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Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T 
cells that can activate either in response to T-cell receptor 
(TCR) engagement or through activating cytokines and play 
an important role in autoimmune disorders. The study exam-
ined the level and function of MAIT cells in patients with in-
flammatory bowel disease (IBD). Circulating MAIT cell levels 
were significantly reduced in IBD patients. This MAIT cell de-
ficiency was correlated with IBD disease activity grades, he-
moglobin, and CRP. IFN-γ production of circulating MAIT 
cells in response to both MHC class 1b-like related protein 
(MR1)-dependent and -independent stimulations was de-
creased in IBD patients, which was partially associated with 
reduced activation of nuclear factor of activated T cells 1 
(NFAT1) transcription factor, a main regulator of IFN-γ pro-
duction. Expression levels of CD69, programmed death-1 
(PD-1), and annexin V in MAIT cells were elevated in IBD pa-
tients. CCL20, CXCL10, CXCL16, and CCL25 were expressed 
higher in inflamed intestinal tissues than in noninflamed tis-

sues. This study demonstrates that circulating MAIT cells are 
activated and numerically and functionally deficient in IBD 
patients. Furthermore, activated MAIT cells have the poten-
tial to migrate to inflamed tissues. These findings suggest an 
important role of MAIT cells in mucosal immunity in IBD.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

Inflammatory bowel diseases (IBDs), including ulcer-
ative colitis (UC) and Crohn’s disease (CD), are chronic 
inflammatory diseases of unknown origin. IBD has be-
come a global disease with increasing incidence in newly 
industrialized and westernized countries. Genetic and 
environmental factors with inadequate host immune re-
sponse to gut flora appear to play important roles in the 
pathogenesis of IBD [1–3]. Adaptive immune response 
has been classically considered to play a major role in IBD 
pathogenesis [4]. Infiltrating lymphocytes including T 
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helper (Th)1 cells and Th17 cells can lead to the develop-
ment of intestinal lesions [5]. However, recent evidences 
suggest that innate immune response is equally impor-
tant in inducing gut inflammation [6]. Altered epithelial 
barrier function and aberrant innate immune responses 
contribute to intestinal inflammation in IBD patients [6].

Mucosal-associated invariant T (MAIT) cells are in-
nate lymphocytes that express a conserved invariant T-
cell receptor (TCR) Vα7.2-Jα33 chain paired with a lim-
ited set of Vβ chains [7]. Using distinct pairs of TCR 
chains, MAIT cells can recognize bacteria-derived ribo-
flavin (vitamin B2) metabolites presented by MHC class 
1b-like related protein (MR1) [7, 8]. Upon MR1-depen-
dent recognition of antigens, MAIT cells are activated to 
rapidly release Th1/Th17 proinflammatory cytokines 
(i.e., interferon [IFN]-γ, tumor necrosis factor [TNF]-α, 
and interleukin [IL]-17) and cytotoxic molecules (i.e., 
granzyme and perforin) to kill infected host cells [9]. 
MAIT cells are abundant in peripheral blood where they 
express gut-homing chemokine receptors such as CCR6 
and CCR9. They are also abundant in intestinal mucosa 
where they likely confront normal flora or pathogenic 
bacteria producing bacterial ligands [10, 11]. Given tis-
sue-homing properties and rapid production of proin-
flammatory cytokines, MAIT cells may play an important 
role in infectious diseases [12–18] and autoimmune dis-
orders [19–21].

Results from experiment with transfer of MAIT cells 
to TNBS-induced IBD murine models suggest that MAIT 
cells might play a protective role in TNBS-induced intes-
tinal inflammation [22]. In addition, previous studies 
have reported MAIT cell dysfunction in IBD patients [21, 
23, 24]. However, the role of MAIT cells in IBD patients 
remains unclear. Accordingly, the objectives of this study 
were (1) to examine the level and function of MAIT cells 
in IBD patients, (2) to evaluate the clinical relevance of 
MAIT cell levels, and (3) to determine the mechanism 
responsible for MAIT cell dysfunction.

