 0.001 by unpaired Student’s t-test. See also Figure S4 and Table S5.
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Figure 5. Synthetic lethal interactions with Wnt and MYC activation.
(A) Barplot shows the drugs targeting synthetic lethal interactions with CTNNB1 mutations.

(B) HDAC inhibitor sensitivity and CTNNB1 activating mutations. Color bars indicate DRS. 

Blue, sensitivity; red, resistance. Vertical black bars represent cell models with CTNNB1 
activating mutations.

(C) Dose response curves for LIMORE models with (blue) or without (red) CTNNB1 
activating mutations. Data are presented as mean±SD.

(D) Dose response curves of indicated models ectopically expressing ∆N90-β-catenin and 

treated with indicated drugs for 72 hr. Data are presented as mean±SD. Experiments were 

biologically repeated in triplicate and one representative result is shown.

(E) Tumor growth curves of CLC13 and JHH7 treated with panobinostat or vehicle. Data are 

presented as mean±SEM.
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(F) Tumor growth curves of JHH7 after ∆N90-β-catenin overexpression treated with 

panobinostat or vehicle. Data are presented as mean±SEM.

(G) Enrichment plot of MYC-regulated transcription program and drug responses. The curve 

represents enrichment scores of MYC targets ranked by correlation with drug responses.

(H) Relative cell viabilities of HepG2, CLC46 and CLC41 cells overexpressing MYC and 

treated with 0.2 µM panobinostat for 72 hr. Data are presented as mean±SD. Experiments 

were biologically repeated in triplicate and one representative result is shown.

*p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-test. See also Figure S5.
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Figure 6. Prediction models and biomarkers for sorafenib.
(A) Heatmap shows top predictive CFG and expression features associated with sorafenib 

response.

(B) The 22 PDXs were classified into DKK1-high or -low group using the optimal cutoff. 

PDXs with treatment-to-control ratio < 0.25 were considered sensitive to sorafenib, 

otherwise resistant. Gene expressions in RNA-Seq are presented as Reads Per Kilobase per 

Million mapped reads (RPKM). Statistics, Fisher’s exact test.

(C) Tumor growth curves of two representative PDXs (LIX012 and LIX086) with different 

DKK1 levels. Data are presented as mean±SEM. n=10 mice/group.

(D and E) Kaplan-Meier plots for progression-free (D) and overall (E) survival of HCC 

patients grouped by the median of serum DKK1 levels. Statistics, Log-rank test.

See also Figure S6 and Table S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Glutamine Synthase BD bioscience Cat#610517; RRID:AB_397879

Biological Samples

Surgically resected tumor samples from 
Chinese HCC patients

Eastern Hepatobilliary Surgery Hospital, Second Military 
Medical University; Zhongshan Hospital, Fudan University; 
The First Affiliated Hospital of Nanjing Medical University; 
the Affiliated Drum Tower Hospital of Medical School of 
Nanjing University

N/A

Serum samples from Chinese HCC 
patients Fudan University Shanghai Cancer Center N/A

