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Abstract: The unmanned aerial vehicle (UAV) has drawn increasing attention in recent years,
especially in executing tasks such as natural disaster rescue and detection, and battlefield cooperative
operations. Task assignment and path planning for multiple UAVs in the above scenarios are
essential for successful mission execution. But, effectively balancing tasks to better excavate the
potential of UAVs remains a challenge, as well as efficiently generating feasible solutions from the
current one in constrained explosive solution spaces with the increase in the scale of optimization
problems. This paper proposes an efficient approach for task assignment and path planning with
the objective of balancing the tasks among UAVs and achieving satisfactory temporal resolutions.
To be specific, we add virtual nodes according to the number of UAVs to the original model of
the vehicle routing problem (VRP), thus make it easier to form a solution suitable for heuristic
algorithms. Besides, the concept of the universal distance matrix is proposed to transform the temporal
constraints to spatial constraints and simplify the programming model. Then, a Swap-and-Judge
Simulated Annealing (SJSA) algorithm is therefore proposed to improve the efficiency of generating
feasible neighboring solutions. Extensive experimental and comparative studies on different scenarios
demonstrate the efficiency of the proposed algorithm compared with the exact algorithm and
meta-heuristic algorithms. The results also inspire us about the characteristics of a population-based
algorithm in solving combinatorial discrete optimization problems.

Keywords: heuristic algorithm; path planning; simulated annealing; unmanned aerial vehicle

1. Introduction

The unmanned aerial vehicle (UAV), as an aircraft without people on the platform but in the
system, has obvious advantages compared with normal aircraft in case of dull dirty and dangerous
missions [1]. The use of multiple UAVs in disaster scenarios can provide support for decision-making
by government or rescue teams. In this kind of application scenarios, UAVs are usually utilized
for taking pictures of disaster areas to update information instantly, and sometimes for delivering
necessities for people trapped in an unfavorable environment where general vehicles cannot reach.
UAVs have also been widely used for providing information coverage as well as relay service
for ground Internet of Things (IoT) networks, in which UAVs can act as mobile edge computing
nodes to improve the quality of service (QoS) of IoT nodes or quality of experience (QoE) for
users [2,3]. Advantage of using UAVs instead of traditional vehicles is that they are not limited
by established infrastructure such as roads, and generally face less complex obstacle avoidance
scenarios [4]. This makes UAVs especially suitable for emergency reconnaissance and rescue in natural
disasters such as earthquakes and forest fires.
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In the above application scenarios, task assignment and path planning are fundamental problems
for UAVs to complete tasks efficiently. The general path planning problem for UAVs can be formulated
as an optimization problem with multiple constraints, caused by minimal flight length, minimal
flight time, and energy consumption [5]. The problem can also be viewed as a three-dimensional (3D)
Vehicle Routing Problem (VRP), which is a generalization of the Traveling Salesman Problem (TSP) [6].
In scenarios with multiple target nodes and multiple UAVs, the optimization problems may evolve
into large-scale combinatorial optimization problems, which usually require huge computing resources
to get optimal solutions.

For the task assignment of multiple UAVs, many methods have been adopted to address this
problem. For example, Shima et al. used the genetic algorithm for assigning multiple agents to perform
multiple tasks on multiple targets [7]. The genetic algorithm was also used in [8] for multiple UAVs
cooperative reconnaissance mission planning problems. Zhao et al. established the task planning
model according to task clustering of each UAV and proposed a task allocation method based on
improved K-means clustering algorithm of simulated annealing [9]. A hierarchical task assignment
method is proposed in [10], which broke the original problem down to sub-problems and solved
them with mixed-integer programming and ant colony algorithm. For UAVs with different sensor
capabilities, a modified Symbiotic Organisms Search (SOS) algorithm was adopted to optimize UAVs’
task sequence [11]. In article [12], an iterative strategy was proposed to enhance the performance of
task assignment and path planning in applications of distributed multiple UAVs. For task allocation
problems in a dynamic environment, article [13] proposed a quantum evolutionary inspired algorithm
to minimize resource consumption and enhance the reliability of the coalitions of UAVs.

The path planning methods of UAV has attracted even more attention in recent years. Due to the
nature of the problem, which usually belongs to the NP-Complete class of problems, population-based
meta-heuristic algorithms have been widely used to produce satisfactory solutions. A framework
based on Differential Evolution (DE) was utilized to design the off-line path planner for UAVs
in [14], and two-dimensional (2D) trajectories were produced by successive way-points while certain
coordination constraints were considered. DE was also combined with the quantum-behaved particle
swarm optimization (PSO) for UAV route planning in the marine environment [15]. The proposed
multiobjective DE in [16] provides a possible solution for UAV path planning in synthetic aperture
radar application. Modified or improved DE has also been applied in trajectory following and UAV
formation [17]. Other population-based evolutionary algorithms that are frequently used include the
Genetic Algorithm (GA), PSO, and their modified versions. Roberge et al. in their study used the GA
and PSO to deal with the automatic path planning problem and performed a comparison of these two
algorithms which showed that GA produced better trajectories to the PSO [18]. GA has also been used
in solving multiobjective mission planning problems involving a group of UAVs and a set of ground
control stations [19].

Different from DE and GA, meta-heuristic algorithm Simulated Annealing (SA) is not a
population-based approach, but it is still very popular in solving task and path planning problems.
For example, SA can be combined with GA to cope with three-dimensional route planning [20,21].
In another case, the K-means algorithm and SA algorithm were combined for problems with multiple
UAVs and multiple missions under complicated constraints [22]. 2D path planning in application
scenarios with radar threatening was also studied in [23], in which SA algorithm was adopted to
obtain nearly optimal path in 2D constrained environment, the author also tried to solve the route
planning problems for multiple UAVs by executing parallel SA algorithms in [24], and demonstrated
its effectiveness.