Patients and Methods

Subjects
The study cohort included 40 patients with IBD (12 women and 

28 men, mean age ± SD: 33.2 ± 14.6 years) and 30 healthy controls 
(HCs; 14 women and 16 men, mean age ± SD: 31.5 ± 13.7 years). 
IBD patients consisted of 22 CD patients and 18 UC patients. The 
cohort had no history of respiratory disorders such as chronic ob-
structive pulmonary disease or pulmonary embolism, autoim-
mune diseases, infectious diseases, recent surgery, malignancies, 
left ventricular dysfunction, use of immunosuppressive drugs, or 
chronic liver, renal, and endocrine diseases. Clinical and labora-

tory characteristics of patients are summarized in Table 1. Based 
on clinical disease activity including Crohn’s Disease Activity In-
dex (CDAI) and Mayo Clinical Index (MCI) for Assessment of 
Ulcerative Colitis Activity [25–27], 40 patients with IBD were clas-
sified into the following 4 grades: grade 1, remission (CDAI < 150, 
MCI ≤ 2); grade 2, mild (150 ≤ CDAI ≤ 220, 3 ≤ MCI ≤ 5); grade 
3, moderate (220 < CDAI ≤ 450, 6 ≤ MCI < 10); and grade 4, severe 
(CDAI > 450, MCI ≥ 10). Of these 40 IBD patients, 17 patients had 
IBD of remission state, 15 patients had mild IBD, 4 patients had 
moderate IBD, 1 patient had severe IBD, and the remaining 3 pa-
tients were not available for classification.

Monoclonal Antibodies and Flow Cytometry
The following monoclonal antibodies (mAbs) and reagents 

were used in this study: allophycocyanin (APC)-Cy7-conjugated 
anti-CD3, phycoerythrin (PE)-Cy5-conjugated anti-CD161, fluo-
rescein isothiocyanate (FITC)-conjugated anti-TCR γδ, FITC-
conjugated anti-CD3, FITC-conjugated anti-IFN-γ, PE-conjugat-
ed anti-IL-17, PE-Cy7-conjugated anti-TNF-α, PE-conjugated 

Table 1. Clinical and laboratory characteristics of 40 patients with 
IBD

Characteristic IBD

Total (CD/UC), n 40 (22/18)
Sex, male/female, n 28/12
Age (mean ± SD), years 33.2±14.6
Disease activitya

Grade 1 (remission) 17
Grade 2 (mild) 15
Grade 3 (moderate) 4
Grade 4 (severe) 1
NA 3

Medication
5-ASA, n (%) 36 (90)
Azathioprine, n (%) 16 (40)

Laboratory variables (mean ± SD)
Leukocyte count, cells/μL 6,903±2,370
Lymphocyte count, cells/μL 1,642±906.1
Hemoglobin level, g/dL 12.7±2.38
Neutrophil count, cells/μL 14,251±21,933
Platelet count, ×103 cells/μL 283.4±120.6
Total protein level, g/dL 5.93±7.946
Albumin, g/dL 5.03±1.50
Creatinine, mg/dL 4.12±13.96
CRP level, mg/dL 2.61±4.00
ESR level, mm/h 35.6±22.31

IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, 
ulcerative colitis; NA, not available; 5-ASA, 5-acetylsalicylic acid; 
CRP, C-reactive protein; ESR, erythrocyte sedimentation rate. 
a Disease activity of Crohn’s disease and ulcerative colitis was based 
on Crohn’s Disease Activity Index (CDAI) and Mayo Clinical In-
dex (MCI) for Assessment of Ulcerative Colitis Activity, respec-
tively: grade 1, remission (CDAI <150, MCI ≤2); grade 2, mild 
(150≤ CDAI ≤220, 3≤ MCI ≤5); grade 3, moderate (220< CDAI ≤ 
450, 6≤ MCI <10); and grade 4, severe (CDAI >450, MCI ≥10).
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anti-CD69, PE-conjugated anti-lymphocyte-activation gene3 
(LAG3), FITC-conjugated mouse IgG isotype, PE-conjugated 
mouse IgG isotype, and PE-Cy7-conjugated mouse IgG isotype 
control (all from Becton Dickinson, San Diego, CA, USA); PE-
conjugated anti-programmed cell death-1 (PD-1; eBioscience, San 
Diego, CA, USA) and APC-conjugated anti-TCR Vα7.2 (BioLeg-
end, San Diego, CA, USA). Cells were stained with combinations 
of appropriate mAbs for 20 min at 4°C. Stained cells were analyzed 
on a Navios flow cytometer using Kaluza software (Beckman Coul-
ter, Brea, CA, USA).

Isolation of Peripheral Blood Mononuclear Cells and 
Identification of MAIT Cells.
Peripheral venous blood samples were collected in heparin-

containing tubes and peripheral blood mononuclear cells (PBMCs) 
were isolated by density-gradient centrifugation using Ficoll-
Paque Plus solution (Amersham Bioscience, Uppsala, Sweden). 
MAIT cells were identified phenotypically as CD3+TCRγδ−
Vα7.2+CD161high by flow cytometry as previously described [10, 
20, 28]. Total lymphocyte numbers were measured with a Coulter 
LH750 automatic hematology analyzer (Beckman Coulter, Miami, 
FL, USA). Absolute numbers of MAIT cells were calculated by 
multiplying MAIT cell percentages by CD3+γδ−T-cell percent-
ages and total lymphocyte numbers (per microliter) in peripheral 
blood.