Patient-derived xenografts (PDXs) from 
HCCs ChemPartner www.chempartner.com

Chemicals, Peptides, and Recombinant Proteins

(+)-JQ1 Selleck Chemicals Cat#S7110

17-AAG Selleck Chemicals Cat#S1141

ABT-199 Selleck Chemicals Cat#S8048

ABT-263 Selleck Chemicals Cat#S1001

Afatinib Selleck Chemicals Cat#S1011

Alisertib Selleck Chemicals Cat#S1133

Apatinib Selleck Chemicals Cat#S2221

AT-406 Selleck Chemicals Cat#S2754

AT-7519 Selleck Chemicals Cat#S1524

Avasimibe Selleck Chemicals Cat#S2187

AZD1208 Selleck Chemicals Cat#S7104

AZD6244 Selleck Chemicals Cat#S1008

AZD7762 Selleck Chemicals Cat#S1532

Barasertib Selleck Chemicals Cat#S1147

Belinostat Selleck Chemicals Cat#S1085

BEZ235 Selleck Chemicals Cat#S1009

BGJ398 Selleck Chemicals Cat#S2183

BI2536 Selleck Chemicals Cat#S1109

Bortezomib Selleck Chemicals Cat#S1013

Bosutinib Selleck Chemicals Cat#S1014

BX-912 Selleck Chemicals Cat#S1275

Cabozantinib Selleck Chemicals Cat#S1119

Camptothecin Selleck Chemicals Cat#S1288

Carfilzomib Selleck Chemicals Cat#S2853

CB-839 Selleck Chemicals Cat#S7655

Ceritinib Selleck Chemicals Cat#S7083

Cisplatin Selleck Chemicals Cat#S1166
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cobimetinib Selleck Chemicals Cat#S8041

CP-466722 Selleck Chemicals Cat#S2245

Crizotinib Selleck Chemicals Cat#S1068

CX-4945 Selleck Chemicals Cat#S2248

Daporinad Selleck Chemicals Cat#S2799

Dasatinib Selleck Chemicals Cat#S1021

Decitabine Selleck Chemicals Cat#S1200

Docetaxel Selleck Chemicals Cat#S1148

Dovitinib Selleck Chemicals Cat#S1018

Doxorubicin Selleck Chemicals Cat#S1208

DZNeP Selleck Chemicals Cat#S7120

Enzastaurin Selleck Chemicals Cat#S1055

Epirubicin Selleck Chemicals Cat#S1223

Erastin Selleck Chemicals Cat#S7242

Etoposide Selleck Chemicals Cat#S1225

Everolimus Selleck Chemicals Cat#S1120

FG-4592 Selleck Chemicals Cat#S1007

Fluorouracil Selleck Chemicals Cat#S1209

Foretinib Selleck Chemicals Cat#S1111

Ganetespib Selleck Chemicals Cat#S1159

GSK126 Selleck Chemicals Cat#S7061

GSK1838705A Selleck Chemicals Cat#S2703

I-BET151 Selleck Chemicals Cat#S2780

Ibrutinib Selleck Chemicals Cat#S2680

Irinotecan Selleck Chemicals Cat#S2217

Ispinesib Selleck Chemicals Cat#S1452

JNJ-26854165 Selleck Chemicals Cat#S1172

Lenvatinib Selleck Chemicals Cat#S1164

Methotrexate Selleck Chemicals Cat#S1210

NU-7441 Selleck Chemicals Cat#S2638

Olaparib Selleck Chemicals Cat#S1060

OSI-906 Selleck Chemicals Cat#S1091

Oxaliplatin Selleck Chemicals Cat#S1224

Paclitaxel Selleck Chemicals Cat#S1150

Palbociclib Selleck Chemicals Cat#S1116

Panobinostat Selleck Chemicals Cat#S1030

Pazopanib Selleck Chemicals Cat#S1035

PD173074 Selleck Chemicals Cat#S1264

PF-562271 Selleck Chemicals Cat#S2890
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PI-103 Selleck Chemicals Cat#S1038

