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Abstract
Background: Milk is rich in nutrients and anabolic mediators 
rendering it essential for postnatal growth and metabolic 
programming. However, in adults, excessive consumption of 
milk is controversial as civilization disorders such as diabetes 
or prostate cancer may be promoted. A cytoprotective effect 
of milk could be utilized in inflammatory conditions, that is, 
chronic colitis. Objective: To evaluate the effect of bovine 
milk exosomes on intestinal inflammation in a genetic 
mouse model of ulcerative colitis. Methods: Intestinal-spe-
cific kindlin 2 knockout (KO) mice were exposed for 4 days to 
tamoxifen for induction of an ulcerative colitis phenotype. 
At the same time 4 other kindlin 2 KO mice were exposed to 
33 μg/g cow milk derived exosomes in PBS by oral gavage. 
Both groups were compared to untreated wild-type con-
trols. Results: Milk exosomes prevented the appearance of a 
severe ulcerative phenotype. The macroscopic colitis score 
dropped from a mean of 3.33 in untreated mice to 0.75 index 

points (p < 0.01) in exosome-treated mice, which included 
significant improvement of the subscores of stool improve-
ment and colon weight and length. Treated mice featured a 
noninflamed appearance of the intestinal mucosa. Key Mes-
sage: Milk exosomes have cytoprotective/anti-inflammato-
ry activity in a genetic mouse model of ulcerative colitis. The 
mechanisms behind this need to be elucidated. This pilot 
study needs verification before a therapeutic strategy is de-
veloped. © 2020 The Author(s).

Published by S. Karger AG, Basel

Introduction

Milk of all mammalian species contains bioactive ex-
tracellular vesicles (EVs) [1, 2]. Among them, a special 
class of nanovesicles are exosomes (30–100 nm), which 
are derived via the endosomal route from mammary 
gland epithelial cells and secreted into the alveolar lumen 
[3]. They play a key role in epigenetic regulation for met-
abolic and immunological programming [4–10]. Bioac-
tive milk exosomes contain and deliver microRNAs, 
mRNAs, and long noncoding RNAs, transforming 
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growth factor-β, and a variety of unique proteins and lip-
ids which are protected by the exosome lipid bilayer 
membrane [11–14]. Milk exosomes are, thus, extremely 
resistant against the harsh degradative conditions in the 
gastrointestinal tract [15–17] but can be taken up by in-
testinal epithelial cells [5, 18]. A substantial fraction of 
them reaches the systemic circulation of the milk con-
sumer, as shown in rodents and humans [19–21]. Wheth-
er nonabsorbed exosomes also act from the luminal side 
is not elucidated. Recent evidence indicates that milk exo-
somes play a critical role for intestinal maturation and 
function in humans and rodent models [22–28]. It has 
been demonstrated in murine models that human, bo-
vine, and porcine milk exosomes support intestinal cell 
growth [22–24], attenuate LPS-induced apoptosis [25], 
prevent intestinal endothelial cell damage [26, 27], en-
hance goblet cell numbers and mucin production [28], 
modify bacterial growth, and promote intestinal micro-
biota [29, 30]. Accumulating evidence indicates that milk 
exosomes exert barrier-protective and anti-inflammatory 
effects in rodent models of necrotizing enterocolitis 
(NEC) and NEC in human infants [25–32]. NEC exhibits 
severe tight-junction defects as shown in rodent models 
and human neonates [33–35]. As defective tight junctions 
are also reported in humans with ulcerative colitis (UC) 
[36–38], we became interested in the potential therapeu-
tic usefulness of milk exosomes for the treatment of UC. 
For this purpose, we investigated the effects of oral expo-
sure of bovine milk exosomes in an established genetic 
mouse model of UC [39]. This UC model, which operates 
by disruption of the tight-junction barrier between intes-
tinal mucosal cells, employs a tamoxifen-inducible intes-
tinal-specific deletion of intestinal expression of kindlin 
2, resulting in a severe UC phenotype [39, 40].