Functional MAIT Cell Assay
Expression levels of IFN-γ, IL-17A, and TNF-α in MAIT cells 

were detected by intracellular cytokine flow cytometry as previ-
ously described [10, 11, 19, 28]. In brief, freshly isolated PBMCs  
(1 × 106/well) were incubated in 1 mL complete media consisting 
of RPMI 1640, 2 mM L-glutamine, 100 units/mL of penicillin, and 
100 μg/mL of streptomycin and supplemented with 10% fetal bo-
vine serum (FBS; Gibco BRL, Grand Island, NY, USA) with or with-
out ERK inhibitor (PD98059, 50 μM; Calbiochem, San Diego, CA, 
USA) for 1 h, p38 MAPK inhibitor (SB220025, 10 μM; Calbiochem) 
for 1 h, or calcineurin inhibitor (cyclosporin A [CsA], 2 μM; Cal-
biochem) for 30 min. They were then stimulated with PMA (100 
ng/mL; Sigma, St. Louis, MO, USA) and ionomycin (IM; 1 μM; Sig-
ma) for 4 h. For intracellular cytokine staining, 1 μL brefeldin A 
(GolgiPlug; BD Biosciences, San Diego, CA, USA) was added. The 
final concentration of brefeldin A was 10 μg/mL. After incubation 
for an additional 4 h, the cells were stained with APC-Alexa Fluor 
750-conjugated anti-CD3, PE-Cy5-conjugated anti-CD161, and 
APC-conjugated anti-TCR Vα7.2 mAb for 20 min at 4°C, fixed 
with 4% paraformaldehyde for 15 min at room temperature, and 
permeabilized with Perm/Wash solution (BD Biosciences) for 10 
min. Cell were then stained with FITC-conjugated anti-IFN-γ, PE-
conjugated anti-IL-17A, or PE-Cy7-conjugated anti-TNF-α mAbs 
for 30 min at 4°C and analyzed by flow cytometry.

In vitro Infection with Escherichia coli
In vitro infection was performed as previously described [10, 

29]. E. coli was provided by Clinical Microbiology Laboratory of 
Chonnam National University Hospital. American Type Culture 
Collection E. coli 25922 reference strain was used. E. coli cells were 
opsonized for 2 min using the RPMI1640 medium (Life Technolo-
gies BRL) supplemented with 2% human serum and 10% FBS. 
They were then washed twice in a complete medium without an-
tibiotics. Opsonized E. coli were passed through a 5-μm syringe 

filter (Millipore, Billerica, MA, USA), counted in a Petroff-Hauss-
er chamber, and added to THP-1 cells (American Type Culture 
Collection) at a multiplicity of infection of 10. The duration of 
infection was 2 h for all experiments. Infected THP-1 cells (1 × 106/
well) used as APCs were washed twice with the RPMI 1640 medi-
um without antibiotics and then cultured with freshly isolated 
PBMCs (1 × 106/well) for 24 h. Production of IFN-γ, IL-17A, and 
TNF-α by MAIT cells was determined by intracellular cytokine 
flow cytometry.

Western Blot Analysis
Western blotting was performed as previously described [30, 

31]. In brief, purified MAIT cells (1 × 106 cells/well) were stimu-
lated with IM (1 μM) for 3 min, harvested after washing with ice-
cold phosphate-buffered saline (PBS), and lysed in the extraction 
buffer consisting of 50 mM Tris-HCl (pH8.0), 150 mM NaCl, 2 mM 
EDTA, 1% Triton X-100, 0.1% sodium dodecyl sulfate (SDS), 1% 
sodium deoxycholate, and 0.01% protease inhibitor mixture. Pro-
teins (5 μg) were resolved by 10% SDS-PAGE (sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis) and then transferred 
to polyvinylidene difluoride (PVDF) membranes (Amersham Bio-
sciences, Piscataway, NJ, USA). The membranes were treated with 
5% skim milk for 1 h and incubated with a series of antibodies, 
including nuclear factor of activated T cells 1 (NFAT1; BD Biosci-
ences) and actin (Sigma, St. Louis, MO, USA). They were then in-
cubated with horseradish peroxidase (HRP)-conjugated second-
ary antibodies (Abcam, Cambridge, UK). Blots were developed 
with enhanced chemiluminescence (ECL) solution (Millipore 
Corporation, Billerica, MA, USA). Signals were detected and ana-
lyzed using a LAS3000 luminescent image analyzer (Fuji Photo 
Film, Tokyo, Japan). NFAT1 levels were represented by the ratios 
of dephospho-(active form) NFAT1 to phospho-(inactive form) 
NFAT1. The NFAT1/pNFAT1 ratios were normalized to the levels 
of actin.