Piperlongumine Selleck Chemicals Cat#S7551

Pirarubicin Selleck Chemicals Cat#S1393

Ponatinib Selleck Chemicals Cat#S1490

Rapamycin Selleck Chemicals Cat#S1039

Regorafenib Selleck Chemicals Cat#S1178

Roscovitine Selleck Chemicals Cat#S1153

Ruxolitinib Selleck Chemicals Cat#S1378

SGC0946 Selleck Chemicals Cat#S7079

Simvastatin Selleck Chemicals Cat#S1792

Sorafenib Selleck Chemicals Cat#S1040

Sunitinib Selleck Chemicals Cat#S1042

TAE684 Selleck Chemicals Cat#S1108

Talazoparib Selleck Chemicals Cat#S7048

Temsirolimus Selleck Chemicals Cat#S1044

Tipifarnib Selleck Chemicals Cat#S1453

Tivantinib Selleck Chemicals Cat#CS-0030

Topotecan Selleck Chemicals Cat#S1231

Trametinib Selleck Chemicals Cat#S2673

Vinblastine Selleck Chemicals Cat#S4505

Vorasidenib Selleck Chemicals Cat#S8611

Vorinostat Selleck Chemicals Cat#S1047

YK-4-279 Selleck Chemicals Cat#S7679

YM155 Selleck Chemicals Cat#S1130

Y-27632 Selleck Chemicals Cat#S1049

A83-01 Tocris Bioscience Cat#2939

Collagen type I Corning Cat#354236

Recombinant human EGF PeproTech Cat#AF-100-15

ITS-A Gibco Cat#51300-044

Collagenase, Type IV, powder Gibco Cat#17104019

Critical Commercial Assays

CellTiter-Glo® Luminescent Cell 
Viability Assay Promega Cat#G7573

Human Dkk-1 Quantikine ELISA Kit R&D systems Cat#DKK100

Transwell® Permeable Supports Corning Cat#3422

DNeasy Blood and Tissue kit QIAGEN Cat#69504

Deposited Data

DNA sequencing data for LIMORE This paper EGA: EGAS00001002237, 
EGAS00001001678

RNA sequencing data for 72 LIMORE 
models This paper GEO: GSE97098

Cancer Cell. Author manuscript; available in PMC 2020 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qiu et al. Page 43
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RNA sequencing data for 9 LIMORE 
models (Qiu et al., 2016) GEO: GSE78236

Drug screening data of LIMORE This paper www.picb.ac.cn/limore/

Drug screen data of cell line 
(CCLE&CTRP) CTRP http://portals.broadinstitute.org/

ctrp/

Drug screen data of cell line (GDSC) GDSC www.cancerrxgene.org

Experimental Models: Cell Lines

See Table S1

Experimental Models: Organisms/Strains

Mouse: Immuno-deficient athymic mice 
(BALB/c-nu/nu)

SLAC Laboratory Animal (www.slaccas.com); Beijing Vital 
River Laboratory Animal Technology Co., Ltd N/A

Mouse: NOD.CB17-Prkdcscid/scid/shjh 
(NOD/SCID)

Shanghai Jihui Laboratory Animal Care Co., Ltd N/A

Oligonucleotides

siGSDME (gcggtcctatttgatgatgaa) (Wang et al., 2017) N/A

siGSDME (gatgatggagtatctgatctt) (Wang et al., 2017) N/A

siNRF2 (gagatgaacttagggcaaa) (McMillan et al., 2018) N/A

siNRF2 (tggagtaagtcgagaagta) This paper N/A

siEZH2 (gactctgaatgcagttgct) This paper N/A

siEZH2 (gctgaagcctcaatgttta) This paper N/A

siHDAC4 (cgacaggcctcgtgtatga) Dharmacon J-003497-07

siHDAC4 (aaattacggtccaggctaa) Dharmacon J-003497-08

siHDAC4 (gagtgtcgacctcctataa) Dharmacon J-003497-09

siHDAC4 (gaacggtggtcatgccgat) Dharmacon J-003497-10

siHDAC5 (gggcgtcgtccgtgtgtaa) Dharmacon J-003498-09

siHDAC5 (aaagtgcgttcaaggctaa) Dharmacon J-003498-10

siHDAC5 (ggactgttattagcacctt) Dharmacon J-003498-11

siHDAC5 (tacgacacgttcatgctaa) Dharmacon J-003498-12

siHDAC7 (gacaagagcaagcgaagtg) Dharmacon J-009330-07

siHDAC7 (gcagataccctcggctgaa) Dharmacon J-009330-08

siHDAC7 (ggtgagggcttcaatgtca) Dharmacon J-009330-09

siHDAC7 (tggctgctcttctgggtaa) Dharmacon J-009330-10

siHDAC11 (cacacgaggcgctatctta) Dharmacon J-004258-05

siHDAC11 (cgacaagcgtgtatacatc) Dharmacon J-004258-06

siHDAC11 (gcaatgggcatgagcgaga) Dharmacon J-004258-07

siHDAC11 (gcacagaactcagacacac) Dharmacon J-004258-08

siNC (ugguuuacaugucgacuaa) Dharmacon D-001810-01-05

siNC (ugguuuacauguuuucuga) Dharmacon D-001810-03-05

siNC (uucuccgaacgugucacgutt) This paper N/A

Primer: MYC Forward: 
gcgtcctgggaagggagatccggagc This paper N/A

Cancer Cell. Author manuscript; available in PMC 2020 September 22.