The literature discussed above provides some useful methods for task assignment and path
planning of UAVs. However, some important issues also urgently need to be addressed. First,
many studies still focus on single UAV or 2D application scenarios, while in practical applications,
since the load and battery life of single UAV are limited due to the weight constraint, cooperative
execution of tasks by multiple UAVs in the 3D environment has become a trend. Second, few studies
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considered the balanced task distribution and overall temporal resolution in scenarios that need UAVs
to perform tasks jointly, such as in the case of natural disaster relief where timely regional information
updates are required. Third, for large-scale optimization problems such as task assignment and path
planning, due to the large number of decision variables, the solution space could expand exponentially
with the increase of variables. Worse yet, a variety of strict constraints lead to a small proportion of
feasible solutions in the solution space. Due to the randomness of mutation and crossover operators
in general population-based algorithms, they are very likely to just obtain infeasible solutions based
on the existing solutions. The conversion process to feasible solutions could greatly increase the time
consumption of algorithms. Last but not least, although many heuristic algorithms are used in the task
assignment and path planning of UAVs, the effects of different kinds of popular algorithms in solving
task assignment and path planning problems have not been analyzed and compared, this is, however,
important to provide us with guidance on how to choose different types of algorithms.

In this paper, we propose an efficient heuristic algorithm based on Simulated Annealing,
with Swap-and-Judge strategy, namely SJSA, for multiple UAVs task assignment and path planning.
By adding virtual nodes to the original 3D VRP model according to the number of UAVs, we encode
the feasible solutions for multiple UAVs into a single array. Considering the temporal resolution
or maximum time constraints in a mission, we build the task assignment and path planning model,
and the balance of task assignment among UAVs is taken into account. Finally, in the context of
eight test scenarios and six application scenarios, the proposal is compared with the exact algorithm
CPLEX and three representative algorithms, respectively, and the proposed SJSA is demonstrated to
be efficient and competitive through experimental and comparative studies.

The remains of this paper is structured as follows: Section 2 formulates the problem, gives the
concept of the universal distance matrix and builds the model with the consideration of the temporal
resolution and balanced constraints. The algorithms analysis and design is presented in Section 3,
in which the population-based approaches are studied and the proposed strategy based on SA are
presented. Experiments and comparative studies in different scenarios are detailed in Section 4.
Section 5 concludes this paper.

2. Problem Formulation and Modeling

In this section, the problem of UAV scheduling with time resolution or maximum flying distance
constraints is analyzed. On this basis, the concept of the universal distance matrix is proposed and
the model with temporal and balanced constraints is established. Furthermore, the scheme of feasible
solution representation and generation is presented.

We consider the UAV application scenario in which a bunch of known target nodes need to be
assigned to a group of UAVs, which are going to be programmed to start from depot to visit these
targets in limited time and, of course, within the maximum flying distance of each UAV. Another similar
scenario is to apply UAVs to periodic sensing mission, in which a group of UAVs need to traverse
target nodes and return to the command center with a temporal resolution to guarantee the timely
update of the map information.

In above application scenarios, UAVs start from depot O to traverse N target nodes, like presented
in Figure 1, different colors means the generated path for different UAVs, the first UAV is assigned
to targets [x1, x2, x3] and traverse them in the sequence order, the second UAV is assigned to targets
[x4, x5], and the third is assigned to targets [x6, x7] and traverse them in the order x7 → x6. After the
mission is accomplished, all UAVs return to the original depot directly.

Generally, we assume there are N_node = {x1, x2, ..., xN} target nodes ready to be visited, and the
number of UAV is M, considering that every UAV need to return to the depot after its mission
finished, we convert the multitrip path generation problem into a single trip for the group of UAVs by
duplicating the depot node up to M virtual depot nodes, thereby different trips by different UAVs are
connected from the first to the last UAV. Like shown in Figure 2, if the objective is only to minimize the
total distance of all the path, then the task assignment and path planning problem for multiple UAVs
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would be similar to the TSP, except that the constraints here are more complicated than that of TSP,
which belongs to the NP-Complete class of problems [25].
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Figure 1. Unmanned aerial vehicle (UAV) task assignment and path planning model in the
application scenario.
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Figure 2. Convert the multipath problem into a single path problem.

It is worth mentioning that the target nodes here are not necessarily equal to the task locations.
Since UAVs do not have to fly directly above the fixed nodes to perform the task, the actual task
locations can be anywhere near the target nodes. For example, in periodic sensing missions where
UAVs are required to take pictures to update map information, they can fly above task locations such
as architectural or disaster scenes. However, the points which UAVs have to pass by or stay at need
to be determined before planning, these points are identified as target nodes. Similarly, UAVs do
not necessarily fly straight lines, these straight lines are used to represent the basic flight order and
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distances among all target nodes, the actual flight distance can be considered and represented by these
straight lines before planning.

2.1. Universal Distance Matrix

Suppose that x1 denotes the depot node or the command center, and N_node = {x2, x3, ..., xN+1}
are all of the N target nodes, the three-dimensional coordinates of all the nodes above are
known. All nodes including the depot can be expressed as V = {x1} ∪ {x2, x3, ..., xN+1} =

{xi|i ∈ {1, 2, ..., N + 1}}, then we can get the distance sij from any pair
(
xi, xj

)
of nodes according to

following equation.

sij =
√(

Xi − Xj
)2

+
(
Yi −Yj

)2
+
(
Zi − Zj

)2, (1)

where (Xi, Yi, Zi) and
(
Xj, Yj, Zj

)
are the 3D coordinates of nodes xi and xj. Furthermore, we can get

the distance matrix S as follows:

S =



s11 ... s1i ... s1j ... s1(N+1)
... ... ... ... ... ... ...
si1 ... sii ... sij ... si(N+1)
... ... ... ... ... ... ...
sj1 ... sji ... sjj ... sj(N+1)
... ... ... ... ... ... ...

s(N+1)1 ... s(N+1)i ... s(N+1)j ... s(N+1)(N+1)


. (2)

Usually, the diagonal elements of the distance matrix S are zeros, and the time of a UAV staying
at any node after the visit is accomplished is not considered.

In a practical application scenario, as the target nodes denote different tasks to be executed,
the execution time may vary from node to node. Without loss of generality, we propose the concept of
universal distance matrix Sd, which is used to encompass the time delay of nodes. Suppose that the
maximum velocity of UAV is vmax, the time needed to accomplish the task on node xi is ti, then the
virtual extra distance ∆si to node xi can be calculated as

∆si = vmax · ti. (3)

It is obvious that if task on node xi needs extra time to accomplish, then every visit from other
nodes to node xi will be delayed by ti, thus we can get the universal distance matrix Sd by adding ∆si
to the ith column of the distance matrix S where the ith node needs extra time. Note that we assume
the time delay on the depot node is 0, so the first column of the matrix will stay the same as S.