Statistical Analysis
All comparisons of percentages, absolute numbers, cytokine 

levels and ratios of MAIT cells, and expression levels of CD69, PD-
1, and LAG3 were performed by analysis of covariance after adjust-
ing for age and sex using Bonferroni correction for multiple com-
parisons. Changes in IFN-γ levels in MAIT cells after treatment 
with PMA and IM with or without inhibitors of the signaling path-
way were examined using a paired t test. Linear regression analysis 
was used to test associations between MAIT cell levels and clinical 
or laboratory parameters. Comparisons of NFAT1/pNFAT1 ratios 
between HCs and IBD patients were performed by the Mann-
Whitney U test. Statistical significance was considered when p val-
ue <0.05. All statistical analyses were performed using SPSS ver-
sion 18.0 software (SPSS Inc., Chicago, IL, USA).

Results

Reduced Numbers of Circulating MAIT Cells in IBD 
Patients
Percentages and absolute numbers of MAIT cells in 

peripheral blood samples of 22 patients with CD, 18 pa-
tients with UC, and 30 HCs were determined by flow cy-
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tometry. All comparisons of percentages and absolute 
numbers of MAIT cells were performed by analysis of 
covariance after adjusting for age and sex using Bonfer-
roni correction for multiple comparisons as described in 
the section Patients and Methods. MAIT cells were de-
fined as CD3+γδ− T cells expressing TCR Vα7.2 and CD-
161high (Fig. 1a). Percentages of MAIT cells were signifi-
cantly lower in both CD and UC patients than in HCs 
(median 0.87 vs. 3.88%, p < 0.05, and 0.95 vs. 3.88%, p < 
0.005, respectively; Fig. 1b). Absolute numbers of MAIT 
cells were calculated by multiplying MAIT cell percent-
ages by CD3+TCRγδ− T-cell percentages and total lym-
phocyte numbers (per microliter of peripheral blood). 
CD patients had significantly lower absolute numbers of 
MAIT cells than HCs (median 4.74 vs. 27.3 cells/μL, p < 
0.005). However, the absolute numbers of MAIT cells 

tended to drop in UC patients as compared with HCs 
without reaching statistical significance (median 5.60 vs. 
27.3 cells/μL, p > 0.05; Fig. 1c).

Relationship between Circulating MAIT Cell Levels 
and Clinical Parameters in IBD Patients
To evaluate the clinical relevance of MAIT cell levels 

in IBD patients, we investigated the correlation between 
MAIT cell numbers in peripheral blood and clinical pa-
rameters using a linear regression analysis (Table 2). Be-
cause distributions were skewed, absolute numbers of 
MAIT cells were log-transformed for analysis. Linear re-
gression analysis showed that log-transformed MAIT cell 
numbers were significantly correlated with IBD activity 
grade, hemoglobin level, and C-reactive protein level (p = 
0.027, p = 0.0001, and p = 0.033, respectively). However, 
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Fig. 1. Decreased circulating MAIT cell proportions in peripheral 
blood of IBD patients. Freshly isolated PBMCs from 30 HCs, 22 
patients with CD, and 18 patients with UC were stained with APC-
Cy7-conjugated anti-CD3, FITC-conjugated anti-TCR γδ, APC-
conjugated anti-TCR Vα7.2, and PE-Cy5-conjugated anti-CD161 
mAbs and then analyzed by flow cytometry. Percentages of MAIT 
cells were calculated within a αβ T-cell gate. a Representative 
MAIT cell percentages as determined by flow cytometry. b MAIT 

cell percentages among peripheral blood αβ T cells. c Absolute 
MAIT cell numbers (per microliter of blood). Symbols represent 
individual subjects. Horizontal lines are median values. MAIT, 
mucosal-associated invariant T; IBD, inflammatory bowel disease; 
PBMC, peripheral blood mononuclear cell; HC, healthy control; 
CD, Crohn’s disease; UC, ulcerative colitis; APC, allophycocyanin; 
FITC, fluorescein isothiocyanate; TCR, T-cell receptor; PE, phyco-
erythrin. *p < 0.05, **p < 0.005 by the ANCOVA test.
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log-transformed MAIT cells showed no significant cor-
relation with sex, age, leukocyte count, lymphocyte count, 
monocyte count, neutrophil count, platelet count, creati-
nine level, total protein level, albumin level, or erythro-
cyte sedimentation rate (Table 2).

