Table 2.
Methods | 40× | 100× | 200× | 400× |
---|---|---|---|---|
ResHist model [12] | 86.38 | 87.28 | 91.35 | 86.29 |
IRRCNN w/o augmentation [13] | 97.16 | 96.84 | 96.61 | 95.78 |
IRRCNN with augmentation [13] | 97.95 | 97.57 | 97.32 | 97.36 |
Alex Net [22] | 85.6 | 83.5 | 82.7 | 80.7 |
class structure-based deep CNN [21] | 92.8 | 93.9 | 93.4 | 92.9 |
Multi task CNN [40] | 81.87 | 83.39 | 82.56 | 80.69 |
CNN & Fusion Rules [41] | 90.0 | 88.4 | 84.6 | 86.1 |
VLAD encoding [42] | 91.8 | 92.2 | 91.6 | 90.5 |
Structured Deep Learning [43] | 95.8 | 96.9 | 96.7 | 94.9 |
IRV2+1-NN_Aug [16] | 98.04 | 97.50 | 97.85 | 97.48 |
RBM [15] | 88.7 | 85.3 | 88.6 | 88.4 |
DenseNet CNN [24] | 93.64 | 97.42 | 95.87 | 94.67 |
PFTS Features + 1-NN [14] | 80.9 | 80.7 | 81.5 | 79.4 |
PFTS Features + SVM [14] | 81.6 | 79.9 | 85.1 | 82.3 |
VGGNET16-RF [26] | 92.22 | 93.40 | 95.23 | 92.80 |
VGGNET16-SVM(POLY) [26] | 94.11 | 95.12 | 97.01 | 93.40 |
Xception model [27] | 95.26 | 93.37 | 93.09 | 91.65 |
Proposed method | 97.58 | 97.44 | 97.28 | 97.02 |