Kindlin 2 as adapter protein for integrin β1 serves at 
the lateral side of mucosal cells for the establishment of 
tight junctions. As a consequence of kindlin 2 deletion, 
tight junctions are broken, the intercellular space is en-
larged, cells become cuboidal, and crypt diameters are 
distended [39]. Functionally, phosphatidylcholine (PC) 
secretion to apical mucus was shown to be disturbed and 
invasion of microbiota to be facilitated. These are all also 
typical features in human ulcerative colitis [39]. Eventu-
ally, severe mucosal inflammation occurs. The difference 
of this mouse model in comparison to the human disease 
is (1) its rapid and severe phenotype and (2) that not only 
a hemorrhagic colitis but also an ileitis manifests. In pre-
vious studies, therapeutic strategies with topical PC sup-
plementation as well as a luminally acting phospholipase 
inhibitor were shown to be effective [39, 40].

Materials and Methods

Exosome isolation from commercial cow milk was performed 
as described [41]. In brief, 10-mL milk was diluted with an equal 
volume of phosphate-buffered saline (PBS) and centrifuged at 4°C 
for 30 min at 2,000 g. The supernatant was centrifuged for 45 min 
at 12,000 g. The supernatant was then centrifuged for 2 h at 110,000 
g. After that, the pellets were resuspended in PBS and pooled. After 
filtration through a 0.22-μm filter, the suspension was again cen-
trifuged for 70 min at 110,000 g and the resuspended pellet once 
more centrifuged for 70 min at 110,000 g. The final pellet was re-
suspended in 200-μL PBS. The collected samples of 5 preparations 
yielded a protein concentration of 1.1 ± 0.3 mg protein/mL.

Characterization of exosomes employed EXOCET as an exo-
some quantification kit (Exocet 96A-1-SBI; System Biosciences, Hei-
delberg, Germany). It revealed a 79.8 ± 6.9% recovery of exosomes 
in the purified pellet compared to the original milk source. Within 
the enriched pellet suspension, Western blotting [42] revealed a 
dose-dependent signal of the enriched pellet suspension using anti-
bodies to CD9 (PA5-85955), ADAM10 (PA5-28161) (both from 
Thermo Fisher Scientific) at a dilution of 1:500. Anti-β-actin (AC15, 
Sigma) at a dilution of 1:100,000 served as loading control.

Characterization of the UC Phenotype in Genetic Mouse 
Models
Animal studies followed the “ARRIVE” guidelines and were  

approved by the Heidelberg ethics committee (Ref-# 35-9185.81/ 
6123/10 and 6284/11) (Ref-# S-211/2010). Tamoxifen-inducible, 
villin-Cre-dependent, kindlin 2 intestine-specific knockout mice 
were a gift of R. Faessler (Max-Planck Institute for Biochemistry, 
Munich) and propagated after embryonic transfer in the animal 
facilities of the University of Heidelberg [39, 40]. Mutant kindlin 
2(−/−) mice received LasVendi Rod 18 complete diet (Soest, Ger-
many) ad libitum and were kept in conventional caging with AB-
BEDD LT-E-001 (Vienna, Austria) bedding at 22°C, with a 12-h/ 
12-h light/dark cycle. Mutant mice (12-week-old mice with a com-
parable body weight of 30 ± 2 g) were intraperitoneally (i.p.) in-
jected at 9:00 a.m. with 0.2 mg tamoxifen daily for up to 4 days 
before being sacrificed 1 day later. Ileal mucosal cells were isolated 
[43] and characterized by Western blotting using antibodies to 
mouse kindlin 2, to ensure complete depletion in the mutant mice 
[39, 40]. As control, 12-week old wild-type mice were used. All mice 
were male of a C57BL/6 background obtained from Charles River.

Evaluation of Disease Activity
Quantitative evaluation of the UC phenotype was performed in 

resected gut segments and included the macroscopic colitis score 
with determination of the subscores total colon weight (including 
stool content), length, and stool appearance [39, 40].