Impaired Production of IFN-γ in Circulating MAIT 
Cells of IBD Patients
To examine MR1-independent cytokine production in 

MAIT cells, PBMCs from 9 IBD patients and 9 HCs were 
incubated with PMA and IM for 1 h and then expression 
levels of IFN-γ, IL-17, and TNF-α in MAIT cell population 
were examined at single-cell level by intracellular flow cy-
tometry (Fig.  2a, c). Percentages of IFN-γ+ MAIT cells 
were found to be significantly lower in IBD patients than in 
HCs (median 46.9 vs. 65.4%, p < 0.05). IL-17+ and TNF-α+ 
MAIT cell levels were comparable between IBD patients 
and HCs. Mean fluorescence intensities (MFIs) of IFN-γ 
production by MAIT cells were also found to be signifi-
cantly lower in IBD patients than in HCs (median 12.4 vs. 
5.95, p < 0.05). However, MFIs of IL-17 and TNF-α on 
MAIT cell were comparable between IBD patients and HCs 

(see online suppl. Fig. 1a; for all online suppl. material, see 
www.karger.com/doi/10.1159/000507931). Next, we ex-
amined MR1-dependent cytokine production by MAIT 
cells. PBMCs from 9 IBD patients and 9HCs were stimu-
lated for 24 h with E. coli-infected THP-1 cells, and then the 
production of IFN-γ, IL-17, and TNF-α in MAIT cells was 
examined by intracellular cytokine flow cytometry (Fig. 2b, 
d). Percentages of IFN-γ+ MAIT cells were found to be sig-
nificantly lower in IBD patients than in HCs (median 12.3 
vs. 20.5%, p < 0.005). IL-17+ and TNF-α+ MAIT cell levels 
were similar between IBD patients and HCs. However, 
MFIs of IFN-γ, IL-17, and TNF-α by MAIT cells were also 
comparable between IBD patients and HCs (online suppl. 
Fig. 1b). Moreover, ratios of IL-17/IFN-γ production in re-
sponse to PMA and IM were significantly higher in IBD 
patients than in HCs (median ratio 0.08 vs. 0.22, p < 0.01). 
However, ratios of IL-17/IFN-γ production in response to 
E. coli-infected THP-1 cells or those of TNF-α/IFN-γ pro-
duction in response to both stimulations were comparable 
between IBD patients and HCs (Fig. 2e, f).

Activation of MAIT Cells in IBD Patients
To determine whether activation-induced cell death 

could cause MAIT cell deficiency in IBD patients, CD69+ 
and annexin V+ cell levels in circulating MAIT cells were 
determined by flow cytometry (Fig. 3a, c). Percentages of 
CD69+ and annexin V+ MAIT cells were found to be sig-
nificantly higher in IBD patients than in HCs (median 
39.9 vs. 6.09%, p < 0.0001, for CD69; median 15.8 vs. 
11.9%, p < 0.05, for annexin V, respectively; Fig. 3b, d). To 
determine whether impaired IFN-γ production by MAIT 
cells was related to PD-1, a representative coinhibitory re-
ceptor implicated in T-cell anergy [32, 33], we examined 
expression levels of PD-1 in peripheral blood samples of 
20 IBD patients and 15 HCs. Expression levels of PD-1 
were found to be significantly higher in IBD patients than 
in HCs (median 27.8 vs. 3.73%, p < 0.0001; Fig. 3e, f).

Expression Levels of Chemokines in IBD Tissues
To determine whether MAIT cells might have the ca-

pability of trafficking into peripheral target tissues (i.e., 
intestine), the pattern of tissue-homing chemokine re-
ceptor expression in circulating MAIT cells was deter-
mined by flow cytometry. MAIT cells in peripheral blood 
exhibited high levels of CCR6 and CXCR6, intermediate 
levels of CXCR3, and low levels of CCR9. These chemo-
kine receptor expressions were comparable between IBD 
patients and HCs (Fig. 4a, b). We also analyzed the pat-
tern of each corresponding chemokine expression in 
paired samples of inflamed and its adjacent noninflamed 

Table 2. Regression coefficients for log-transformed absolute 
MAIT cell numbers with respect to clinical and laboratory findings 
in patients with IBD