Sd =
(

sd
ij

)
(N+1)×(N+1)

=



s11 ... s1i + ∆si ... s1(N+1) + ∆sN+1

... ... ... ... ...
si1 ... sii + ∆si ... si(N+1) + ∆sN+1

... ... ... ... ...
sj1 ... sji + ∆si ... sj(N+1) + ∆sN+1

... ... ... ... ...
s(N+1)1 ... s(N+1)i + ∆si ... s(N+1)(N+1) + ∆sN+1


. (4)

2.2. Problem Modeling with Temporal and Balanced Constraints

In this section, we formulate a 3D VRP model for finding the best routes for a group of UAVs.
In both scenarios aforementioned, UAVs need to be assigned to target nodes, visit them and then return
to the depot. Since we can convert the task execution time into universal distance, we can simplify the
model by only considering the universal distance constraints. We define decision variable xu

ij = 1 if
UAV u travels from node i to node j, otherwise xu

ij = 0. To balance the flight among different UAVs,
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as well as to satisfy the temporal resolution in some application scenarios aforementioned, the objective
is to minimize the flight travelled by the UAV with the longest universal distance. The model can be
presented as follows:

minimize

{
M

max
u=1

{
N+1

∑
i=1

N+1

∑
j=1,j 6=i

xu
ij · sd

ij

}}
, (5)

subject to
N+1

∑
j=1

M

∑
u=1

xu
ij = 1, i = 2, ..., N + 1, (6)

N+1

∑
i=1

M

∑
u=1

xu
ij = 1, j = 2, ..., N + 1, (7)

N+1

∑
i=1

xu
1i = 1, ∀u, (8)

N+1

∑
i=1

xu
i1 = 1, ∀u, (9)

∑
i/∈S

∑
j∈S

xu
ij > 1, ∀S ⊂ V\ {x1} , |S| > 2, ∀u, (10)

N+1

∑
i=1

N+1

∑
j=1,j 6=i

xu
ij · sd

ij 6 smax, ∀u, (11)

xu
ij =

{
1, if UAV u travels from node i to j;

0, otherwise.
(12)

i 6= j, i, j ∈ {1, 2, ..., N + 1} , u ∈ {1, 2, ..., M} ,

where N is the total number of target nodes, V is the set of nodes including the depot, and M is the
number of UAVs, sd

ij is the universal distance from node i to j. Objective function (5) ensures that the
optimization objective is to minimize the flight traveled by the UAV with the longest universal distance,
thus to balance the flights and meet the temporal resolution requirements. Constraints (6) and (7)
ensure that every target node will only be visited once in a round. Constraints (8) and (9) mean that
for every UAV, it can only start its flight from the depot and end it in the depot. Constraints (10) are
used to prevent subtours, which are degenerate tours formed between intermediate target nodes and
not connected to the depot node, these constraints are also named as subtour elimination constraints
(SECs) [26]. Constraints (11) ensure that for each UAV, the total flight distance would not exceed its
maximum flight constraint.

2.3. Feasible Solution Representation and Generation

A feasible solution for a group of UAVs traversing the target nodes can be expressed by an array
which elements carefully arranged. With the target scheduling and path planning model converted
into an analogy of TSP problem, as shown in Figure 2, we can use a similar array to that of TSP,
which consists of all target nodes and all virtual depot nodes to express a feasible solution, except that
the path among all virtual depot nodes are unacceptable. To achieve this goal we can either set the
distances among all virtual depot nodes to infinity or directly insert virtual depot nodes into the target
nodes array.

Figure 3 shows the basic procedure to generate a feasible solution. In this case, the UAV number
M = 3 and the target nodes number N = 7. We use 0 to denote the depot node. First, we need to
randomly arrange all the target nodes in an array, then randomly choose M− 1 positions from N− 1 of
all to insert depot nodes 0, finally, we need to add starting and ending nodes 0 to the head and the tail
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of the array. Note that although the final feasible solution array seems like a sequence, different UAVs
shall start their flights simultaneously. In this case, for UAV 1, the visiting order is 0 → 3 → 7 → 0,
for UAV 2, the order is 0→ 1→ 6→ 4→ 0, for UAV 3, the order is 0→ 5→ 2→ 0. The three UAVs
shall start from the depot at the same time and then return to the depot after every assigned node
being visited exactly once.

3 7 0 1 6 4 0 5 2

3 7 1 6 4 5 2

1 2 3 4 5 6

3 7 0 1 6 4 0 5 20 0

Generate random sequence 

of all target nodes

Randomly select positions to

 insert depot nodes

Insert depot nodes

Add depot nodes to the head

and the tail of the array

Figure 3. Basic procedure for generating a feasible solution. UAV number M = 3, target nodes number N = 7.

We can see some characteristics of a feasible solution from Figure 3: the length of the array is
N + M + 1, the head and tail of the array are always 0s, and it is impossible for two virtual depot
nodes to appear in the array consecutively. Algorithm 1 provides a generic approach to decide
whether a randomly permutated solution makes sense, the function returns true if the input array
is a feasible solution, otherwise returns f alse. For the efficiency of the algorithm, we do not verify
constraints (11) here. On the one hand, usually, we can estimate the maximum distances for single
UAV through average allocation strategy before the assignment is executed. On the other hand, due to
the intrinsic attributes of the model, maximum value of terms on the left side of inequality constraints
(11) will continue to decrease with the iteration of algorithms, which will be detailed in subsequent
sections, so basically constraints (11), can be verified at the end of each algorithm.

Algorithm 1: Function Feasibility()
Input: Permutated array Vp, number of UAVs M, number of target nodes N.
Output: bool value true or f alse

1 n←get the number of elements in array Vp;
2 if n 6= N + M + 1 then
3 return f alse;
4 else if Vp(1) 6= 0 or Vp(N + M + 1) 6= 0 then
5 return f alse;
6 else
7 for i = 1 : (n− 1) do
8 if Vp(i) + Vp(i + 1) = 0 then
9 return f alse;

10 return true;
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3. Algorithms Analysis and Design

3.1. Analysis and Adaptation of DE Approach

The DE algorithm introduced by Storn and Price [27] was originally designed to deal with
continuous variables. When dealing with mixed discrete optimization problems with both continuous
and discrete variables, DE usually represents all intrinsic parameters as floating-point values and
quantifies discrete variables to the nearest permissible integer. It has been proved that DE can solve
generalized combinatorial optimization problems [28].