Treatment of Mutant Mice with Milk Exosomes
The same disease activity parameters were assessed when the 

mutant mice were treated with the exosome suspension daily in 
200 μL PBS (1 mg protein/mL) or just 200 μL PBS (control) by oral 
gavage during the 4 days after start of tamoxifen treatment [39, 40] 
to assess improvement of the UC phenotype. The application by 
oral gavage – using a 6.5-cm 18G × 2″ flexible elastic tube (9918; 
Cadence Science, Cranston, RI, USA) – ensures that the full dose 
of exosomes is provided to the small intestine. The dosage of  
33 μg/g body weight corresponds to the amount of exosomes in  
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7.1 mL milk. This excessive amount overpowers the absorptive  
capacity and, thus, due to functional malabsorption a substantial 
fraction enters the colonic lumen.

Statistical Analyses
Statistical analysis was performed using Prism 4.0 software 

(GraphPad Software Inc., La Jolla, CA, USA). Differences between 
groups were evaluated using the Mann-Whitney U test. Multiple 
groups were compared by 1-way ANOVA with Dunnett’s post hoc 
test. Data are presented as means ± SD, and p < 0.05 was considered 
statistically significant.

Results

The intestinal mucosa-specific kindlin 2(−/−) mice 
showed – as expected – a severe inflammatory phenotype 
as it was observed in 2 preceding studies [39, 40]. This was 
compared to kindlin 2(−/−) which were treated with 
tamoxifen and simultaneously with milk exosomes. Here 
exosomes prevented the inflammation (Fig. 1, upper pan-
el). This is also seen at stool consistency (Fig.  1, lower 
panel). Untreated and exosome-treated kindlin 2(−/−) 
mice were compared to wild-type mice in regard to the 
macroscopic appearance of stool as well as colon weight 
and length (Fig. 2). The total macroscopic colitis score of 
these 3 parameters showed a mean drop from 3.33 to 0.75 
index points (p < 0.01).

The data of Figures 1 and 2 indicate that milk exo-
somes protect against intestinal inflammation.

Discussion

Previous epidemiological studies examining milk and 
dairy products and the development of Crohn’s disease or 
UC are sparse and showed conflicting results. Some in-
vestigations report that a higher intake of milk is associ-
ated with a moderately increased risk of inflammatory 
bowel disease [44, 45], whereas others find an inverse as-
sociation or none [46–50]. In comparison to individuals 
that do not consume milk, the European Prospective In-
vestigation into Cancer and Nutrition cohort including 
401,326 participants reported that individuals consum-
ing milk had significantly reduced odds of Crohn’s dis-
ease (OR 0.30, 95% CI: 0.13–0.65) and nonsignificantly 
reduced odds of UC (OR 0.85, 95% CI: 0.49–1.47) [51]. 
Notably, pasteurized fresh milk in contrast to fermented 
milk products such as yoghurt contains bioactive milk 
exosomes [52].

We observed an anti-inflammatory effect of milk exo-
somes in our murine model of UC. As demonstrated, 
macroscopic colitis scores decreased significantly after 
the exposure of milk exosomes including stool consis-
tency.

A shortcoming of this pilot study is the small number 
of animals and the lack of opportunity to support the ob-
vious macroscopic findings with histology and quantita-
tive biochemical measurements, for example, TNFα, IL-
6, IL-10, IL-12p40, and mucin 2. Therefore, the anti-in-
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Fig. 1. Macroscopic appearance of opened ileal and colonic segments and stool samples. Depicted are specimens 
of 4 animals each of tamoxifen-induced intestinal-specific kindlin 2(−/−) mice in the absence (left panels) and 
presence (right panels) of simultaneous oral administration of bovine milk exosomes for 4 days.
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flammatory mechanism of milk exosomes is still elusive. 
However, 3 major modes of action are conceivable:

Low mucus PC content is due to disturbed tight-junc-
tion barrier [37–40] and causes insufficient translocation 
of PC from systemic lipoproteins to the luminal side of 
mucosal cells. The reduced surface hydrophobicity allows 
attack of microbiota to induce mucosal inflammation [53, 
54]. This may be counterbalanced by the transfer of milk 
exosome-derived PC [55]. This conception is supported 
by clinical improvement of colitis by topical application 
of PC in UC patients [56–58] and in genetic UC models 
[39]. Furthermore, inhibition of the ectophospholipase 
activity of the microbiota by ursodeoxycholate-lysophos-
phatidylethanolamide (UDCA-LPE) prevented the coli-
tis in this murine UC model [40][59].

Another mode of action may concern inadequate pro-
duction of mucin 2 (MUC2) as MUC2-deficient mice ex-
hibit clinical and cellular features of active UC [60]. Re-
markably, improvement of goblet cell activity and MUC2 
production has been reported in an experimental model 
of NEC by application of bovine milk exosomes [28]. Mu-
cus does not only form a nonspecific physical barrier, but 
constrains the immunogenicity of gut antigens by deliv-
ering tolerogenic signals [61].

Finally, microRNAs of milk exosomes may improve 
inflammation and intestinal barrier function. Micro
RNA-148a and microRNA-21 are 2 major signature mi-
croRNAs of cow’s milk [62], which target Rho-associated 
coiled-coil containing protein kinase 1 (ROCK1) [63, 64]. 
Notably, microRNA-21 increases the expression level of 
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Fig. 2. Stool score, colon weight with fecal content, colon weight 
score, colon length, and colon length score. Mean and standard 
deviations for each parameter are given for wild-type animals 
(WT) and kindlin 2(−/−) mice with (+Ex) or without (−Ex) milk 
exosome treatment (n = 4 in each group). Scores for stool (0 = nor-
mal, 1 = loosely shaped, 2 = amorphous, 3 = diarrhea, +1 = for 
blood), colon weight (0 = <10%, 1 = <10–50%, 2 = >50–100%, 3 = 

>100–150%, 4 = >150% weight gain compared to the wild-types’ 
mean), and colon length (0 = <5%, 1 = 5–14%, 2 = 15–24%, 3 = 
25–35%, 4 = >35% shortening compared to the wild-types’ mean) 
were arbitrary defined. The p values for comparing 2 groups (wild-
type vs. kindlin 2(−/−) or kindlin 2(−/−) without treatment versus 
kindlin 2(−/−) with treatment) were calculated with unpaired t test.
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occludin via ROCK1 suppression and, thus, stabilizes the 
intestinal barrier [65]. On the other hand, ROCK1 over-
expression is associated with colorectal cancer (CRC) [66, 
67]. Moreover, microRNA-148a and microRNA-21 in-
hibit DNA methyltransferase 1 (DNMT1) [68], an onco-
gene which is also overexpressed in CRC [69–71]. Indeed, 
incubation of CRC cells (Lim 1215) with human milk 
exosomes increased the cellular content of microRNA-
148a [5], and addition of milk exosomes to normal intes-
tinal cells (CRL 1831) significantly decreased DNMT1 ex-
pression [5, 24]. Three large meta-analyses came to the 
conclusion that milk consumption but not the consump-
tion of fermented milk products, where exosomal mi-
croRNAs including microRNA-21 are depleted [52], has 
a protective effect against the development of CRC [72–
74].

Although this pilot study proved a beneficial effect of 
milk exosomes in a model of UC, long-term oral applica-
tion of milk exosomes may bare the risk of other diseases 
of civilization such as prostate cancer and type 2 diabetes 
mellitus [9, 75–77]. Nevertheless, oral exosome adminis-
tration may be a promising new approach for the treat-
ment of inflammatory bowel diseases as it has recently 
been confirmed by autologous exosome transfer in a mu-
rine colitis model [78].
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