Variables βa SE p value

Sex −0.054 0.254 0.832
Age, years 0.004 0.008 0.580
IBD activity gradeb −0.342 0.148 0.027*
Leukocyte count, cells/μL −0.0001 0.000 0.287
Lymphocyte count, cells/μL 0.000 0.000 0.103
Monocyte count, cells/μL 0.000 0.001 0.496
Neutrophil count, cells/μL −0.0001 0.000 0.703
Hemoglobin, g/dL 0.164 0.042 0.000*
Platelet count, ×103 cells/μL −0.002 0.001 0.070
Creatinine, mg/dL 0.003 0.009 0.750
Total protein, g/dL 0.003 0.018 0.849
Albumin, g/dL −0.082 0.077 0.298
CRP, mg/dL −0.062 0.028 0.033*
ESR, mm/h −0.007 0.007 0.347

IBD, inflammatory bowel disease; CRP, C-reactive protein; 
ESR, erythrocyte sedimentation rate; SE, standard error. a Regres-
sion coefficient. b Disease activity of Crohn’s disease and ulcerative 
colitis was based on Crohn’s Disease Activity Index (CDAI) and 
Mayo Clinical Index (MCI) for Assessment of Ulcerative Colitis 
Activity, respectively: grade 1, remission (CDAI <150, MCI ≤2); 
grade 2, mild (150≤ CDAI ≤220, 3≤ MCI ≤5); grade 3, moderate 
(220< CDAI ≤450, 6≤ MCI <10); and grade 4, severe (CDAI >450, 
MCI ≥10). * Statistical significance.
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Fig. 2. Reduced expression of IFN-γ in circulating MAIT cells of 
IBD patients. Freshly isolated PBMCs (1 × 106/well) were incu-
bated with PMA (100 ng/mL) and IM (1 μM) for 1 h or with E. 
coli-infected THP-1 cells (1 × 106/well) for 24 h. Representative 
IFN-γ, IL-17, and TNF-α expression levels in MAIT cell popula-
tion were determined by intracellular flow cytometry after stimu-
lation with PMA and IM (a) or with E. coli-infected THP-1 cells 
(b). c, d Production of cytokines in circulating MAIT cells. Data 
on each cytokine were obtained from 9 HCs to 9 IBD patients in 

response to PMA and IM (c) or E. coli-infected THP-1 cells (d). e, 
f Ratios of IL-17/IFN-γ and TNF-α/IFN-γ in circulating MAIT 
cells. Data were also obtained from 9 HCs to 9 IBD patients in re-
sponse to PMA and IM (e) or with E. coli-infected THP-1 cells (f). 
Symbols represent individual subjects. Horizontal lines are medi-
an values. IFN, interferon; MAIT, mucosal-associated invariant T; 
IBD, inflammatory bowel disease; PBMC, peripheral blood mono-
nuclear cell; IL, interleukin; HC, healthy control; APC, allophyco-
cyanin. *p < 0.05, **p < 0.01, ***p < 0.005 by the ANCOVA test.
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IBD tissues by real-time PCR. All chemokine mRNAs 
were found to be more strongly expressed in inflamed tis-
sues than in noninflamed tissues (Fig. 4c). Taken togeth-
er, these data indicate that circulating MAIT cells have 
tissue tropism and that they can migrate from peripheral 
blood into inflamed tissue via this chemokine-chemokine 
receptor axis in IBD patients.

Defect in Activation of NFAT1 in MAIT Cells of IBD 
Patients
Our data showed that IFN-γ production by MAIT cells 

was defective in IBD patients. To determine which the 
signaling pathway was the main regulator of IFN-γ in 
MAIT cells, ERK (PD98059), p38 MAPK (SB220025), or 
calcineurin (cyclosporin A) inhibitors were added to cells 
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MAIT cell population. Data in b, d, and f were obtained from 15 
HCs to 20 patients with IBD. Symbols represent individual sub-
jects. Horizontal lines are median values. MAIT, mucosal-associ-
ated invariant T; IBD, inflammatory bowel disease; PBMC, periph-
eral blood mononuclear cell; FITC, fluorescein isothiocyanate; 
APC, allophycocyanin; PE, phycoerythrin; HC, healthy control.  
*p < 0.05, **p < 0.0001 by the ANCOVA test.