Canonical DE begins with a randomly initiated population of NP D-dimensional vectors,
also called individuals, which encode the candidate solutions to the problem, while each parameter
is subject to its prescribed minimum and maximum bounds. To adapt a typical DE algorithm to the
proposed UAV scheduling model, which is a combinatorial optimization problem, we use an array
consists of target nodes and virtual depot nodes in a particular order to represent a feasible solution.
Based on the idea of adding the difference between two vectors to another vector, we add the difference
between two arrays to another array to perform the mutation. Four most frequently referred mutation
strategies are adopted during this stage. The crossover operation of the classical DE method can be
performed directly here due to the similar structure of the individuals. Note that in both mutation and
crossover stage, the generated donor array in the mutation stage and the trial arrays in the crossover
stage should all be feasible solutions, and this may need extra operations to the directly generated
results. The specific method will be detailed later. The selection stage is basically the same as in original
DE, which is based on the greedy principle to select the population of a new generation.

To better adapt the classical DE to the combinatorial discrete model here, we modify the
original algorithm with a Delete-and-Insert strategy, namely DIDE, for the special model here.
In the initialization stage of the DIDE, we adopt the procedure in Section 2.3 to quickly initialize
a population of NP individuals of generation 0. The goal of the mutation operation is to generate a
donor array Vi,G from the present population. In this stage, we choose four of the most frequently
adopted strategies as follows:

DE/rand/1: Vi,G = Xri
1,G

+ F ·
(

Xri
2,G − Xri

3,G

)
, (13)

DE/best/1: Vi,G = Xbest,G + F ·
(

Xri
1,G − Xri

2,G

)
, (14)

DE/rand/2: Vi,G = Xri
1,G + F ·

(
Xri

2,G − Xri
3,G

)
+ F ·

(
Xri

4,G − Xri
5,G

)
, (15)

DE/best/2: Vi,G = Xbest,G + F ·
(

Xri
1,G − Xri

2,G

)
+ F ·

(
Xri

3,G − Xri
4,G

)
, (16)

where Xri
j ,G

are arrays randomly chosen from the current population, Xbest,G is the optimal individual

of the current population. Scaling factor F is a positive control parameter for scaling the difference of
vectors [29].

To ensure that the generated donor array is also a feasible solution, we need to perform extra
operations on the basic mutation strategies. One of the methods is to convert the parameters to
floating-point numbers first for mutation, and then transform back to integer range [30]. Specifically,
we first delete the virtual depot nodes from the randomly chosen Xrj ,G, j ∈ {1,2,...,5}, then perform
one of the four mutation strategies to generate an array of floating-point numbers. To transform the
elements of the array back to the integers, we convert the smallest floating-point number of the array
to smallest positive integer 1, in ascending order, convert the next floating-point number to 2, the rest
can be done in the same manner to get a new mutated integer array. To change the new array into a
feasible solution, we need to insert the virtual depot nodes back to the array, these steps can be done
as shown in Figure 3, steps 2 to 4.
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In the crossover stage, the donor array mixes its components with the target array Xi,G to form
the trial array Ui,G = [u1,i,G, u2,i,G, ..., uD,i,G]. The DE family of algorithms uses mainly two kinds of
crossover methods—exponential and binomial [27]. We adopt the binomial crossover in this stage.
The scheme may be outlined as follows:

uj,i,G =

{
vj,i,G, if

(
randi,j [0, 1] 6 Cr or j = jrand

)
,

xj,i,G, otherwise,
(17)

where the randi,j[0, 1] is a uniformly distributed random number, which is called anew for each jth
element of the ith individual array. jrand ∈ [1, 2, ..., D] is a randomly chosen index, which ensures the
trial array Ui,G gets at least one element from Vi,G. As in the mutation stage, the generated array after
crossover is still not a feasible solution for UAVs, the crossover operation may cause more than M + 1
virtual nodes, or one target node be repeated. We employ similar operations as in the mutation stage
to change the newly generated trial array into a feasible solution.

In the selection stage of DIDE, we adopt the greedy principle to determine whether the trial or
the target array survives to the new generation. The selection operation can be described as

Xi,G+1 =

{
Ui,G, i f f (Ui,G) 6 f (Xi,G) ,

Xi,G, i f f (Xi,G) < f (Ui,G) ,
(18)

where f (X) is the objective function to be optimized, as Formula (5) describes. Therefore, if the
new trial array yields a better or equal result of the objective function, i.e., has smaller or equal
maximum universal distance, it replaces the corresponding target array in the new generation,
otherwise, the target array enters the new population.

3.2. Analysis and Adaptation of GA Approach

GA, as a widely used meta-heuristic algorithm for solving the large-scale optimization problem,
has been proven efficient for solving TSP problems [31,32]. The basic process of GA is generally
composed of three steps. The first step is to select individuals from the current population based on
prescribed rules, the second step is to do crossover operation on selected individuals to generate new
offspring, and the third step is to randomly perform mutation technique on individuals to finally form
a new generation.

The selection strategy is a critical step for the efficiency of the GA algorithm and avoiding
premature convergence. Popular strategies of selection include roulette wheel, tournament, and elitist
preservation strategy. Previous studies by Chudasama et al. and Razali et al. revealed in their work
through comparative performance that elitism and roulette wheel methods are all efficient in their
particular TSP instances, respectively. Considering that the model here is not exactly the same as TSP
and the structure of a feasible solution is much different from that of TSP, we take these previous
works as a reference, and combine the roulette wheel and elitist preservation method together in the
proposed Modified Genetic Algorithm (MGA).

In the proportional roulette wheel strategy, individuals are selected with a probability that is
directly proportional to their fitness values. When spinning the roulette wheel to select a parent,
the wheel is partitioned into segments which amount corresponds to the number of individuals to
be selected, and size of segments proportional to their fitness values, thus fulfilling the purpose of
survival the fittest. Use fi to denote the fitness value, which is the reciprocal of the objective function
evaluated in the individual i, the selection probability pi for individual i is defined as,

pi =
fi

∑n
j=1 f j

. (19)
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For the convenience of computer simulation, we need to compute the accumulative selection
probability pac

i of each individual the population as,

pac
i =

i

∑
j=1

pj. (20)

To simulate the process of roulette wheel selection, we randomly generate a floating-point number
randi on [0, 1], and find the smallest value of pac

i that is larger than randi, then the corresponding
individual that has accumulative selection probability pac

i is selected as a parent. The process of roulette
wheel selection is described in Algorithm 2.

