Skip to main content
. 2020 Aug 22;20(17):4747. doi: 10.3390/s20174747

Table 2.

Comparative analysis of binary classification accuracy (%) with other methods on the BreaKHis dataset.

Methods 40× 100× 200× 400×
ResHist model [12] 86.38 87.28 91.35 86.29
IRRCNN w/o augmentation [13] 97.16 96.84 96.61 95.78
IRRCNN with augmentation [13] 97.95 97.57 97.32 97.36
Alex Net [22] 85.6 83.5 82.7 80.7
class structure-based deep CNN [21] 92.8 93.9 93.4 92.9
Multi task CNN [40] 81.87 83.39 82.56 80.69
CNN & Fusion Rules [41] 90.0 88.4 84.6 86.1
VLAD encoding [42] 91.8 92.2 91.6 90.5
Structured Deep Learning [43] 95.8 96.9 96.7 94.9
IRV2+1-NN_Aug [16] 98.04 97.50 97.85 97.48
RBM [15] 88.7 85.3 88.6 88.4
DenseNet CNN [24] 93.64 97.42 95.87 94.67
PFTS Features + 1-NN [14] 80.9 80.7 81.5 79.4
PFTS Features + SVM [14] 81.6 79.9 85.1 82.3
VGGNET16-RF [26] 92.22 93.40 95.23 92.80
VGGNET16-SVM(POLY) [26] 94.11 95.12 97.01 93.40
Xception model [27] 95.26 93.37 93.09 91.65
Proposed method 97.58 97.44 97.28 97.02