MAIT Cells in Patients with IBD 429J Innate Immun 2020;12:422–433
DOI: 10.1159/000507931

before PMA and IM stimulation. Pretreatment with cy-
closporin A or PD98059 significantly reduced IFN-γ pro-
duction by MAIT cells in IBD patients. Moreover, cyclo-
sporin A had more suppressive effect than PD98059. 
However, no suppressive effect of SB220025 was found in 
HCs and IBD patients (Fig. 5a). In addition, pretreatment 
with cyclosporin A significantly reduced IFN-γ produc-
tion by CD3+ T cells in IBD patients (online suppl. Fig. 
2). These findings suggest that the calcineurin-NFAT sig-
naling pathway is the major regulator of IFN-γ produc-
tion by T cells, including MAIT cells. Thus, we analyzed 
activation of NFAT1 signaling from pNFAT1 (inactive 
form) to NFAT1 (active form) in MAIT cells by immu-

noblotting. After stimulating MAIT cells with IM, the ex-
pression of NFAT1 was reduced in IBD patients com-
pared to that in HCs (mean ± SEM 73.5 ± 0.93 vs. 83.0 ± 
0.85 ratio, p < 0.05; Fig.  5b, c). This indicates that de-
creased NFAT activation is responsible for defective 
IFN-γ production in IBD patients.

Discussion

The present study demonstrated that percentages and 
absolute numbers of circulating MAIT cells were reduced 
in IBD patients compared with those in HCs. This MAIT 
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cell deficiency was correlated with IBD disease activity 
grades, hemoglobin, and CRP. We also observed that the 
numbers of CD69+, annexin V+, and PD-1+ in circulating 
MAIT cells were significantly increased in IBD patients 
compared with those in HCs. In addition, our study showed 
that the number of circulating IFN-γ+ MAIT cells in re-
sponse to both MR1-dependent and -independent stimu-
lations was decreased in IBD patients, which was partially 
associated with reduced activation of NFAT1 transcription 
factor, a main regulator of IFN-γ production by MAIT 
cells. As compared with the noninflamed tissues in IBD 
patients, the inflamed intestinal tissues displayed the high-
est expression of chemokine CCL25, which is the ligand for 
CCR9, a gut-specific chemokine receptor. This leads us to 
speculate that MAIT cells might have the potential to mi-
grate into inflamed intestine, possibly resulting in MAIT 
cell decrease in the peripheral blood of IBD patients.

Our data showed that the number of circulating MAIT 
cells was reduced in IBD patients, consistent with previ-
ous studies on IBD [21, 23, 24, 34]. Peripheral blood 
MAIT cell deficiency has also been reported in a variety 
of infectious diseases, autoimmune diseases, inflamma-
tory diseases, and metabolic diseases [12, 13, 16, 18, 35–

43]. In addition, frequencies of CD3 T cells, αβ T cells, 
and γδ T cells were found to be decreased in IBD patients 
compared with those in HCs (online suppl. Fig. 3). These 
findings suggest that decline in peripheral blood cell 
numbers might be a general phenomenon of T cells rath-
er than specific to MAIT cells.

In the present study, circulating MAIT cell numbers 
were found to be inversely correlated with disease activ-
ity of IBD and CRP level. Consistent with our data, Tom-
inaga et al. [24] have recently reported that MAIT cell 
numbers in peripheral blood are inversely correlated with 
disease activity of IBD. Furthermore, Haga et al. [34] have 
reported that MAIT cell frequency in inflamed mucosa is 
positively correlated with clinical and endoscopic disease 
activities in UC patients. These findings suggest that 
MAIT cells may migrate to inflamed mucosa, leading to 
peripheral blood MAIT cell deficiency. However, the 
enumeration of MAIT cells in the gut mucosa is lacking, 
which is a weakness in the present study. In addition, we 
clearly found a notable association between circulating 
MAIT cell number and hemoglobin level in IBD patients, 
in parallel with our previous reports on colon cancer and 
trauma [41, 44]. Collectively, these findings suggest that 
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circulating MAIT cell levels is associated with inflamma-
tory or disease activity of IBD.