Algorithm 2: Roulette Wheel Selection
Input: Population IP, number of individuals NP.
Output: A selected parent individual P.

1 Sum( f )← 0;
2 for i = 1 : NP do
3 fi ←compute the fitness value of each individual;
4 Sum ( f )← Sum ( f ) + fi;

5 rand←A number is generated randomly on [0,1);
6 pac ← 0;
7 for i = 1 : NP do
8 pi ←

fi
Sum( f ) ;

9 pac ← pac + pi;
10 if pac > rand then
11 return ith individual from the population as a parent P;

The basic idea of elitist preservation strategy is to copy the individual which is fittest directly
to the next generation, rather than select all individuals based on certain probability and perform
crossover and mutation operations afterward. The advantage of this strategy is that the currently fittest
individual of the population would not be lost or sabotaged during selection, crossover, and mutation.
The elitist preservation strategy has prominently contributed to the global convergence performance
of canonical GA [33,34]. In the proposed MGA, which is adapted for the problem here, we adopt the
elitist preservation strategy in both selection and mutation stage, i.e., we preserve the fittest individual
of the current population in these two stages, protecting it from being sabotaged by crossover or
mutation operations.

The crossover operation of MGA consists of the following steps. First, delete all virtual nodes of
the two selected parent individuals. Second, randomly choose the genetic locus on parents to perform
crossover, sort elements of crossed array in ascending order, and find the sorted elements’ indices
in the original array to denote target nodes, thus generate two fetuses. Finally, insert virtual nodes
back to previously generated fetuses to produce two offspring. The crossover process is illustrated in
Figure 4.

The mutation operation is necessary for exploring the solution space. To do this we need to set
the mutation rate ratem first, then for every individual except the elitist one, a random number randi
between interval [0, 1] is generated and compared with the mutation rate, if randi is less than or equal
to ratem, then perform mutation on this individual, here we randomly choose two target nodes and
swap them, thus generate a new solution through mutation. In every iteration, since we add two
children solutions to the population after crossover, we need to delete the two worst solutions from
the population based on the greedy principle at the end of each iteration.
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Figure 4. Process of crossover operation of the Modified Genetic Algorithm (MGA).

3.3. Improved Simulated Annealing Approach

SA algorithm is another meta-heuristic method that has been proven effective in combinatorial
optimization [35,36]. As the UAV path planning related problems and TSP problem can be categorized
into combinatorial optimization, SA is also widely employed in solving these problems [20,21,23].

The requirements for implementing the classic SA algorithm are the solution representation,
a method to calculate the internal energy of the solutions, an initial temperature T0, final temperature T′,
and cooling factor µ. By matching the function value to the energy, SA imitates the minimization
process of nature. The energy decreases are always acceptable, whereas the energy increments are
accepted under certain conditions: an evenly distributed number between interval [0, 1] is less than an
exponential term, and the probability of accepting less suitable solutions decreases with the reduction
of temperature.

The difference between SA and the other two meta-heuristic algorithms is that SA is not a
population based method, essential operation for SA is defining a proper rule to generate neighboring
solution X′ from current solution X. To efficiently generate neighboring feasible solutions, we propose
a Swap-and-Judge strategy.

The basic idea is of Swap-and-Judge strategy is to generate feasible solutions more efficiently
without damaging the ability to explore the solution space. To do this, for a current solution, we directly
choose two elements, including target nodes and virtual nodes, to do the swap operation. Figure 5
shows a possible example of effective swaps and invalid swaps in a scenario with 2 UAVs, which result
in 3 virtual nodes V1, V2, and V3, and 7 target nodes, x1 to x7. As shown in the figure, this operation
may also lead to invalid swaps such as {V1 ↔ x2} and {x1 ↔ V2}, although with a lower probability
compared with mutation and crossover operations in previously mentioned algorithms. To ensure the
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feasibility, the judge function in Algorithm 3 is called here, repeat the random choosing operation if
the judge function returns f alse until the result is true, and then do the swap operation on the current
solution to generate the neighboring solution. The process of swap-and-judge strategy is detailed in
Algorithm 4.

Effective Swaps

Invalid Swaps

Figure 5. An example of effective swaps and invalid swaps.

Algorithm 3: Function ValidityJudge()

Input: Positions i and j to swap (Assume that i < j);
Feasible current solution X.

Output: bool value true or f alse.
1 if (i == 1 and X(j) 6= 0) or (X(i) 6= 0 and j == N + M + 1) then
2 return f alse;
3 else if (j > i + 1) and (X(i) == 0 and X(j) 6= 0) and (X(j− 1) == 0 or X(j + 1) == 0) then
4 return f alse;
5 else if (j > i + 1) and (X(j) == 0 and X(i) 6= 0) and (X(i− 1) == 0 or X(i + 1) == 0) then
6 return f alse;
7 else
8 return true;

Algorithm 4: Swap-and-Judge Strategy for SA
Input: X- feasible current solution;
Output: X′- generated neighboring solution from X;

1 value = f alse;
2 while value 6= true do
3 i, j←randomly choose two positions from current solution X;
4 value← ValidityJudge(i, j, X);
5 // call function ValidityJudge() from Algorithm 3;

6 X′ ← Swap nodes X(i) with X(j) on current solution X;

Algorithm 5 provides the basic procedure of the Swap-and-Judge Simulated Annealing (SJSA)
algorithm. To determine whether the neighboring solution should replace the current one, we adopt
the Metropolis algorithm [37]. As a comparison, the Delete-and-Insert method in Section 3.1 is also
considered an alternative strategy to improve SA. If we replace the neighboring solution generation
strategy with the Delete-and-Insert method, i.e., delete all virtual nodes from the current solution
before performing the swap operation, and then add virtual nodes back, we get Delete-and-Insert
Simulated Annealing (DISA) algorithm.
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Algorithm 5: SJSA