http://www.picb.ac.cn/limore/
http://portals.broadinstitute.org/ctrp/
http://portals.broadinstitute.org/ctrp/
http://www.cancerrxgene.org/
http://www.slaccas.com/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qiu et al. Page 44

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: MYC Reverse: 
ttgaggggcatcgtcgcgggaggctg This paper N/A

Primer: β-catenin Forward: 
cttccatcccttcctgctta This paper N/A

Primer: β-catenin Reverse: 
aggtgctgtctgtctgctcta This paper N/A

Primer: GSDME Forward #1: 
acatgcaggtcgaggagaagt This paper N/A

Primer: GSDME Reverse #1: 
tcaatgacaccgtaggcaatg This paper N/A

Primer: GSDME Forward #2: 
cccaggatggaccattaagtgt This paper N/A

Primer: GSDME Reverse #2: 
ggttccaggaccatgagtagtt This paper N/A

Primer: EZH2 Forward #1: 
agtgtgaccctgacctctgt This paper N/A

Primer: EZH2 Reverse #1: 
agatggtgccagcaatagat This paper N/A

Primer: EZH2 Forward #2: 
ttgttggcggaagcgtgtaaaatc This paper N/A

Primer: EZH2 Reverse #2: 
tccctagtcccgcgcaatgagc This paper N/A

Primer: NRF2 Forward: 
cacatccagtcagaaaccagtgg (Sun et al., 2016) N/A

Primer: NRF2 Reverse: 
ggaatgtctgcgccaaaagctg (Sun et al., 2016) N/A

Recombinant DNA

pWPI-mouse-ΔN90-β-catenin (Li et al., 2016) N/A

pWPI-human-c-Myc (Li et al., 2016) N/A

Software and Algorithms

Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

Genome Analysis Toolkit (GATK) (DePristo et al., 2011)
https://
software.broadinstitute.org/
gatk/

ANNOVAR (Wang et al., 2010)
http://
annovar.openbioinformatics.org
/en/latest/

Control-FREEC (Boeva et al., 2011) http://boevalab.com/FREEC/

Integrative Genomic Viewer (IGV) tool (Robinson et al., 2011)
http://
software.broadinstitute.org/
software/igv/

Virus-Clip (Ho et al., 2015) http://web.hku.hk/~dwhho/
Virus-Clip.zip

TopHat2 (Kim et al., 2013) http://ccb.jhu.edu/software/
tophat/index.shtml

Cufflinks (Trapnell et al., 2010) http://cole-trapnell-
lab.github.io/cufflinks/

MutSigCV (Lawrence et al., 2013)

http://
software.broadinstitute.org/
cancer/software/genepattern/
modules/docs/mutsigcv
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GISTIC2.0 (Mermel et al., 2011)

http://portals.broadinstitute.org/
cgi-bin/cancer/publications/
pub_paper.cgi?
mode=view&paper_id=216&p=
t

Growth rate inhibition metrics (GR 
metrics) (Hafner et al., 2016) http://www.grcalculator.org/

grcalculator/

RePhine N/A https://github.com/coexps/
Rephine

R Version 3.4.1 R www.r-project.org

Prism Version 5 Graphpad https://www.graphpad.com/
scientific-software/prism/

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005)
http://
software.broadinstitute.org/
gsea/index.jsp

glmnet R Bioconductor https://bioconductor.org/

pHeatmap R Bioconductor https://bioconductor.org/

Other

Web portal for LIMORE models This paper www.picb.ac.cn/limore/
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