In the present study, fewer circulating MAIT cells from 
IBD patients produced IFN-γ with increased tendency of 
IL-17+ MAIT cell number in response to stimulation with 
PMA/IM or E. coli-infected APCs, resulting in significant-
ly increased ratio of IL-17/IFN-γ production. When re-
analyzing the data in terms of single, double, or triple cy-
tokine producers, the impaired production of IFN-γ in cir-
culating MAIT cells was due to a decrease in single IFN-γ 
producer, a major subset of cytokine-producing MAIT 
cells (online suppl. Fig. 4). In agreement with our data, Ser-
riari et al. [21] have reported that circulating MAIT cells 
exhibit enhanced production of IL-17 with reduced pro-
duction of IFN-γ in CD patients. In addition, 2 previous 
studies have demonstrated that circulating MAIT cells dis-
play enhanced production of IL-17 with preserved produc-
tion of IFN-γ in IBD patients [24, 34]. These findings sug-
gest that circulating MAIT cells reflect a Th1-to-Th17 shift 
in the cytokine secretion profile in IBD patients. A clinical 
trial has demonstrated that ustekinumab, a human IL12/23 
monoclonal antibody for targeting the Th17 pathway, is 
successful in treating CD patients [45]. On the contrary, 
data from experimental mouse colitis models have shown 
that administration of a neutralizing IL-17 antibody result-
ed in worsening of colitis [46]. Moreover, a clinical trial has 
shown that secukinumab, a human anti-IL-17A monoclo-
nal antibody, was ineffective with high rates of adverse 
events in CD patients and that a proportion of the patients 
even displayed worsened disease [47]. Thus, it remains un-
clear whether this secretion pattern of cytokines in circu-
lating MAIT cells plays a protective or pathological role in 
IBD patients.

Our data revealed that circulating MAIT cell deficiency 
was accompanied by upregulated expression of CD69, an-
nexin V, and PD-1 in circulating MAIT cells, indicating 
that reduction in MAIT cell numbers might be due partly 
to increased activation-induced cell death. Similar obser-
vations have been described in previous studies [23, 34]. In 
addition, we hypothesized that reduced MAIT cell number 
in the peripheral blood might be partly due to their migra-
tion to mucosal lesions in IBD from circulation. This hy-
pothesis was supported by our data showing that circulat-
ing MAIT cells exhibited higher levels of CCR6 and 
CXCR6, intermediated level of CXCR3, and lower level of 
CCR9 in IBD patients, consistent with previous reports 
[41, 48]. Tominaga et al. [24] have also reported that acti-
vated CCR6-expressing MAIT cells are accumulated in in-
flamed colon. This was further corroborated by our find-
ing showing that inflamed colon exhibited higher expres-

sions of CCL20, CXCL10, CXCL16, and CCL25 as 
corresponding chemokine ligands for CCR6, CXCR3, 
CXCR6, and CCR9, respectively, than noninflamed tissue. 
Taken together, these results suggest that circulating 
MAIT cell deficiency in IBD patients may be caused by 
both migration and activation-induced cell death.

In addition, we analyzed the correlation between ex-
pression of PD-1 or chemokine receptors and cytokines 
produced by the MAIT cells in IBD patients. The analysis 
showed a moderate inverse correlation between PD-1 ex-
pression and IFN-γ or TNF-α produced by MAIT cells in 
IBD patients (online suppl. Fig. 5). However, there was no 
correlation between PD-1 expression and IL-17 produc-
tion. The analysis also showed no correlation between 
chemokine receptor expression and cytokine production. 
PD-1, a well-known coinhibitory molecule expressed on 
T cells, has been implicated in the exhaustion and anergy 
of T cells [49, 50]. Collectively, these findings suggest that 
impaired production of proinflammatory cytokines by 
MAIT cells in IBD patients may be associated with MAIT 
cell anergy or exhaustion.

In the present study, IFN-γ production by MAIT cells 
was found to be mainly regulated by the Ca2+/calcineu-
rin/NFAT1 signaling pathway. Our Western blot analysis 
showed that circulating MAIT cells displayed reduced ac-
tivation of NFAT1 transcription factor in IBD patients, 
indicating that reduced IFN-γ production by MAIT cells 
was due to defective NFAT1 activation. This is consistent 
with our previous study showing defective NFAT1-de-
pendent IFN-γ production by MAIT cells in systemic lu-
pus erythematosus [20]. Teixeira et al. [51] have also 
shown that IFN-γ production by CD8+ T cells depends 
on NFAT1 transcription factor. Further analysis is need-
ed to determine what factors can cause defective NFAT1 
activation in MAIT cells.

Conclusions

This study shows that circulating MAIT cells are nu-
merically and functionally deficient in IBD patients and 
that the reduced number of MAIT cells may be associated 
with disease activity. In addition, we report that MAIT 
cells are activated and have the potential to migrate into 
inflamed intestinal tissues. Increased ratio of IL-17/IFN-γ 
production by MAIT cells is likely to be associated with 
defective activation of NFAT1, a critical transcription 
factor for IFN-γ production in IBD patients. These results 
suggest that cytokine secretion profile in MAIT cells may 
contribute to regulation of mucosal immunity in IBD.
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