1 T0- The initial temperature;
2 T′- The final temperature;
3 µ- The temperature reduction factor;
4 β- The control factor;

Output: Xbest- An optimized solution to the problem;
f (Xbest)- Objective function value of Xbest;

5 Xbase ←Generate initial solution of the problem;
6 Xbest ← Xbase;
7 T ← T0;
8 while T > T′ do
9 Xtemp ←Perform Swap-and-Judge method on current solution Xbase; // Call Algorithm 4;

10 if f (Xtemp) < f (Xbase) then
11 Xbase ← Xtemp;
12 if f (Xbase < f (Xbest)) then
13 Xbest ← Xbase;

14 else
15 d← f (Xtemp)− f (Xbase);
16 randi ←Generate random number on [0, 1);
17 if randi < exp (−d ∗ β/T) then
18 Xbase ← Xtemp; //Metropolis algorithm;

19 T ← T ∗ µ;

4. Experiments and Results

In this section, we evaluate the performance of DIDE, MGA, DISA, and SJSA in a number of
randomly generated scenarios. For every proposed meta-heuristic algorithm, we validate its efficiency
by several indexes including mean objective function value, standard deviation, and run time. For each
type of algorithm, we also evaluate its performance under different alternative strategies or parameter
settings. Especially, for SJSA, we compare its performance with the exact algorithm CPLEX to verify
the efficiency and accuracy of SJSA. CPLEX 12.6 is chosen as the exact solver. All other experiments
are conducted by MATLAB software on Windows 10 operating system, with Core i7-6500U 2.60GHz
CPU, 8GB memory.

Figure 6 shows a typical scenario in which the simulation is supposed to be applied. The blue
star and purple dots represent the depot for UAVs and target nodes, respectively. All of them are
distributed to a 3D space with the coordinates constrained within [2500, 3000] unit distance for the
X-axis, [3500, 4000] for the Y-axis, and [0, 50] for the Z-axis. The Z-axis is stretched to better show the
3D distributions of target nodes. We assume that the terrain is basically flat for flight, and the small
number of obstacles can be avoided through techniques such as light detection and image processing
automatically [38]. In a mission of joint reconnaissance, multiple UAVs are supposed to visit all of the
target nodes and return to the depot with a temporal resolution, i.e., they should return as a whole
with the least delay possible. The three-dimensional coordinates of depot and target nodes are already
known, and the extra time some nodes may need to accomplish the task is estimated in advance,
therefore we can get the universal distance matrix as in Section 2.1. To better validate the effectiveness
and efficiency of all proposed meta-heuristic algorithms, we create 6 scenarios A-F with a different
number of target nodes and UAVs, run each type of algorithm under the same scenario to compare
their performances.
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Figure 6. Simulation scenario.

4.1. Performance Analysis of DIDE

The results of DIDE performance with different mutation strategies are shown in Table 1.
The generation and number of population of DIDE are set to Generation = 500, NP = 50.
Especially, the scale factor F and the crossover rate Cr are configured to 0.75 and 0.45, respectively,
through multiple practical simulations.

Table 1. Performance comparison of Delete-and-Insert Differential Evolution (DIDE) with different
mutation strategies.

Scenarios
Rand/1 Best/1 Rand/2 Best/2

Mean Std Runtime (s) Mean Std Runtime (s) Mean Std Runtime (s) Mean Std Runtime (s)

A (M = 3, N = 15) 1076.34 46.85 1.95 1070.93 46.29 1.92 1072.53 48.83 2.03 1074.29 46.29 1.92
B (M = 3, N = 20) 1606.26 52.18 1.98 1605.10 49.51 2.07 1607.39 50.70 1.92 1603.97 55.16 2.10
C (M = 5, N = 20) 1142.17 45.37 2.31 1136.44 45.06 2.21 1142.63 38.28 2.20 1143.04 43.14 2.40
D (M = 5, N = 30) 1703.88 61.02 2.33 1709.31 57.92 2.35 1713.38 56.31 2.60 1704.33 67.27 2.70
E (M = 10, N = 30) 1103.24 37.76 3.16 1103.81 41.20 3.25 1099.82 38.53 3.82 1100.67 34.33 3.67
F (M = 10, N = 50) 1823.65 56.92 3.50 1830.15 58.47 3.79 1815.65 62.33 3.91 1816.12 61.96 3.53

For each mutation strategy, we run the algorithm 100 times in each scenario before we collect
and analyze the statistics. Run time index is obtained by dividing the total time of 100 runs by 100.
For scenario A, although not prominent, strategy “best/1” appears to have a dominant advantage
over other strategies on each evaluation index. For scenario B, C, and D, there is not much difference
between the four strategies, although “rand/2” strategy performs better on run time index in scenario
B and C, the other three strategies “rand/1”, “best/1”, and “best/2” have the best mean objective
function value in scenario D, C, and B, respectively. For scenario E and F, strategy “rand/2” always
acquires best mean objective function values of solutions, whereas strategy “rand/1” always gets the
least run time in scenarios D, E, and F.

Although some strategies perform better in specific scenarios, the overall performances of the four
strategies are not significantly different in statistics. The possible explanation for this phenomenon
is that the mutation operation of DE is essentially a shuffling generator, as well as the subsequent
conversion operation to make the mutated arrays to feasible solutions. Whatever the mutation
strategy is, the generated donor array after the conversion operation would not be intrinsically
different under these strategies.

4.2. Performance Analysis of MGA

As GA and DE are all population-based meta-heuristic methods, for the sake of fairness in
comparison, we set the generation and number of population of MGA to Generation = 500, NP = 50,
the same as in DIDE. The simulation scenario settings are also the same as in former experiments.
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Extensive simulations show that the mutation rate Ratem has a significant impact on the outcome of
MGA for the UAV scheduling problem. To better show the impact of the mutation rate, we evaluate the
performance of MGA in each scenario under different mutation rates 0.15, 0.35, and 0.55. The results
are detailed in Table 2.

Table 2. Performance comparison of MGA with different mutation rates.

Scenarios
Ratem = 0.15 Ratem = 0.35 Ratem = 0.55

Mean Std Runtime (s) Mean Std Runtime (s) Mean Std Runtime (s)

A (M = 3, N = 15) 1085.27 43.71 1.11 1063.00 44.36 1.28 1059.39 40.76 1.66
B (M = 3, N = 20) 1616.16 61.80 1.01 1582.19 56.58 1.31 1564.19 54.02 1.62
C (M = 5, N = 20) 1157.50 46.00 1.07 1127.89 40.18 1.42 1113.30 35.57 1.77
D (M = 5, N = 30) 1741.81 68.04 1.12 1696.63 60.37 1.55 1660.55 59.78 1.85
E (M = 10, N = 30) 1113.02 46.52 1.32 1094.93 40.47 1.87 1081.84 29.99 2.39
F (M = 10, N = 50) 1880.88 63.61 1.38 1842.74 63.87 1.95 1808.45 62.03 2.48

For each mutation rate Ratem, we run the algorithm 100 times in each scenario before we collect
and analyze the results. We also adopt roulette wheel selection and elitist preservation strategies
in every case. Statistics in Table 2 indicate that MGA with a higher mutation rate performs better
in finding solutions with the smaller objective function value. Through scenario A to F, MGA with
mutation rate 0.55 always has the minimum mean objective function values and standard deviation
values. These two indexes are prominently better than the other two options, although the run time
index is slightly longer than the other two options. MGA with mutation rate 0.15 has the shortest run
time in each scenario, the difference of run time among three options are not significant but pretty
steady through different scenarios.

The phenomenon in Table 2 provides interesting inspirations. We know from the detailed process
of the MGA method that the mutation strategy is essentially a way to explore the solution space more
thoroughly, otherwise the MGA would only generate two other solutions for each generation through
crossover operation. To make better use of the population, a higher mutation rate is needed to explore
neighboring solutions from the current population. On the other hand, a higher mutation rate also
needs more computation resources to generate new solutions. In practical application, as the run time
increase is less than a linear increase in each scenario, we can configure the mutation rate to achieve
a balance between the ideal mean function value and run time.

4.3. Performance Analysis of SJSA and DISA

We run DISA and SJSA under the same scenarios A to F as before. For both algorithms,
the parameters are set to T0 = 1000 as initial temperature, µ = 0.99 as the reduction factor, and β = 100 as
the control variable. Different from former algorithms, Simulated Annealing is not a population-based
algorithm, and normally only one new solution is generated in each iteration of the algorithm. To ensure
the fairness of the comparison, we configure the final temperature T′ for DISA and SJSA to generate
basically as many individuals as former population-based methods. We run each algorithm for
100 times in each scenario as before to evaluate the results. The performance of DISA and SJSA are
detailed in Table 3.

The statistics clearly show that the performance of SJSA is dominantly better in each case by
all indexes than DISA, especially in scenarios C to F. One of the obvious explanation is that the
swap-and-judge operation of SJSA is more efficient than the delete-and-insert operation of DISA,
especially when the number of UAVs is small, in which case the ratio of virtual nodes to the target
nodes is small, therefore the times of validity judge operations can be largely reduced. As SJSA can
directly generate a feasible solution from the current one without time-consuming delete and insert
operation, it shows higher efficiency than DISA. As the scale of the problem increases, the gap between
the optimized results by the two methods tends to widen. Meanwhile, the time consumption of SJSA
stays at a pretty low level and has a slow growth rate compared with DISA, which is a good sign that
SJSA can be more competitive in related large scale optimization problems and their generalized forms.
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Table 3. Performance comparison of Delete-and-Insert Simulated Annealing (DISA) and Swap-and-Judge
Simulated Annealing (SJSA).

Scenarios
DISA SJSA

Mean Std Runtime (s) Mean Std Runtime (s)

A (M = 3, N = 15) 891.71 39.32 2.17 882.64 34.50 0.19
B (M = 3, N = 20) 1230.44 89.92 2.14 1070.15 64.46 0.22
C (M = 5, N = 20) 1008.59 67.20 2.58 767.49 44.14 0.26
D (M = 5, N = 30) 1571.36 108.55 2.63 917.00 59.55 0.30
E (M = 10, N = 30) 1045.22 62.10 3.39 671.62 20.90 0.35
F (M = 10, N = 50) 1727.61 101.57 3.82 904.14 44.24 0.38

4.4. Comparative Study

4.4.1. Comparison with CPLEX

To verify the optimization performance of the proposed SJSA, which is the best among all of the
algorithms proposed before, we compare it with the exact algorithm, CPLEX, to find the gap between
the satisfactory solution generated by SJSA and the optimal solution obtained by CPLEX. From the
model and constraints in Section 2.2, we can see that the computational complexity of the problem is
very high. Taking constraints (10) for example, for any nodes set V containing N + 1 nodes including
the depot node, there are as many as 2N different subsets S for V\ {x1}, which means a pretty high time
complexity only for constraints (10), not to mention other constraints. This will cause the amount of
calculation to increase exponentially when the number of target points increases. For the convenience
of comparison, we configure a set of test scenarios S1 to S8 with the relatively small number of target
nodes to conduct the comparative experiments between SJSA and CPLEX. For each test scenario,
we run the SJSA for 20 times and calculate the mean values of the objective function and run time for
comparison with the optimal value obtained by CPLEX, and the results are detailed in Table 4.

Table 4. Performance comparison of CPLEX and SJSA.

Test Scenarios
CPU (Sec) Objective Function Value

Gap (%)
CPLEX SJSA CPLEX SJSA

S1 (M = 3, N = 8) 33.39 0.21 757.37 764.14 0.89
S2 (M = 3, N = 9) 56.77 0.22 542.16 549.51 1.36

S3 (M = 4, N = 10) 215.53 0.22 671.77 686.42 2.18
S4 (M = 4, N = 11) 477.57 0.22 597.21 603.13 0.99
S5 (M = 4, N = 12) 1257.15 0.23 719.96 728.14 1.14
S6 (M = 5, N = 13) 5713.42 0.28 644.63 653.26 1.34
S7 (M = 5, N = 14) 15811.99 0.36 613.49 618.81 0.87
S8 (M = 5, N = 15) 28042.32 0.37 641.45 650.46 1.40

From the statistics in Table 4, we can see that the time consumption of CPLEX increases explosively
with the increase of target nodes number. When the number of target nodes increases from 8 to 15,
which is less than doubled, the time consumption increases from 33.39 s to nearly 8 h. For scenario S6,
which with only 5 UAVs and 13 target nodes, the running time has exceeded an hour, whereas SJSA
can find the near-optimal solution in no more than 1 s and the average gap with the optimal solution
is less than 2%. The time consumption of SJSA grows quite slowly in finding near-optimal solutions
with the increase of target nodes number and UAV number, a phenomenon that can also be observed
in previous experiments. At the same time, the average gaps with the optimal solution obtained by
CPLEX in all these test scenarios are kept within 3%. It is worth mentioning that in 20 runs for all of the
eight scenarios, there are always several times in each scenario when SJSA can get the optimal solution.
Although due to computer hardware limitations, we can not conduct experiments on CPLEX with
much more target nodes for comparison with SJSA, we believe that the statistics in the table can testify
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to some extent that SJSA is efficient in finding near-optimal solutions for the problem here, especially
for large-scale optimization problem with a large number of target nodes.

4.4.2. Comparison with Proposed Meta-Heuristic Algorithms

We further conduct the comparative study by analyzing the performances of different proposed
algorithms in each scenario. For algorithm DIDE, we always choose the best mean value and its
corresponding standard deviation from the four strategies. As for algorithm MGA, we choose the
best mean value and its corresponding standard deviation from different mutation rate values,
i.e., choose the case in which the mutation rate is Ratem = 0.55. Together with DIDE and MGA,
we make a parallel comparison between DISA and SJSA, as these two algorithms have very different
strategies and prominent differences.

The convergence curves of the four algorithms in scenario C are illustrated in Figure 7. It is obvious
that the convergence effect of the proposed SJSA is better than other algorithms. The SJSA continually
converges to better objective function without being trapped by local optimum and attains its optimal
value in iteration 475. The DISA approach also continually converges but with a slower speed and
stays at its optimal value in iteration 452. The MGA performs better than DIDE in terms of continuous
convergence, but the convergence speed is slower compared with SA-based algorithms. The DIDE
approach, on the other hand, has a very slow speed of convergence and stays at a relatively high
objective function value at the end of the iteration.

Figure 7. Convergence comparison in scenario C.

Figure 8 shows the best mean objective function values and corresponding standard deviations of
different algorithms in scenarios A to F. For DIDE, we always choose the best results from the four
strategies, and similarly, we choose the results of MGA from Ratem = 0.55, which always gets better
results than other choices. In terms of mean function value, the proposed algorithm SJSA outperforms
DIDE, MGA, and DISA by around 38.17%, 37.10%, and 30.26%, respectively. DISA, on the other hand,
outperforms DIDE and MGA by around 11.34% and 9.81%, respectively. Whereas MGA is always
slightly better than DIDE in each scenario. Two reasons may explain why DISA and SJSA outperform
DIDE and MGA. (1) DIDE and MGA are all population-based algorithms, whereas the two SA-based
algorithms are not. The transformation operations such as mutation and crossover are essentially a
shuffle mechanism, which is of no directivity. Therefore, changing the mutation strategy, as in DIDE,
would have subtle influence on the outcome of the shuffling results. This may also explain why the
four strategies perform very close. As for MGA, increasing the mutation rate can surely increase the
probability of generating new solutions, thus exploring the solution space more thoroughly, but this
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can also increase the algorithm running time. (2) DISA and SJSA, as SA-based algorithms, have the
advantage of accepting inferior solutions with a changing probability, this can help them to a great
extent avoid falling into local optimality at early stage.

Figure 8. Performance comparison among scenarios.

We further graphically display the optimized results by different methods in Figure 9.
Take scenario C (M = 5, N = 20) as an example, we run four algorithms and display the scheduling
results. The blue star represents the depot node, whereas the purple dots represent the target nodes
that need to be visited within the temporal resolution. Dotted lines with different colors represent task
assignments and execution orders for different UAVs. For DIDE, we adopt the best/1 strategy as an
example, and for MGA, we configure the mutation rate to Ratem = 0.55. Four algorithms all generate
feasible solutions for 5 UAVs, the scheduling result generated by SJSA is better statistically, and also
visually contains less crossover among flights than other methods, which make it easier for UAVs to
perform flight missions. Scheduling results by DISA and SJSA also look clearer than by the former two
methods, which means a single UAV is basically responsible only for a small discrete area of its own
task, and there are fewer overlaps among different task areas.
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(a) (b)

(c) (d)

Figure 9. Comparison of optimized results by different methods in scenario C (M = 5, N = 20).
(a) Optimized result of DIDE (best/1); (b) optimized result of MGA (Ratem = 0.55); (c) optimized result
of DISA; (d) optimized result of SJSA.

5. Conclusions and Future Work

In this paper, to solve the problem of task assignment and path planning for multiple UAVs
in practical missions, an algorithm, namely SJSA is proposed based on comparison with other
meta-heuristic algorithms. By adding the virtual nodes into the 3D VRP model, we find a convenient
way to generate feasible solutions suitable for heuristic algorithms. For the balanced distribution of
tasks among UAVs, the concept of universal distance matrix is proposed to simplify the computational
work. The task assignment and path planning model is therefore established with multiple constraints
considered. To efficiently find the suboptimal solution for the model, we also study and modify
population-based evolutionary algorithms such as DE and GA, and designed the efficient SJSA based
on SA. Experimental and comparative studies reveal that the proposed SJSA is efficient in finding
near-optimal solutions compared with the exact algorithm CPLEX, and also competitive in comparison
with proposed meta-heuristic algorithms, the results also suggest that the population-based algorithms
may not suitable for this discrete combinatorial optimization problem.

In our future work, we will focus on the path planning for UAVs in a complex environment,
which is challenging for the computational resource and efficiency of algorithms. Besides, we will also
extend our study to the multiobjective optimization in some special application scenarios, while taking
more inherent flight characteristics of UAV into account.
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DE Differential Evolution
DIDE Delete-and-Insert Differential Evolution
GA Genetic Algorithm
IoT Internet of Things
MGA Modified Genetic Algorithm
PSO Partical Swarm Optimization
QoE Quality of Experience
QoS Quality of Service
SA Simulated Annealing
SJSA Swap-and-Judge Simulated Annealing
SOS Symbiotic Organisms Search
TSP Traveling Salesman Problem
UAV Unmanned Aerial Vehicle
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